SYDE 372 Introduction to Pattern Recognition

Distance Measures for Pattern Classification: Part I

Alexander Wong

Department of Systems Design Engineering University of Waterloo

Outline

- 2 Minimum Euclidean Distance Classifier
- 3 Prototype Selection

Distance measures for pattern classification

- Intuitively, two patterns that are sufficiently similar should be assigned to the same class.
- But what does "similar" mean?
 - How similar are these patterns quantitatively?
 - How similar are they to a particular class quantitatively?
- Since we represent patterns quantitatively as vectors in a feature space, it is often possible to:
 - use some measure of similarity between two patterns to quantify how similar their attributes are
 - use some measure of similarity between a pattern and a *prototype* to quantify how similar it is with a class

Minimum Euclidean Distance (MED) Classifier

• Definition:

$$\underline{x} \in c_k \text{ iff } d_E(\underline{x}, \underline{z}_k) < d_E(\underline{x}, \underline{z}_l)$$
(1)

for all $l \neq k$, where

$$d_E(\underline{x},\underline{z}_k) = [(\underline{x}-\underline{z}_k)^T (\underline{x}-\underline{z}_k)]^{1/2}$$
(2)

 Meaning: <u>x</u> belongs to class k if and only if the Euclidean distance between <u>x</u> and the prototype of c_k is less than the distance between <u>x</u> and all other class prototypes.

MED Classifier: Visualization

MED Classifier: Discriminant Function

Simplifying the decision criteria d_E(<u>x</u>, <u>z</u>_k) < d_E(<u>x</u>, <u>z</u>_l) gives us:

$$-\underline{z}_{1}^{T}\underline{x} + \frac{1}{2}\underline{z}_{1}^{T}\underline{z}_{1} < -\underline{z}_{2}^{T}\underline{x} + \frac{1}{2}\underline{z}_{2}^{T}\underline{z}_{2}$$
(3)

• This gives us the discrimination/decision function:

$$g_k(\underline{x}) = -\underline{z}_k^T \underline{x} + \frac{1}{2} \underline{z}_k^T \underline{z}_k$$
(4)

 Therefore, MED classification made based on minimum discriminant for given <u>x</u>:

$$\underline{x} \in c_k ext{ iff } g_k(\underline{x}) < g_l(\underline{x}) ext{ } \forall l \neq k ext{ (5)}$$

MED Classifier: Decision Boundary

• Formed by features equidistant to two classes $(g_k(\underline{x}) = g_l(\underline{x}))$:

$$g(\underline{x}) = g_k(\underline{x}) - g_l(\underline{x}) = 0$$
 (6)

• For MED classifier, the decision boundary becomes:

$$g(\underline{x}) = (\underline{z}_k - \underline{z}_l)^T \underline{x} + \frac{1}{2} (\underline{z}_l^T \underline{z}_l - \underline{z}_k^T \underline{z}_k) = 0$$
(7)

$$g(\underline{x}) = \underline{w}^T \underline{x} + w_o = 0 \tag{8}$$

MED Classifier: Decision Boundary Visualization

• The MED decision boundary is just a hyperplane with normal vector \underline{w} , a distance $\left|\frac{w_o}{|\underline{w}|}\right|$ from the origin

Alexander Wong SYDE 372

Prototype Selection

- So far, we've assumed that we have a specific prototype <u>Z</u>_i for each class.
- But how do we select such a class prototype?
- Choice of class prototype will affect the way the classifier works
- Let us study the classification problem where:
 - We have a set of samples with known classes *c_k*
 - We need to determine a class prototype based on these labeled samples

.

Common prototypes: Sample Mean

$$z_k(x) = \frac{1}{N_k} \sum_{i=1}^{N_k} \underline{x}_i$$
(9)

where N_k is the number of samples in class c_k and \underline{x}_i is the i^{th} sample of c_k .

Common prototypes: Sample Mean

Advantages:

• + Less sensitive to noise and outliers

Disadvantages:

• - Poor at handling long, thin, tendril-like clusters

Common prototypes: Nearest Neighbor (NN)

Definition:

 $z_k(x) = \underline{x}_k$ such that $d_E(\underline{x}, \underline{x}_k) = \min_i d_E(\underline{x}, \underline{x}_i) \quad \forall \underline{x}_i \in c_k.$ (10)

 Meaning: For a given <u>x</u> you wish to classify, you compute the distance between <u>x</u> and all labeled samples, and you assign <u>x</u> the same class as its nearest neighbor.

Common prototypes: Nearest Neighbor (NN)

Common prototypes: Nearest Neighbor (NN)

• Advantages:

• + Better at handling long, thin, tendril-like clusters

Disadvantages:

- More sensitive to noise and outliers
- Computationally complex (need to re-compute all prototypes for each new point)

Common prototypes: Furthest Neighbor (FNN)

Definition:

 $z_k(x) = \underline{x}_k$ such that $d_E(\underline{x}, \underline{x}_k) = \max_i d_E(\underline{x}, \underline{x}_i) \quad \forall \underline{x}_i \in c_k.$ (11)

 Meaning: For a given <u>x</u> you wish to classify, you compute the distance between <u>x</u> and all labeled samples, and you define the prototype in each cluster as that point furthest from <u>x</u>.

Common prototypes: Furthest Neighbor (FNN)

Alexander Wong SYDE 372

Common prototypes: Furthest Neighbor (FNN)

• Advantages:

• + More tight, compact clusters

Disadvantages:

- More sensitive to noise and outliers
- Computationally complex (need to re-compute all prototypes for each new point)

Common prototypes: K-nearest Neighbor

- Idea:
 - Nearest neighbor is sensitive to noise, but handles long, tendril-like clusters well
 - Sample mean is less sensitive to noise, but poorly handles long, tendril-like clusters
 - What if we combine the two ideas?
- Definition: For a given <u>x</u> you wish to classify, you compute the distance between <u>x</u> and all labeled samples, and you define the prototype in each cluster as the *samplemean* of the *K* samples within that cluster that is nearest <u>x</u>.

Common prototypes: K-nearest Neighbor

Common prototypes: K-nearest Neighbor

• Advantages:

- + Less sensitive to noise and outliers
- + Better at handling long, thin, tendril-like clusters

Disadvantages:

Computationally complex (need to re-compute all prototypes for each new point)

Example: Performance from using different prototypes

• Features are Gaussian in nature, different means, uncorrelated, equal variant:

Alexander Wong SYDE 372

Example: Performance from using different prototypes

• Euclidean distance from sample mean for class A:

Example: Performance from using different prototypes

• Euclidean distance from sample mean for class B:

Example: Performance from using different prototypes

MED decision boundary

Example: Performance from using different prototypes

• Features are Gaussian in nature, different means, uncorrelated, equal variant:

Example: Performance from using different prototypes

• Features are Gaussian in nature, different means, uncorrelated, different variances:

Example: Performance from using different prototypes

• MED decision boundary:

Alexander Wong SYDE 372

Example: Performance from using different prototypes

• NN decision boundary:

Alexander Wong SYDE 372

MED Classifier: Example

- Suppose we are given the following labeled samples:
 - Class 1: $\underline{x}_1 = \begin{bmatrix} 2 & 1 \end{bmatrix}^T, \underline{x}_2 = \begin{bmatrix} 3 & 2 \end{bmatrix}^T, \underline{x}_3 = \begin{bmatrix} 2 & 7 \end{bmatrix}^T, \underline{x}_4 = \begin{bmatrix} 5 & 2 \end{bmatrix}^T.$
 - Class 2: $\underline{x}_1 = \begin{bmatrix} 3 & 3 \end{bmatrix}^T, \underline{x}_2 = \begin{bmatrix} 4 & 4 \end{bmatrix}^T, \underline{x}_3 = \begin{bmatrix} 3 & 9 \end{bmatrix}^T, \underline{x}_4 = \begin{bmatrix} 6 & 4 \end{bmatrix}^T.$
- Suppose we wish to build a MED classifier using sample means as prototypes.
 - Compute the discriminate function for each class.
 - Sketch the decision boundary.

MED Classifier: Example

• Step 1: Find sample mean prototypes for each class:

$$z_{1} = \frac{1}{N_{1}} \sum_{i=1}^{N_{1}} \underline{x}_{i}$$

$$\underline{z}_{1} = \frac{1}{4} \{ \begin{bmatrix} 2 & 1 \end{bmatrix}^{T} + \begin{bmatrix} 3 & 2 \end{bmatrix}^{T} + \begin{bmatrix} 2 & 7 \end{bmatrix}^{T} + \begin{bmatrix} 5 & 2 \end{bmatrix}^{T} \}$$

$$\underline{z}_{1} = \frac{1}{4} \{ \begin{bmatrix} 12 & 12 \end{bmatrix}^{T} \}$$

$$\underline{z}_{1} = \begin{bmatrix} 3 & 3 \end{bmatrix}^{T}.$$
(12)

$$Z_{2} = \frac{1}{N_{2}} \sum_{i=1}^{N_{2}} \underline{X}_{i}$$

$$\underline{Z}_{2} = \frac{1}{4} \{ [3 \ 3]^{T} + [4 \ 4]^{T} + [3 \ 9]^{T} + [6 \ 4]^{T} \}$$

$$\underline{Z}_{1} = \frac{1}{4} \{ [16 \ 20]^{T} \}$$

$$\underline{Z}_{2} = [4 \ 5]^{T}.$$
(13)

MED Classifier: Example

- Step 2: Find discriminant functions for each class based on MED decision rule:
- Recall that the MED decision criteria for the two class case is:

$$d_E(\underline{x},\underline{z}_1) < d_E(\underline{x},\underline{z}_2) \tag{14}$$

$$[(\underline{x} - \underline{z}_1)^T (\underline{x} - \underline{z}_1)]^{1/2} < [(\underline{x} - \underline{z}_2)^T (\underline{x} - \underline{z}_2)]^{1/2}$$
(15)

$$(\underline{x} - \underline{z}_1)^T (\underline{x} - \underline{z}_1) < (\underline{x} - \underline{z}_2)^T (\underline{x} - \underline{z}_2)$$
(16)

$$-\underline{z}_{1}^{T}\underline{x} + \frac{1}{2}\underline{z}_{1}^{T}\underline{z}_{1} < -\underline{z}_{2}^{T}\underline{x} + \frac{1}{2}\underline{z}_{2}^{T}\underline{z}_{2}$$
(17)

MED Classifier: Example

• Plugging in *z*₁ and *z*₂ gives us:

$$-\underline{z}_{1}^{T}\underline{x} + \frac{1}{2}\underline{z}_{1}^{T}\underline{z}_{1} < -\underline{z}_{2}^{T}\underline{x} + \frac{1}{2}\underline{z}_{2}^{T}\underline{z}_{2}$$
(18)

$$-\begin{bmatrix}3 & 3\end{bmatrix}^{T}\begin{bmatrix}x_{1} & x_{2}\end{bmatrix}^{T} + \frac{1}{2}\begin{bmatrix}3 & 3\end{bmatrix}^{T}\begin{bmatrix}3 & 3\end{bmatrix}^{T} \\ < -\begin{bmatrix}4 & 5\end{bmatrix}^{T}\begin{bmatrix}x_{1} & x_{2}\end{bmatrix}^{T} + \frac{1}{2}\begin{bmatrix}4 & 5\end{bmatrix}^{T}\begin{bmatrix}4 & 5\end{bmatrix}^{T} \\ \begin{bmatrix}4 & 5\end{bmatrix}^{T} + \frac{1}{2}\begin{bmatrix}3 & 3\end{bmatrix}\begin{bmatrix}3 & 3\end{bmatrix}^{T} < -\begin{bmatrix}4 & 5\end{bmatrix}\begin{bmatrix}x_{1} & x_{2}\end{bmatrix}^{T} + \frac{1}{2}\begin{bmatrix}4 & 5\end{bmatrix}\begin{bmatrix}4 & 5\end{bmatrix}^{T} \\ (20)$$

MED Classifier: Example

Plugging in z₁ and z₂ gives us:

$$-3x_1 - 3x_2 + 9 < -4x_1 - 5x_2 + \frac{41}{2}$$
 (21)

• Therefore, the discriminant functions are:

$$g_1(x_1, x_2) = -3x_1 - 3x_2 + 9 \tag{22}$$

$$g_2(x_1, x_2) = -4x_1 - 5x_2 + \frac{41}{2}$$
 (23)

MED Classifier: Decision Boundary

- Step 3: Find decision boundary between classes 1 and 2
- For MED classifier, the decision boundary is

$$g(\underline{x}) = (\underline{z}_k - \underline{z}_l)^T \underline{x} + \frac{1}{2} (\underline{z}_l^T \underline{z}_l - \underline{z}_k^T \underline{z}_k) = 0$$
(24)

$$g(x_1, x_2) = g_1(x_1, x_2) - g_2(x_1, x_2) = 0.$$
 (25)

Plugging in the discriminant functions g_1 and g_2 gives us:

$$g(x_1, x_2) = -3x_1 - 3x_2 + 9 - (-4x_1 - 5x_2 + \frac{41}{2}) = 0$$
 (26)

MED Classifier: Decision Boundary

• Grouping terms:

$$-3x_1 - 3x_2 + 9 + 4x_1 + 5x_2 - \frac{41}{2} = 0$$
 (27)

$$2x_2 + x_1 - \frac{23}{2} = 0 \tag{28}$$

$$x_2 = -\frac{1}{2}x_1 + \frac{23}{4} \tag{29}$$

• Therefore, the decision boundary is just a straight line with a slope of $-\frac{1}{2}$ and an offset of $\frac{23}{4}$.

MED Classifier: Decision Boundary

Step 4: Sketch decision boundary

