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Why use probability measures for classification?

Great variability may occur within a class of patterns due to
measurement noise (e.g., image noise and warping) and
inherent variability (apples can vary in size and shape)
We tried to account for these variabilities by treating
patterns as random vectors
In the MICD classifier, we account for this variability by
incorporating statistical parameters of the class (e.g.,
mean and variance)
This works well for scenarios where class distributions can
be well modeled based on Gaussian statistics, but may
perform poorly when the class distributions are more
complex and non-Gaussian.
How do we deal with this?
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Why use probability measures for classification?

Idea: What if we have more complete information about
the probabilistic behaviour of the class?
Given known class conditional probability density
distributions, we can create powerful similarity measures
that tell us the likelihood, or probability, of each class
given an observed pattern.
Classifiers built on such probabilistic measures are optimal
in the minimum probability of error sense.
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Bayesian classifier

Consider the two class pattern recognition problem:
Given an unknown pattern x , assign the pattern to either
class A or class B.

A general rule of statistical decision theory is to minimize
the “cost” associated with making a wrong decision.

e.g., amount of money lost by deciding to buying a stock
that gets delisted the next day and is actually a “don’t buy”.
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Bayesian classifier

Let Lij be the cost of deciding on class cj when the true
class is ci

The total risk associated with deciding x belongs to cj can
be defined by the expected cost:

rj(x) =
K∑

i=1

LijP(ci |x) (1)

where K is the number of classes and P(ci |x) is the
posterior distribution of class ci given the pattern x .
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Bayesian classifier

For the two class case:

r1(x) = L11P(c1|x) + L21P(c2|x) (2)

r2(x) = L12P(c1|x) + L22P(c2|x) (3)

Applying Bayes’ rule gives us:

r1(x) =
L11P(x |c1)P(c1) + L21P(x |c2)P(c2)

p(x)
(4)

r2(x) =
L12P(x |c1)P(c1) + L22P(x |c2)P(c2)

p(x)
(5)
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Bayesian classifier

The general K -class Bayesian classifier is defined as
follows, and minimizes total risk:

x ∈ ci iff ri(x) < rj(x) ∀ j 6= i (6)

For the two class case:

(L11 − L12)P(x |c1)P(c1)

1
>
<
2

(L21 − L22)P(x |c2)P(c2) (7)

How do you choose an appropriate cost?
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Choosing cost functions

The most common cost used in the situation where no
other cost criterion is known is the “zero-one” loss function:

Lij =

{
0 i = j
1 i 6= j

(8)

Meaning: all errors have equal costs.
Given the “zero-one” loss function, the total risk function
becomes:

rj(x) =
K∑

i = 1
i 6= j

P(ci |x) = P(ε|x) (9)

So minimizing total risk in this case is the same as
minimizing probability of error!
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Types of probabilistic classifiers

Using the “zero-one” loss function, we will study two main
types of probabilistic classifiers:

Maximum a Posteriori (MAP) probability classifier
Maximum Likelihood (ML) classifier
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Maximum a Posteriori classifier

Given two classes A and B, the MAP classifier can be
defined as follows:

P(A|x)

A
>
<
B

P(B|x) (10)

where P(A|x) and P(B|x) are the posterior class
probabilities of A and B, respectively, given observation x .
Meaning: All patterns with a higher posterior probability for
A than for B will be classified as A, and all patterns with a
higher posterior probability for B than for A will be
classified as B
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Maximum a Posteriori classifier

Class probability models usually given in terms of class
conditional probabilities P(x |A) and P(x |A)
More convenient to express MAP in the form:

P(x |A)
P(x |B)

A
>
<
B

P(B)

P(A)
(11)

l(x)

A
>
<
B

θ (12)

where l(x) is the likelihood ratio and θ is the threshold
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Maximum a Posteriori classifier

When dealing with probability density functions with
exponential dependence (e.g., Gamma, Gaussian, etc.), it
is more convenient to deal with MAP in the log-likelihood
form:

log l(x)

A
>
<
B

log θ (13)
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Maximum a Posteriori classifier: Example

Suppose we are given a two-class problem, where P(x |A)
and P(x |B) are given by:

p(x |A) =


0, x < a1
1

a2−a1
a1 ≤ x ≤ a2

0 a2 < x
(14)

p(x |B) =


0, x < b1
1

b2−b1
b1 ≤ x ≤ b2

0 b2 < x
(15)

where b2 > a2 > a1 > b1.
Assuming P(A) = P(B) = 1/2, develop the MAP
classification strategy.
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Maximum a Posteriori classifier: Example
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Maximum a Posteriori classifier: Example

The MAP classification strategy can be defined as:
b1 < x < a1: Decide class B
a1 < x < a2: Decide class A
a2 < x < b2: Decide class B
Otherwise: No decision
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Maximum a Posteriori classifier

When dealing with probability density functions with
exponential dependence (e.g., Gamma, Gaussian, etc.), it
is more convenient to deal with MAP in the log-likelihood
form:

log l(x)

A
>
<
B

log θ (16)
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Maximum Likelihood classifier

Ideally, we would like to use the MAP classifier, which
chooses the most probable class:

P(x |A)
P(x |B)

A
>
<
B

P(B)

P(A)
(17)

However, in many cases the priors P(A) and P(B) are
unknown, making it impossible to use the posteriors
P(A|x) and P(B|x).
Common alternative is, instead of choosing the most
probable class, we choose the class that makes the
observed pattern x most probable.
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Maximum Likelihood classifier

Instead of maximizing the posterior, we instead maximize
the likelihood:

P(x |A)

A
>
<
B

P(x |B) (18)

In likelihood form:

P(x |A)
P(x |B)

A
>
<
B

1 (19)

Can be viewed as special case of MAP where
P(A) = P(B).
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