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Weighted Euclidean distance metric

Motivation: problem with using Euclidean distance is that
pattern space in general is NOT in Euclidean vector space!
Different measurements and features may:

be more or less dependent
have different units and scales
have different variances

The use of Euclidean distance can lead to poor
classification performance in certain cases where the
above situations hold true.
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Example where Euclidean distance can cause issues

The Euclidean distance from x to class mean prototype z1
is shorter than that to cluster mean prototype z2, even
though intuitively it should belong to class 2.
Could use NN prototypes, but that is more computationally
expensive and less robust to noise
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Weighted Euclidean distance metric

Idea: Since the features may have different units, scales,
and variances, why don’t we weight the features differently
when measuring distances?

dWo (x , z) =

[
n∑

i=1

(wi(xi − zi))
1
2

] 1
2

(1)

What we are doing is essentially scaling the feature axes
with a linear transformation and then applying Euclidean
distance metric.

dWo (x , z) = dE (x ′, z ′) (2)

where x ′ = Wox , z ′ = Wox , and Wo is a diagonal matrix of
weights.
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Example revisited

The weighted Euclidean distance in the original feature
space is just Euclidean distance in transformed space!

Alexander Wong SYDE 372



Weighted Euclidean Distance Metric
Orthonormal Covariance Transforms

Generalized Euclidean Metric
Minimum Intra-Class Distance (MICD) Classifier

WED Classifier: Example

Suppose we are given the following statistical information
about the classes:

Class 1: m1 = [3 3]T ,S1 =

[
3 0
0 1

]
.

Class 2: m2 = [4 5]T ,S2 =

[
2 0
0 1

]
.

Suppose we wish to build a WED classifier using sample
means as prototypes and the following weight matrices
W0,1 and W0,2:

W0,1 =

[
1/
√

3 0
0 1

]
W0,2 =

[
1/
√

2 0
0 1

]
(3)

Compute the discriminate function for each class.
Compute the decision boundary.
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WED Classifier: Example

Step 1: Find discriminant functions for each class based
on WED decision rule:
Recall that the WED decision criteria for the two class case
is:

dWo (x , z1) < dWo (x , z2) (4)

[(x−z1)T W T
o,1Wo,1(x−z1)]1/2 < [(x−z2)T W T

o,2Wo,2(x−z2)]1/2

(5)
(x−z1)T W T

o,1Wo,1(x−z1) < (x−z2)T W T
o,2Wo,2(x−z2) (6)
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WED Classifier: Example

Plugging in z1 = m1, z2 = m2, Wo,1, and Wo,2 gives us:

(x−z1)T W T
o,1Wo,1(x−z1) < (x−z2)T W T

o,2Wo,2(x−z2) (7)

([x1 x2]T − [3 3]T )T
[

1/
√

3 0
0 1

]T [
1/
√

3 0
0 1

]
([x1 x2]T − [3 3]T )

< ([x1 x2]T − [4 5]T )T
[

1/
√

2 0
0 1

]T [
1/
√

2 0
0 1

]
([x1 x2]T − [4 5]T )

(8)

([x1 − 3 x2 − 3])

[
1/3 0
0 1

]
([x1 − 3 x2 − 3])T

< ([x1 − 4 x2 − 5])

[
1/2 0
0 1

]
([x1 − 4 x2 − 5])T

(9)
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WED Classifier: Example

Plugging in z1 = m1, z2 = m2, Wo,1, and Wo,2 gives us:

([x1 − 3 x2 − 3])

[
1/3 0
0 1

]
([x1 − 3 x2 − 3])T

< ([x1 − 4 x2 − 5])

[
1/2 0
0 1

]
([x1 − 4 x2 − 5])T

(10)

([(x1 − 3)/3 x2 − 3])([x1 − 3 x2 − 3])T

< ([(x1 − 4)/2 x2 − 5])([x1 − 4 x2 − 5])T (11)

(x1 − 3)2/3 + (x2 − 3)2 < (x1 − 4)2/2 + (x2 − 5)2 (12)
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WED Classifier: Example

Expanding gives us:

(x1 − 3)2/3 + (x2 − 3)2 < (x1 − 4)2/2 + (x2 − 5)2 (13)

2x2
1 + 6x2

2 −12x1−36x2 + 72 < 3x2
1 + x2

2 −24x1−10x2 + 73
(14)

Therefore, the discriminant functions are:

g1(x1, x2) = 2x2
1 + 6x2

2 − 12x1 − 36x2 + 72 (15)

g2(x1, x2) = 3x2
1 + x2

2 − 24x1 − 10x2 + 73 (16)
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MED Classifier: Decision Boundary

Step 2: Find decision boundary between classes 1 and 2
For WED classifier, the decision boundary is

g(x1, x2) = g1(x1, x2)− g2(x1, x2) = 0. (17)

Plugging in the discriminant functions g1 and g2 gives us:

g(x1, x2) = 2x2
1 + 6x2

2 − 12x1 − 36x2 + 72
−(3x2

1 + x2
2 − 24x1 − 10x2 + 73) = 0

(18)
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WED Classifier: Decision Boundary

Grouping terms:

g(x1, x2) = −x2
1 + 5x2

2 + 12x1 − 26x2 − 1 = 0 (19)

Therefore, the decision boundary is a quadratic!
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WED Classifier: Decision Boundary

The decision boundary for a MED classifier looks like this
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WED Classifier: Decision Boundary

The decision boundary for this WED classifier looks like
this
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Weighted Euclidean distance metric

A more general form of the weighted Euclidean distance
metric can be defined as:

dW (x , z) =
[
(x − z)T W T W (x − z)

] 1
2 (20)

where W is the general weight matrix of the form:
w11 w12 . . . w1n
w21 w12

...
. . .

wn1 wnn

 (21)

Allows scaling AND rotation of axes!
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Weighted Euclidean distance metric

Question: Why do we care about rotation of the axes?
Answer: Cases like this...
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Orthonormal Covariance Transforms

Question: How do we determine the weights W?
Intuition: Euclidean distance is only valid for cases where
features are:

uncorrelated
unit variance

Visually, shape of distribution in feature space is a
hypersphere.
Therefore, we wish to find W that transforms the shape of
the distribution into a hypersphere!
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Desired Transform: Visualization
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Orthonormal Covariance Transforms

Question: How do we compute this transformation?
Intuition: As a first step, we wish to transform the samples
into a space in which features are uncorrelated
This can be accomplished by finding the transform A that
diagonalizes the covariance matrix Σ (since non-zero
non-diagonal elements in covariance matrix implies
correlation)

AΣAT = Λ =


λ1 0 . . . 0
0 λ2
...

. . .
0 λn

 (22)
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Orthonormal Covariance Transforms

A covariance matrix can be diagonalized based on the
following formulation:

ΦT ΣΦ = Λ =


λ1 0 . . . 0
0 λ2
...

. . .
0 λn

 (23)

where the columns of Φ are the eigenvectors of Σ, and the
elements of Λ are the eigenvalues
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Orthonormal Covariance Transforms

Therefore, our transform A that diagonalizes Σ is

A =


φT

1
φT

2
...
φT

n

 (24)

The new covariance matrix in transformed space is

Λ =


λ1 0 . . . 0
0 λ2
...

. . .
0 λn

 (25)
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Orthonormal Covariance Transform: Visualization
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Generalized Euclidean Metric

We wish to find a transform W that transform the samples
into a space in which

features are uncorrelated
features have unit variances

The orthonormal covariance transform solves the first part
of the problem (getting uncorrelated features)
Now we need to transform these uncorrelated features into
ones with unit variances
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Generalized Euclidean Metric

Intuition:
The eigenvalues Λ are the variances along the principal
axes in the transformed space after orthonormal covariance
transform
To achieve equal variance features, we just need to scale
the feature axes based on their eignvalues!

The necessary scaling transformation (whitening
trnasformation) is Λ

−1
2 :

Λ
−1
2 =


1√
λ1

0 . . . 0
0 1√

λ2
...

. . .
0 1√

λn

 (26)
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Generalized Euclidean Metric

Therefore, the weight matrix W that we want can be
defined as:

W = Λ
−1
2 ΦT (27)

What this weight matrix does is:
1 Rotate coordinate axes to get diagonal covariance matrix
2 Scale the axes to obtain identity matrix
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Generalized Euclidean Metric: Visualization
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Generalized Euclidean Metric: Visualization
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Generalized Euclidean Metric

Given W , the final generalized Euclidean metric is:

dG(x , z) =
[
(x − z)T (Λ−

1
2 ΦT )T (Λ−

1
2 ΦT )(x − z)

] 1
2 (28)

Simplifying the formulation gives:

dG(x , z) =
[
(x − z)T (ΦΛ−

1
2 Λ−

1
2 ΦT )(x − z)

] 1
2 (29)

dG(x , z) =
[
(x − z)T (ΦΛ−1ΦT )(x − z)

] 1
2 (30)

dG(x , z) =
[
(x − z)T (S−1)(x − z)

] 1
2 (31)

Makes perfect sense since S−1S = I, thus giving us
features that are uncorrelated and have unit variance.
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Generalized Euclidean Metric: Example

Given a class with the following mean and covariance
matrix:

m = [10 0]T (32)

S =

[
16 −12
−12 34

]
(33)

Plot unit standard deviation contour in original space.
Find the transformation that yields equal, unit variance
features. Plot unit standard deviation contour in
transformed space.
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Generalized Euclidean Metric: Example

Compute eigenvalues λ1 and λ2

det(S − λI) = 0 (34)

det(
[

16 −12
−12 34

]
−
[
λ 0
0 λ

]
) = 0 (35)

(16− λ)(34− λ)− 144 = 0 (36)

(λ− 40)(λ− 10) = 0 (37)

Therefore, the eigenvalues are λ1 = 40 and λ2 = 10
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Generalized Euclidean Metric: Example

Compute eigenvectors Φ1 and Φ2

(S − λI)v = 0 (38)

For λ1 = 40:

(

[
16 −12
−12 34

]
−
[

40 0
0 40

]
)v = 0 (39)

[
2 1
0 0

]
v = 0 (40)

Φ1 =

√
5

5

[
1
−2

]
(41)
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Generalized Euclidean Metric: Example

Compute eigenvectors Φ1 and Φ2

(S − λI)v = 0 (42)

For λ2 = 10:

(

[
16 −12
−12 34

]
−
[

10 0
0 10

]
)v = 0 (43)

[
1 −2
0 0

]
v = 0 (44)

Φ2 =

√
5

5

[
2
1

]
(45)
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Generalized Euclidean Metric: Example

Sketch unit standard deviation contour in original space
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Generalized Euclidean Metric: Example

Compute orthonormal whitening transform Λ−1/2ΦT

Λ−1/2ΦT =

[
1√
40

0
0 1√

10

] √
5

5

[
1 −2
2 1

]
(46)

Λ−1/2ΦT =

[ √
2

20 −
√

2
10√

2
5

√
2

10

]
(47)

Compute new mean m′ in transformed space:

m′ = Λ−1/2ΦT m =

[ √
2

20 −
√

2
10√

2
5

√
2

10

][
10
0

]
(48)

m′ =

[ √
2

2
2
√

2

]
(49)
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Generalized Euclidean Metric: Example

Sketch unit standard deviation contour in transformed
space
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Minimum Intra-Class Distance (MICD) Classifier

For classification, we want to maximize within class
similarity
In terms of distance metrics, we want to minimize
intra-class distance
How do we judge intra-class distance?

A reasonable objective measure is the mean squared
distance within the class

Based on the criterion of minimum mean squared distance
within classes, the generalized Euclidean metric IS the
minimum intra-class distance (MICD) metric!
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Minimum Intra-Class Distance (MICD) Classifier

The MICD classifier is defined by the following decision
rule:

x ∈ A iff (x −mA)T S−1
A (x −mA) < (x −mB)T S−1

B (x −mB)
(50)

Important observations:
The distance to each class is measured with its own metric
determined by its own covariance matrix (e.g., x is
transformed by S−1

A to compute dMICD(x ,mA), while x is
transformed by S−1

B to compute dMICD(x ,mB))
Means that while a linear transformation is associated with
each metric, it is not possible in general to map both
hyperellipsoidal distributions to hyperspheres with the
same transformation.
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Example: Simple classification problem

Features are Gaussian in nature, different means,
uncorrelated, different variances:
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Example: Simple classification problem

MED decision boundary:
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Example: Simple classification problem

NN decision boundary:
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Example: Simple classification problem

MICD decision boundary:
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Why does MICD make sense?

From a quick glance, there are some questions that seem
to arise when trying to understand the MICD classifier:

Why does performing distance comparisons between a
pattern and class prototypes in different transformed
feature spaces make sense?
What distance are we really measuring when we compare a
pattern and class prototype in a transformed feature space?
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Why does MICD make sense?

To answer these questions, let’s first take a look at a simple
example

Based on the current units in this feature space, where
does each of these patterns (in grey) belong to based on
Euclidean distance?
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Why does MICD make sense?

Suppose that I now tell you that the classes have the
following statistical distribution

Based on this new information, where should they belong to
now?
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Why does MICD make sense?

Let’s transform the patterns relative to the statistics of
class A:
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Why does MICD make sense?

Let’s transform the patterns relative to the statistics of
class B:
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Why does MICD make sense?

Looking at the features in the transformed spaces for class
A and class B, we can now answer the question: what
distance are we really measuring when we compare a
pattern and class prototype in a transformed feature
space?

To get into the transformed feature space for each class, we
normalize the feature axes by its standard deviation for
each feature.
What that means is that the new unit of measure in the
transformed space is now in terms of the number of
standard deviations.
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Why does MICD make sense?

Knowing that the distance between a pattern and the
prototype of a class is now measured in units of standard
deviation, we can now see how doing distance
comparisons between a pattern and class prototypes make
sense by taking a look at each of the patterns.

In Euclidean space, pattern 3 is three units from A and four
units from B, so it is classified as A.
In the transform spaces, pattern 3 is one standard deviation
from A and less than one standard deviation from B, so it is
classified as B.
In Euclidean space, pattern 4 is 3.5 units from A and 3.5
units from B, so it can be A or B.
In the transform spaces, pattern 4 is greater than one
standard deviation from A and less than one standard
deviation from B, so it is classified as B.
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MICD Decision Boundaries

Unlike the Euclidean distance classifier, the decision
boundaries between class regions are in general NOT
linear.
So how do we determine the decision boundaries?

Recall that patterns are equally similar (e.g., same
distance) to both classes
Therefore, the decision boundaries lie on the intersections
of the corresponding equidistance contours around the
classes
The equidistance contour for a class A can be defined as:

(x −mA)T SA
−1(x −mA) = c (51)
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MICD Decision Boundaries

So how do we determine the decision boundaries?
Therefore, the intersections of the corresponding
equidistance contours around the classes is

(x −mA)T SA
−1(x −mA) = (x −mB)T SB

−1(x −mB) (52)

Expanding and simplifying leads to the general quadratic
surface in hyperspace:

xT Q0x + Q1x + Q2 = 0, (53)

where,
Q0 = S−1

A − S−1
B (54)

Q1 = 2[mT
BS−1

B −mT
AS−1

A ] (55)

Q2 = mT
AS−1

A mA −mT
BS−1

B mB (56)
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MICD Classifier: Example

Suppose we are given the following statistical information
about the classes:

Class 1: m1 = [3 3]T ,S1 =

[
3 −2
−2 1

]
.

Class 2: m2 = [4 5]T ,S2 =

[
1 −2
−2 3

]
.

Suppose we wish to build a MICD classifier using sample
means as prototypes.

Compute the discriminate function for each class.
Compute the decision boundary.

Alexander Wong SYDE 372



Weighted Euclidean Distance Metric
Orthonormal Covariance Transforms

Generalized Euclidean Metric
Minimum Intra-Class Distance (MICD) Classifier

MICD Classifier: Example

Step 1: Find discriminant functions for each class based
on MICD decision rule:
Recall that the MICD decision criteria for the two class
case is:

dMICD(x , z1) < dMICD(x , z2) (57)

[(x−z1)T S1
−1(x−z1)]1/2 < [(x−z2)T S2

−1(x−z2)]1/2 (58)

(x − z1)T S1
−1(x − z1) < (x − z2)T S2

−1(x − z2) (59)

Compute S1
−1 and S2

−2:

S1
−1 =

[
−1 −2
−2 −3

]
S2
−1 =

[
−3 −2
−2 −1

]
(60)
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MICD Classifier: Example

Plugging in z1 = m1, z2 = m2, S1
−1, and S2

−1 gives us:

(x − z1)T S1
−1(x − z1) < (x − z2)T S2

−1(x − z2) (61)

([x1 x2]T − [3 3]T )T [ −1 −2
−2 −3

]
([x1 x2]T − [3 3]T )

< ([x1 x2]T − [4 5]T )T [ −3 −2
−2 −1

]
([x1 x2]T − [4 5]T )

(62)

([x1 − 3 x2 − 3])

[
−1 −2
−2 −3

]
([x1 − 3 x2 − 3])T

< ([x1 − 4 x2 − 5])

[
−3 −2
−2 −1

]
([x1 − 4 x2 − 5])T

(63)

Alexander Wong SYDE 372



Weighted Euclidean Distance Metric
Orthonormal Covariance Transforms

Generalized Euclidean Metric
Minimum Intra-Class Distance (MICD) Classifier

MICD Classifier: Example

Plugging in z1 = m1, z2 = m2, S1
−1, and S2

−1 gives us:

([x1 − 3 x2 − 3])

[
−1 −2
−2 −3

]
([x1 − 3 x2 − 3])T

< ([x1 − 4 x2 − 5])

[
−3 −2
−2 −1

]
([x1 − 4 x2 − 5])T

(64)

([(−x1 − 2x2 + 9) (−2x1 − 3x2 + 15)])([x1 − 3 x2 − 3])T

< ([(−3x1 − 2x2 + 22) (−2x1 − x2 + 13)])([x1 − 4 x2 − 5])T

(65)
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MICD Classifier: Example

Expanding and simplifying gives us:

−x2
1−3x2

2 +18x1 +15x2−72 < −3x2
1 +x2

2 +44x1 +26x2−23
(66)

Therefore, the discriminant functions are:

g1(x1, x2) = −x2
1 − 3x2

2 + 18x1 + 15x2 − 72 (67)

g2(x1, x2) = −3x2
1 + x2

2 + 44x1 + 26x2 − 23 (68)
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MICD Classifier: Decision Boundary

Step 2: Find decision boundary between classes 1 and 2
For MICD classifier, the decision boundary is

g(x1, x2) = g1(x1, x2)− g2(x1, x2) = 0. (69)

Plugging in the discriminant functions g1 and g2 gives us:

g(x1, x2) = −x2
1 − 3x2

2 + 18x1 + 15x2 − 72
−(−3x2

1 + x2
2 + 44x1 + 26x2 − 23) = 0

(70)
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MICD Classifier: Decision Boundary

Grouping terms:

g(x1, x2) = 2x2
1 − 4x2

2 − 26x1 − 11x2 − 49 = 0 (71)

Therefore, the decision boundary is a quadratic!
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MICD Decision Boundaries

Case 1: different means, equal covariance (a = b,
SA = SB = S)
The parameters become:

Q0 = S−1
A − S−1

B = S−1 − S−1 = 0 (72)

Q1 = 2[mT
BS−1

B −mT
AS−1

A ] = 2[mT
B −mA]T S−1 (73)

Q2 = mT
AS−1mA−mT

BS−1mB = (mA−mB)T S−1(mA−mB)
(74)

This gives us the final decision boundary:

(mA −mB)T S−1[x − (mA + mB)/2] = 0 (75)

This is just a straight line through (mA + mB)/2 (i.e.,
midpoint between the means), with a slope that’s
influenced by S.
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MICD Decision Boundaries
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MICD Decision Boundaries

Case 2: different means, different variances, uncorrelated
features
Example:
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MICD Decision Boundaries

Case 3: different means, different variances, correlated
features
Example:
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MICD Decision Boundaries

Case 4: same means, different covariance (ma = mb = m,
SA 6= SB)
The parameters become:

Q0 = S−1
A − S−1

B (76)

Q1 = 2[mT
BS−1

B −mT
AS−1

A ] = −2mT [S−1
A − S−1

B ] (77)

Q2 = mT
AS−1mA −mT

BS−1mB = mT (S−1
A − S−1

B )m (78)

This gives us the final decision boundary:

(x −m)T (S−1
A − S−1

B )(x −m) = 0 (79)

This surface is complicated in general, but can be
visualized more easily on some special cases.
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MICD Decision Boundaries

Example: Suppose that we have only one feature (n = 1)
and m = 0
Given the MICD decision boundary for Case 4:

(x −m)T (S−1
A − S−1

B )(x −m) = 0 (80)

We get the following:

(1/s2
A − 1/s2

B)x2 = 0 (81)

The only solution for this equation is x = 0!
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MICD Decision Boundaries

Therefore, given the MICD classification rule:

(1/s2
A)x2 < (1/s2

B)x2 (82)

the x ’s cancel out,
1/s2

A < 1/s2
B (83)

s2
A > s2

B (84)

The MICD classification rule decides in favor of the class
with the largest variance, regardless of x !
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MICD Decision Boundaries

Why does this happen?
When applying MICD, distance is really measured in units
of standard deviation.
Therefore, any unknown x is always closer to m = 0 with
the metric for the class with largest variance (the transform
that scales that cluster’s class to unit standard deviation is
larger, thus pulling any unknown x closer)

However, given a Gaussian distribution, the class with
higher standard deviation would have a lower probability
near m = 0.
Therefore, MICD is sub-optimal in this case!
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MICD Decision Boundaries

Example in n = 2: same means, different covariance
(ma = mb = m, SA 6= SB)
Mean: ma = mb = m = [0 0]T

Covariances:

SA =

[
1/2 0
0 1

]
SB =

[
1 0
0 1/2

]
(85)

Recall that the MICD decision boundary for this case is:

(x −m)T (S−1
A − S−1

B )(x −m) = 0 (86)
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MICD Decision Boundaries

Plugging in the mean and covariance terms give us:

(x)T (

[
1/2 0
0 1

]−1

−
[

1 0
0 1/2

]−1

)(x) = 0 (87)

[x1 x2](

[
1 0
0 −1

]
)[x1 x2]T = 0 (88)

x2
1 − x2

2 = 0 (89)

The solution to this equation is x1 = ±x2.
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MICD Decision Boundaries

Plotting the decision boundary gives us:
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MICD Decision Boundaries

Example: same means, different variances, correlated
features
Example:
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MICD Classifier: advantages and disadvantages

Advantages: lower sensitivity to noise and outliers, great
for handling class distributions that are well modeled by
Gaussian models (e.g., mean and variance)
Disadvantages: poor at handling more complex class
distributions
Need to develop more power classifiers based on more
complete information about the probabilistic behaviour of
the classes.
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Where can I use any of this?

One question about all of this is: where can I apply
concepts like orthonormal whitening, Generalized
Euclidean distances, and etc?
Here’s one interesting application of these concepts:
motion tracking for video games! (e.g., Microsoft Kinect)
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Motion tracking

When work on motion tracking for Kinect first started, they
investigated developing a motion tracking framework by

1 Creating an avatar
2 Move avatar to match images of player as he or she moves

Problems:
Started losing track of player after a short period of time
Only tracked players roughly the same size and shape as
avatar
Couldn’t process fast movements of the player

Ref: A. Bogdanowicz, "The Motion Tech Behind Kinect", The Institute,
January 6, 2011.
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Motion tracking

How do you solve this problem?
Solution: let’s use a radically different approach.
Instead of trying to use a fixed avatar model to match
images of the player, let’s instead figure out where the
individual parts of the body is!
Advantages:

No longer rely on the shape or size of avatar or person at
all.
If we know where the individual parts of the body is, then
we can just move the corresponding part of the avatar!
(e.g., the player can be a basketball player moving a
stumpy Hobbit around)
Since classification is done pixel-by-pixel on each frame, it
doesn’t lose track of the player!

Alexander Wong SYDE 372



Weighted Euclidean Distance Metric
Orthonormal Covariance Transforms

Generalized Euclidean Metric
Minimum Intra-Class Distance (MICD) Classifier

Motion tracking

New question: How do we know where each part of the
body is in the image?
Solution: Let’s classify each pixel in the image, based on
its characteristics, as a body part or as the background.
For example, if we had n body parts, then maybe we want
to classify pixels as one of n + 1 classes.
Train system using people of different sizes and shapes
under different poses, with corresponding class labels, so it
can learn how to recognize body parts
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Image Classification

What types of features may be appropriate for learning
these individual classes from an image?
One possible set of features within the full feature set is
textons

Training images are filtered using a m-dimensional filter
bank to get m responses at each pixel
These responses characterize the texture characteristics of
a pixel based on it’s surrounding pixels, and represents that
pixel’s pattern.

Given all these patterns, what we want to do is learn the
corresponding classes.
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Image Classification

But how do we learn these classes?
Solution: Let’s cluster them together to determine the
prototype for each class!
However, you may not get good delineation between
classes, with one possible reason being the fact that the
features are very likely to have different variances (means
that Euclidean distance metric is not a good choice)
From what we have learned so far, an effective way to
solve this is to whiten the features so we have unit variant
features!
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Image Classification

Once we have the cluster centers, and we have unit variant
features, we can now classify each pixel based on its
pattern’s Euclidean distance to the cluster centers!

Ref: J. Shotton et al., "TextonBoost for Image Understanding: Multi-Class
Object Recognition and Segmentation by Jointly Modeling Texture, Layout,
and Context", IJCV, January 2009.
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