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Representing features

In statistical pattern recognition, patterns are represented
using random vectors (i.e., vector of random variables)
Behaviour of patterns follows joint probabilistic behaviour
of associated measurements making up random vector
Therefore, important to review basics of:

univariate (one variable) probability theory
multivariate (multiple variables in random vector) probability
theory
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Random variables

Random variable is a single scalar (e.g., x) that is
random.
Random variables either discrete (e.g., random integer) or
continuous (e.g., random real number)
Random variable characterized by its cumulative
distribution function (CDF) (Fx ):

Fx (τ) = Pr(x < τ) (1)
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Random variables

More convenient to characterize using probability
distribution (PDF) p(x):

Fx (τ) = Pr(x < τ) =

∫ τ

−∞
p(x)dx (2)

∫ ∞
−∞

p(x)dx = 1 (3)

Alexander Wong SYDE 372



Statistical Feature Representation
Random Variables

Joint Statistics
Random Vectors

Sample Statistics
Multivariate Gaussian Distribution

Example: Probability of Rainfall Amount
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Expectation

Expectation:

E [f (x)] =

∫ ∞
−∞

p(x)f (x)dx (4)

Choice of f leads to definitions of mean (µx ) and variance
(σ2

x ):
µx = E [x ] (5)

σ2
x = E [x2]− E [x ]2 = E [(x − E [x ])2] (6)

Such statistical measures are very important for compactly
defining statistical class models!
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Common distribution models

Gaussian (by far the most common):

p(x) =
1√

2πσx
exp−1

2
(
x − µx

σx
)2 (7)

Uniform:

p(x) =


0, x < a
1

b−a a ≤ x ≤ b
0 b < x

(8)

Exponential:

p(x) =

{
0 x < 0

λe−λx x ≥ 0
(9)

Allows for compact representations of statistical models
using a couple of parameters
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Joint statistics

Now that we understand the statistics of a single random
variable x , how about characterizing the relationship of two
random variables x and y?
Can be characterized using joint probability distribution
(p(x , y)):

Pr(x < α, y < β) =

∫ α

−∞

∫ β

−∞
p(x , y)dxdy (10)

Marginal distribution (p(x)):

p(x) =

∫ ∞
−∞

p(x , y)dxdy (11)
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Example: Joint Probability
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Joint statistics

Expectation:

E [f (x , y)] =

∫ ∞
−∞

∫ ∞
−∞

p(x , y)f (x , y)dxdy (12)

Because of linearity of integral operator:

E [x + y ] = E [x ] + E [y ] (13)
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Independence and Correlation

Two random variables x and y are independent if:

p(x , y) = p(x)p(y) (14)

Means that knowing x tells us nothing about y .
x and y are uncorrelated if:

E [xy ] = E [x ]E [y ] (15)

If x and y are independent, they are uncorrelated.
Note: uncorrelatedness does not imply independence!
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Correlation

Correlation:
E [(x − µx )(y − µy )] (16)

Correlation coefficient:

ρx ,y =
E [(x − µx )(y − µy )]

σxσy
(17)

Measures ability to predict y as linear function of x
ρx,y = 0 implies no predictability (x and y are uncorrelated)
ρx,y = ±1 implies perfect predictability (x and y are
deterministically linearly related)
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Conditional statistics

p(x |y) is the PDF for x conditioned on y
p(x |A) is the PDF for x given event A
Conditional statistics very important for statistical pattern
recognition, since we are assessing the unknown (e.g.,
identity of pattern) conditioned on what’s known (e.g.,
measurement). For example:

p(x |A): distribution of measurements given a class
(likelihood distribution)
p(A|x): distribution of a class given measurements
(posterior distribution)

Very important when building statistical classifiers.
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Relationship between conditional statistics and joint statistics

Related by Bayes’ rule (most important equation in pattern
recognition!)

p(x |y) =
p(x , y)

p(y)
=

p(y |x)p(x)

p(y)
(18)

In the context of classification:

p(x |A) =
p(A|x)p(x)

p(A)
(19)

where p(A) is the prior/marginal of A and p(B) is the
prior/marginal of B
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Random vectors

A random vector x of dimension n is a column vector of
random variables:

x = [x1 x2 . . . xn]T (20)

PDF of x is joint density function of random variables in
vector:

Pr(x1 < τ1, . . . , xn < τn) =

∫ τ1

−∞
. . .

∫ τn

−∞
p(x)dx (21)
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Random vectors

Marginal distribution of a sub-set:

P(x1, . . . , xl−1, xl+1, xn) =

∫ ∞
−∞

p(x)dxl (22)

Expectation

E [f (x)] =

∫ ∞
−∞

. . .

∫ ∞
−∞

p(x)f (x)dx (23)

Mean:
ux = E [x ] (24)
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Covariance

Covariance:

Σx = E [(x − µx )(x − µx )T ] (25)

Unlike variance, which is a scalar, covariance is an n × n
matrix:

(Σx )i,j = E [(xi − µi)(xj − µj)
T ] (26)

Just indicates correlation between xi and xj .
Diagonal terms are the variances of the random variables
(hence, always positive)
Σx = Σx

T
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Correlation, Independence, Bayes’ Rule for Random Vectors

Two random vectors x and y are independent if:

p(x , y) = p(x)p(y) (27)

x and y are uncorrelated if:

E [xyT ] = E [x ]E [yT ] (28)

Bayes’ Rule:

p(x |A) =
p(A|x)p(x)

p(A)
(29)

where p(A) is the prior/marginal of A and p(B) is the
prior/marginal of B
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Sample statistics

Given probability density p, you can work out any
expectation or correlation you want.
Issue: In reality, often don’t know the probability density, or
even the mean or covariance of a random vector!
We need to infer them from actual observations
x1, x2, . . . , xN .
Such inferred statistics are called sample statistics.
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Sample statistics

Sample mean:

mx =
1
N

N∑
i=1

x i (30)

Recall that the covariance is E [xxT ]− E [x ]E [x ]T .
Sample covariance:

Sx =
1
N

N∑
i=1

(x i −m)(x i −m)T =
1
N

N∑
i=1

(x ix
T
i )−mmT .

(31)
Computing empirical pdf is challenging and will be discuss
later...
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Sample statistics example

Suppose we are given the following data:
x1 = [2 1]T , x2 = [3 2]T , x3 = [2 3]T , x4 = [1 2]T .
Sample mean:

mx = 1
4

{
[2 1]T + [3 2]T + [2 3]T + [1 2]T

}
mx = [2 2]T .

(32)

Sample covariance:

Sx = 1
4{[2 1]T [2 1] + [3 2]T [3 2] + [2 3]T [2 3]
+[1 2]T [1 2]} − [2 2]T [2 2][

1/2 0
0 1/2

] (33)

Based on Sx , the features are uncorrelated!
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Multivariate Gaussian Distribution

Since the Gaussian distribution is by far the most common
statistical model used in pattern recognition, it is important
to understand how it can be used in the multivariate case
(e.g., more than one feature)
Definition:

p(x) =
1

(2π)n/2|Σ|1/2
exp

{
−1

2
((x − µ)T Σ−1(x − µ))

}
(34)
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Important special cases

Case 1: n = 1
For only one variable,

Σ = σ2

|Σ| = Σ = σ2

Therefore, we have

p(x) =
1

(2π)1/2σ
exp

{
−1

2
((x − µ)2/σ2)

}
(35)
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Important special cases

Case 2: Covariance is diagonal
This means that all components of x are uncorrelated!
Much easier to deal with since the following then holds
true:

Σ = diag(1/σ2), since diag(σ2)diag(1/σ2) = I
|Σ| =

∏n
i=1 σ

2
ii

Therefore, we have

p(x) =
n∏

i=1

1

(2π)1/2σii
exp

{
−1

2
((xi − µi)

2/σ2
ii )

}
(36)

So we have just the product of univariate Gaussian
distributions.
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Important special cases

Case 3: n=2
Very useful for visualizing and developing intuition about
n-dimensional case.
One important way of visualizing bivariate Gaussian
distributions is to sketch the equiprobability contour (all
points along contour have equal probability), defined as:

p(x) =
1

(2π)n/2|Σ|1/2
exp

{
−1

2
((x − µ)T Σ−1(x − µ))

}
= C

(37)
Which is the same as saying

(x − µ)T Σ−1(x − µ) = C. (38)
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Equiprobability contour

Just an ellipse with the following properties:
Centered at µ,
Axes are eigenvectors of Σ,
Lengths of axes equal to the square roots of eigenvalues of
Σ
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Equiprobability contour quick tips

2D covariance in the form of:

Σ =

[
a b
b c

]
a, c ≥ 0 (39)

So...
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Equiprobability contour quick tips

Given mean m and covariance matrix S,
1 Compute eigenvalues λ1 and λ2

det(S − λI) = 0 (40)

2 Compute eigenvectors Φ1 and Φ2

Sv = λv (41)

(S − λI)v = 0 (42)

3 Sketch ellipse, centered at µ, with axes as Φ1 and Φ2 and
length of axes as

√
λ1 and

√
λ2.
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Equiprobability contour: Example

Suppose we are given the following data:
x1 = [2 1]T , x2 = [3 2]T , x3 = [2 7]T , x4 = [5 2]T .
Sketch the equiprobability contour.
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Equiprobability contour: Example

Step 1: Find sample mean and sample covariance:

mx = 1
4

{
[2 1]T + [3 2]T + [2 7]T + [5 2]T

}
mx = [3 3]T .

(43)

Sx = 1
4{[2 1]T [2 1] + [3 2]T [3 2] + [2 7]T [2 7]
+[5 2]T [5 2]} − [3 3]T [3 3]

Sx = 1
4

[
10.5 8

8 14.5

]
−
[

9 9
9 9

]
Sx =

[
3/2 −1
−1 11/2

] (44)
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Equiprobability contour: Example

Observations:
the features are correlated (non-zero non-diagonal
elements),
the features have different variances (the diagonal
elements are not equal)
the equiprobability contour is rotated clockwise (the
non-diagonal elements are negative)
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Equiprobability contour: Example

Compute eigenvalues λ1 and λ2

det(S − λI) = 0 (45)

det(
[

3/2 −1
−1 11/2

]
−
[
λ 0
0 λ

]
) = 0 (46)

(3/2− λ)(11/2− λ)− 1 = 0 (47)

4λ2 − 28λ+ 29 = 0 (48)

Therefore, the eigenvalues are λ1 = 1956/341 and
λ2 = 431/341
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Equiprobability contour: Example

Compute eigenvectors Φ1 and Φ2

(S − λI)v = 0 (49)

For λ1 = 1956/341:

(

[
3/2 −1
−1 11/2

]
−
[

1956/341 0
0 1956/341

]
)v = 0 (50)

[
−1597/377 −1
−1 −89/377

]
v = 0 (51)

Φ1 =

[
139/605
−764/785

]
(52)
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Equiprobability contour: Example

Compute eigenvectors Φ1 and Φ2

(S − λI)v = 0 (53)

For λ2 = 431/341:

(

[
3/2 −1
−1 11/2

]
−
[

431/341 0
0 431/341

]
)v = 0 (54)

[
89/377 −1
−1 1597/377

]
v = 0 (55)

Φ2 =

[
764/785
139/605

]
(56)
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Equiprobability contour: Example

Sketch equiprobability contour
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