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MAP Classifier for Normal Distributions

By far the most popular conditional class distribution model
is the Gaussian distribution:

p(x |A) = N (µA, σ
2
A) =

1√
2πσA

exp
[
−1

2
(
x − µA

σA
)2
]

(1)

and p(x |B) = N (µB, σ
2
B).
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MAP Classifier for Normal Distributions

For the two-class case where both distributions are
Gaussian, the following MAP classifier can be defined as:

N (µA, σ
2
A)

N (µB, σ
2
B)

A
>
<
B

P(B)

P(A)
(2)

exp
[
−1

2(x−µA
σA

)2
]

exp
[
−1

2(x−µB
σB

)2
] A
>
<
B

σAP(B)

σBP(A)
(3)
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MAP Classifier for Normal Distributions

In log-likelihood form:

exp
[
−1

2(x−µA
σA

)2
]

exp
[
−1

2(x−µA
σA

)2
] A
>
<
B

σAP(B)

σBP(A)
(4)

[
−1

2
(
x − µA

σA
)2
]
−
[
−1

2
(
x − µB

σB
)2
] A
>
<
B

ln [σAP(B)]− ln [σBP(A)]

(5)[
(
x − µB

σB
)2
]
−
[

(
x − µA

σA
)2
] A
>
<
B

2 [ln [σAP(B)]− ln [σBP(A)]] (6)
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Giving us the final form:

[
(
x − µB

σB
)2
]
−
[

(
x − µA

σA
)2
] A
>
<
B

2 [ln [σAP(B)]− ln [σBP(A)]]

(7)
Does this look familiar?
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MAP Classifier for Normal Distributions

The decision boundary (threshold) for the MAP classifier
where P(x |A) and P(x |B) are Gaussian distributions can
be find by solving the following expression for x :[

(
x − µB

σB
)2
]
−
[

(
x − µA

σA
)2
]

= 2 [ln [σAP(B)]− ln [σBP(A)]] (8)

x2

[
1
σ2

B
− 1
σ2

A

]
−2x

[
µB

σ2
B
− µA

σ2
A

]
+
µ2

B

σ2
B
−
µ2

A

σ2
A

= 2 ln
[
σAP(B)

σBP(A)

]
(9)

Alexander Wong SYDE 372



MAP Classifier for Normal Distributions
Performance of the Bayes Classifier

Error bounds

MAP Classifier for Normal Distributions

For case where σA = σB, P(A) = P(B) = 1
2 :

x2

[
1
σ2

B
− 1
σ2

A

]
−2x

[
µB

σ2
B
− µA

σ2
A

]
+
µ2

B

σ2
B
−
µ2

A

σ2
A

= 2 ln
[
σAP(B)

σBP(A)

]
(10)

x2(σ2
A − σ2

B)− 2x(µBσ
2
A − µAσ

2
B) + (µ2

Bσ
2
A − µ2

Aσ
2
B) = 2 ln [1]

(11)
Since ln(1) = 0 and σA = σB,

x =
(µ2

Bσ
2
A − µ2

Aσ
2
A)

2(µBσ
2
A − µAσ

2
A)

(12)

x =
(µ2

B − µ2
A)

2(µB − µA)
(13)
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Since (a2 − b2) = (a− b)(a + b):

x =
(µB − µA)(µB + µA)

2(µB − µA)
(14)

x =
(µB + µA)

2
(15)

Therefore, for the case of equally likely, equi-variance
classes, the MAP rule reduces to a threshold midway
between the means.
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For case where P(A) 6= P(B) and σA 6= σB, the threshold
shifts and a second threshold appears as the second
solution to the quadratic expression.
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Example of a 1-D case:
Suppose that, given a pattern x , we wish to classify it as
one of two classes: class A and class B.
Suppose the two classes have patterns x which are
normally distributed as follows:

p(x |A) = N (µA, σ
2
A) =

1√
2πσA

exp
[
−1

2
(
x − µA

σA
)2
]

(16)

p(x |B) = N (µB, σ
2
B) =

1√
2πσB

exp
[
−1

2
(
x − µB

σB
)2
]

(17)

µA = 130, µB = 150.
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MAP Classifier for Normal Distributions

Question: If we know that in a previous case that 4
patterns belong to class A and 6 patterns belong to class
B, and both classes have the same standard deviation of
20, what is the MAP classifier?
For the two-class case where both distributions are
Gaussian, the following MAP classifier can be defined as:

N (µA, σ
2
A)

N (µB, σ
2
B)

A
>
<
B

P(B)

P(A)
(18)

exp
[
−1

2(x−µA
σA

)2
]

exp
[
−1

2(x−µB
σB

)2
] A
>
<
B

σAP(B)

σBP(A)
(19)
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Plugging in µA, µB, and σA = σB = σ:

exp
[
−1

2(x−130
20 )2]

exp
[
−1

2(x−150
20 )2

] A
>
<
B

P(B)

P(A)
(20)

Taking the log:[
−1

2
(x − 130)2

]
−
[
−1

2
(x − 150)2

] A
>
<
B

2(202) ln [P(B)]−ln [P(A)]

(21)

[
(x − 150)2

]
−
[
(x − 130)2

] A
>
<
B

800 [ln [P(B)]− ln [P(A)]] (22)
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The prior probability P(A) and P(B) can be determined as:

P(A) = 4/(6 + 4) = 0.4 P(B) = 6/(6 + 4) = 0.6 (23)

Plugging in P(A) and P(B):

[
(x − 150)2

]
−
[
(x − 130)2

] A
>
<
B

800 [ln [0.6/0.4]] (24)

[
(x − 150)2

]
−
[
(x − 130)2

] A
>
<
B

800 [ln [1.5]] (25)
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Expanding and simplifying:

[
(x − 150)2

]
−
[
(x − 130)2

] A
>
<
B

800 [ln [1.5]] (26)

(x2−300x +(150)2)− (x2−260x +(130)2)

A
>
<
B

800 [ln [1.5]]

(27)

−40x

A
>
<
B

800 [ln [1.5]]− (150)2 + (130)2 (28)
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Expanding and simplifying:

−40x

A
>
<
B

800 [ln [1.5]]− (150)2 + (130)2 (29)

x

B
>
<
A

800 [ln [1.5]]− 5600
−40

(30)

x

B
>
<
A

131.9 (31)
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For the n-d case, where p(x |A) = N (µA,Σ
2
A) and

p(x |B) = N (µB,Σ
2
B),

P(A) exp
[
− 1

2 (x − µ
A

)T Σ−1
A (x − µ

A
)
]

(2π)
n
2 |ΣA|1/2

A
>
<
B

P(B) exp
[
− 1

2 (x − µ
B

)T Σ−1
B (x − µ

B
)
]

(2π)
n
2 |ΣB |1/2

(32)

exp
[
−1

2(x − µA)T Σ−1
A (x − µA)

]
exp

[
−1

2(x − µB)T Σ−1
B (x − µB)

] A
>
<
B

|ΣA|1/2P(B)

|ΣB|1/2P(A)
(33)
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MAP Classifier for Normal Distributions

Taking the log and simplifying:

(x−µB)T Σ−1
B (x−µB)−(x−µA)T Σ−1

A (x−µA)

A
>
<
B

2 ln

[
|ΣA|1/2P(B)

|ΣB|1/2P(A)

]

(34)

(x−µ
B

)T Σ−1
B (x−µ

B
)−(x−µ

A
)T Σ−1

A (x−µ
A

)

A
>
<
B

2 ln
[

P(B)

P(A)

]
+ln

[
|ΣA|
|ΣB|

]
(35)

Looks familiar?
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MAP Decision Boundaries for Normal Distribution

What is the MAP decision boundaries if our classes can be
characterized by normal distributions?

xT Q0x + Q1x + Q2 + 2Q3 + Q4 = 0, (36)

where,
Q0 = S−1

A − S−1
B (37)

Q1 = 2[mT
BS−1

B −mT
AS−1

A ] (38)

Q2 = mT
AS−1

A mA −mT
BS−1

B mB (39)

Q3 = ln
[

P(B)

P(A)

]
(40)

Q4 = ln
[
|SA|
|SB|

]
(41)
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MAP Classifier: Example

Suppose we are given the following statistical information
about the classes:

Class A: mA = [0 0]T ,SA =

[
4 0
0 4

]
, P(A)=0.6.

Class B: mB = [0 0]T ,SB =

[
1 0
0 1

]
, P(B)=0.4.

Suppose we wish to build a MAP classifier.
Compute the decision boundary.
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MAP Classifier: Example

Step 1: Compute SA
−1 and SB

−2:

SA
−1 =

[
1/4 0
0 1/4

]
SB
−1 =

[
1 0
0 1

]
(42)

Step 2: Compute Q0,Q1,Q2,Q3:

Q0 = S−1
A −S−1

B =

[
1/4 0
0 1/4

]
−
[

1 0
0 1

]
=

[
−3/4 0

0 −3/4

]
(43)

Q1 = 2[mT
BS−1

B −mT
AS−1

A ] = 0 (44)

Q2 = mT
AS−1

A mA −mT
BS−1

B mB = 0 (45)
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MAP Classifier: Example

Step 2: Compute Q0,Q1,Q2,Q3:

Q3 = ln
[

P(B)

P(A)

]
= ln

[
0.4
0.6

]
= ln(4/6) (46)

Q4 = ln
[
|SA|
|SB|

]
= ln

[
(4)(4)− (0)(0)

(1)(1)− (0)(0)

]
= ln(16). (47)

Step 3: Plugging in Q0,Q1,Q2,Q3 gives us:

xT Q0x + Q1x + Q2 + 2Q3 + Q4 = 0, (48)

xT
[
−3/4 0

0 −3/4

]
x + 2 ln(4/6) + ln(16) = 0, (49)
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MAP Classifier: Example

Simplifying gives us:

([x1 x2]T )T
[
−3/4 0

0 −3/4

]
[x1 x2]T +2 ln(4/6)+ln(16) = 0,

(50)
[−3/4x1−3/4x2][x1x2]T −549/677+2731/985 = 0, (51)

−3/4x2
1 − 3/4x2

2 + 1.9617 = 0, (52)

The final MAP decision boundary is:

x2
1 + x2

2 = 1.9617, (53)

This is just a circle centered at (x1, x2) = (0,0) with a
radius of 1.4006.
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Relationship between MICD and MAP Classifiers for Normal
Distributions

You will notice that the terms on the right has the same
form as the MICD distance metric!

(x−µ
B

)T Σ−1
B (x−µ

B
)−(x−µ

A
)T Σ−1

A (x−µ
A

)

A
>
<
B

2 ln
[

P(B)

P(A)

]
+ln

[
|ΣA|
|ΣB|

]
(54)

d2
MICD(x , µ

B
,ΣB)− d2

MICD(x , µ
A
,ΣA)

A
>
<
B

2 ln
[

P(B)

P(A)

]
+ ln

[
|ΣA|
|ΣB|

]
(55)

If 2 ln
[

P(B)
P(A)

]
+ ln

[
|ΣA|
|ΣB |

]
= 0, then the MAP classifier

becomes just the MICD classifier!
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Relationship between MICD and MAP Classifiers for Normal
Distributions

Therefore, the MICD is only optimal in terms of probability
of error only if we have multivariate Normal distributions
N (µ,Σ) that have:

Equal a priori probabilities (P(A) = P(B))
Equal volume cases (|ΣA| = |ΣB|)

If that is the case, what’s so special about
2 ln

[
P(B)
P(A)

]
+ ln

[
|ΣA|
|ΣB |

]
?

First term 2 ln
[

P(B)
P(A)

]
biases decision in favor of more likely

class according to a priori probabilities
Second term ln

[
|ΣA|
|ΣB |

]
biases decision in favor of class with

smaller volume (|Σ|)
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Relationship between MICD and MAP Classifiers for Normal
Distributions

So under what circumstance does MAP classifier perform
better than MICD?
Recall the case where we have only one feature (n = 1),
m = 0, and sA 6= sB.
The MICD classification rule for this case is:

(1/s2
B − 1/s2

A)x2 > 0 (56)

(1/s2
A)x2 < (1/s2

B)x2 (57)

s2
A > s2

B (58)

The MICD classification rule decides in favor of the class
with the largest variance, regardless of x
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Relationship between MICD and MAP Classifiers for Normal
Distributions

The MAP classification rule for this case is:

(1/s2
B − 1/s2

A)x2 > 2 ln
[

P(A)

P(B)

]
+ ln

[
s2

A

s2
B

]
(59)

If P(A) = P(B)

(1/s2
B − 1/s2

A)x2 > ln

[
s2

A

s2
B

]
(60)
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Relationship between MICD and MAP Classifiers for Normal
Distributions

Looking at the MAP classification rule:

(1/s2
B − 1/s2

A)x2 > ln

[
s2

A

s2
B

]
(61)

At the mean m = 0,

0 > ln

[
s2

A

s2
B

]
(62)

if s2
A < s2

B, the log term is negative and favors class A
if s2

B < s2
A, the log term is positive and favors class B

Therefore, the MAP classification rule decides in favor of
class with the lowest variance close to the mean, and
favors the class with highest variance beyond a certain
point in both directions.
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Performance of the Bayes Classifier

How do we quantify how well the Bayes classifier works?
Since the Bayes classifier minimizes the probability of
error, one way to analyze how well it does is to compute
the probability of error P(ε) itself.
Allows us to see the theoretical limit on the expected
performance, under the assumption of known probability
density functions.
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Probability of error given pattern

For any pattern x such that P(A|x) > P(B|x):
x is classified as part of class A
The probability of error of classifying x as A is P(B|x)

Therefore, naturally, for any given x the probability of error
P(ε|x) is:

P(ε|x) = min [P(A|x),P(B|x)] (63)

Rationale: Since we always chose the maximum posterior
probability as our class, the minimum posterior probability
would be the probability of choosing incorrectly.
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Probability of error given pattern

Recall our previous example of a 1-D case:

p(x |A) = N (µA, σ
2
A) =

1√
2πσA

exp
[
−1

2
(
x − µA

σA
)2
]

(64)

p(x |B) = N (µB, σ
2
B) =

1√
2πσB

exp
[
−1

2
(
x − µB

σB
)2
]

(65)

µA = 130, µB = 150, P(A) = 0.4, P(B) = 0.6, σA = σB = 20.
For x = 140, what is the probability of error P(ε|x)?
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Probability of error given pattern

Recall the MAP classifier for this scenario:

x

B
>
<
A

131.9 (66)

Based on this MAP classifier, the pattern x = 140 belongs
to class B.
Given the probability of error P(ε|x) is:

P(ε|x) = min [P(A|x),P(B|x)] (67)

Since B gives the maximum probability, the minimum
probability would be P(A|x).
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Probability of error given pattern

Therefore, P(ε|x) for x = 140 is:

P(ε|x)|x=140 = P(A|x)|x=140 =
P(x |A)P(A)

P(x |A)P(A) + P(x |B)P(B)
|x=140

(68)

P(ε|x)|x=140 =
26/1477(0.4)

(26/1477)0.4 + (26/1477)(0.6)
(69)

P(ε|x)|x=140 = 0.4. (70)
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Expected probability of error

Now that we know the probability of error for a given x ,
denoted as P(ε|x), the expected probability of error P(ε)
can be found as:

P(ε) =

∫
P(ε|x)p(x)dx (71)

P(ε) =

∫
min [P(A|x),P(B|x)] p(x)dx (72)

In terms of class PDFs:

P(ε) =

∫
min [P(x |A)P(A),P(x |B)P(B)]dx (73)
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Expected probability of error

Now if we were to define decision regions RA and RB:
RA = x such that P(A|x) > P(B|x)
RB = x such that P(B|x) > P(A|x)

The expected probability of error can be defined as:

P(ε) =

∫
RA

P(x |B)P(B)dx +

∫
RB

P(x |A)P(A)dx (74)

Rationale: For all patterns in RA, the probability of A will be
the maximum between A and B, so the probability of error
of patterns in RA is just the minimum probability (in this
case, the probability of B), and vice versa.
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Expected probability of error

Example 1: univariate Normal, equal variance, equally
likely two class problem:

n = 1, P(A) = P(B) = 0.5, σA = σB = σ, µA < µB
Likelihood:

p(x |A) = N (µA, σ
2
A) =

1√
2πσA

exp
[
−1

2
(
x − µA

σA
)2
]

(75)

p(x |B) = N (µB, σ
2
B) =

1√
2πσB

exp
[
−1

2
(
x − µB

σB
)2
]

(76)

Find p(ε)
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Expected probability of error

Recall for the case of equally likely, equi-variance classes,
the MAP decision boundary reduces to a threshold midway
between the means.

x =
(µB + µA)

2
(77)

Since µA < µB, this gives us the following decision regions
RA and RB:

RA = x such that x < (µB+µA)
2

RB = x such that x > (µB+µA)
2
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Expected probability of error

Based on decision regions RA, RB, P(A), P(B), P(x |A),
P(x |B), µB, µA, the expected probability of error P(ε)
becomes

P(ε) =

∫
RA

P(B)P(x |B)dx +

∫
RB

P(A)P(x |A)dx (78)

P(ε) =
1
2

∫ (µB+µA)

2

−∞
P(x |B)dx +

1
2

∫ ∞
(µB+µA)

2

P(x |A)dx (79)

P(ε) =
1
2

∫ (µB+µA)

2

−∞
N (µB, σ

2)dx +
1
2

∫ ∞
(µB+µA)

2

N (µA, σ
2)dx

(80)
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Expected probability of error

Since the two classes are symmetric (P(ε|A) = P(ε|B)),

P(ε) =
1
2

∫ (µB+µA)

2

−∞
N (µB, σ

2)dx +
1
2

∫ ∞
(µB+µA)

2

N (µA, σ
2)dx

(81)

P(ε) =

∫ ∞
(µB+µA)

2

N (µA, σ
2)dx (82)

P(ε) =

∫ ∞
(µB+µA)

2

1√
2πσA

exp
[
−1

2
(
x − µA

σA
)2
]
dx (83)
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Expected probability of error

Doing a change of variables, where y = x−µA
σ , dx = σdy ,

P(ε) =

∫ ∞
(µB−µA)

2σ

1√
2π

exp
[
−1

2
y2
]
dy (84)

This corresponds to an integral over a normalized (N (0,1))
Normal random variable:

Q(α) =

∫ ∞
α

1√
2π

exp
[
−1

2
y2
]
dy (85)

Plugging Q in gives us the final expected probability of
error P(ε):

P(ε) = Q(
µB − µA

2σ
) (86)
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Expected probability of error

Visualization of P(ε):

P(ε) is essentially the shaded area.
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Observations:
As the distance between the means increase, the shaded
area becomes monotonically smaller and the expected
probability of error P(ε) monotonically decreases.
At α = 0, µA = µB = 0 and P(ε) = 1/2 (makes sense since
the distributions completely overlap, and you have a 50/50
chance of either class)
limα→∞ P(ε) = 0.
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For cases where P(A) 6= P(B) or σA 6= σB, the decision
boundary change AND an additional boundary is
introduced!
Luckily, P(ε) can still be expressed using the Q(α) function
with appropriate change of variables.
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Example:

P(ε) is essentially the shaded area.
P(ε) = P(A)Q(α1) + P(B)[Q(α3)−Q(α4)] + P(A)Q(α2)
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Let’s take a look at the multivariate case (n>1)
For p(x |A) = N (µA,Σ), p(x |B) = N (µB,Σ), P(A) = P(B),
it can be shown that:

P(ε) = Q(dM(µA, µB)/2) (87)

where dM(µA, µB) is the Mahalanobis distance between the
classes.

dM(µA, µB) = [(µA − µB)T Σ−1(µA − µB)]1/2 (88)
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Why is P(ε) like that for this case?
Remember that for all cases where the covariance matrices
AND the prior probabilities are the same, the decision
boundary between the classes is always a straight line in
hyperspace that is:

sloped based on Σ (since our orthonormal whitening
transform is identical for both classes)
intersects with the midpoint of the line segment between
muA and muB

The probability of error is just the area under P(x |A)p(A) on
the class B side of this decision boundary PLUS the area
under P(x |B)p(B) on the class A side of this decision
boundary.
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Example of non-Gaussian density functions:
Suppose two classes have density functions and a priori
probabilities:

p(x |C1) =

{
ce−λx 0 ≤ x ≤ 1

0 else
(89)

p(x |C2) =

{
ce−λ(1−x) 0 ≤ x ≤ 1

0 else
(90)

P(C1) = P(C2) =
1
2

(91)

where c = λ
1−e−λ is just the appropriate constant to

normalize the PDF.
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Therefore, the expected probability of error is:

P(ε) =

∫
min [P(x |C1)P(C1),P(x |C2)P(C2)]dx (92)

P(ε) =

∫
RC1

P(x |C2)P(C2)dx +

∫
RC2

P(x |C1)P(C1)dx (93)

P(ε) =

∫ 0.5

0
0.5P(x |C2)dx +

∫ 1.0

0.5
0.5P(x |C1)dx (94)

Because of symmetry between the two classes
(P(ε|C1) = P(ε|C2)),

P(ε) =

∫ 1.0

0.5
ce−λxdx (95)

P(ε) =
c
λ

[
e−λ/2 − e−λ

]
(96)
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(b) Find P(ε|x):
From the decision boundary and decision regions we
determined in (a),

p(ε|x) =

{
P(C2|x) 0 ≤ x ≤ 1/2
P(C1|x) 1/2 ≤ x ≤ 1

(97)

p(ε|x) =

{ P(x |C2)P(C2)
P(x) 0 ≤ x ≤ 1/2

P(x |C1)P(C1)
P(x) 1/2 ≤ x ≤ 1

(98)

p(ε|x) =

{
e−λx 0.5

e−λx +e−λ(1−x) 0 ≤ x ≤ 1/2
e−λ(1−x)0.5

e−λx +e−λ(1−x) 1/2 ≤ x ≤ 1
(99)
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In practice, the exact P(ε) is only easy to compute for
simple cases as shown before.
So how can we quantify the probability of error in such
cases?
Instead of finding the exact P(ε), we determine the
bounds on P(ε), which are:

Easier to compute
Leads to estimates of classifier performance
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Using the following inequality:

min[a,b] ≤
√

(a,b) (100)

The following holds true:

P(ε) =

∫
min [P(x |A)P(A),P(x |B)P(B)]dx (101)

P(ε) ≤
√

P(A)P(B)

∫ √
P(x |A)P(x |B)dx (102)

What’s so special about this?
Answer: You don’t need the actual decision regions to
compute this!
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Since P(A) + P(B) = 1 and the Bhattacharrya coefficient ρ
can be defined as:

ρ =

∫ √
P(x |A)P(x |B)dx (103)

The upper bound (Bhattacharrya bound) of P(ε) can be
written as

P(ε) ≤ 1
2
ρ (104)
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Bhattacharrya bound: Example

Example: Consider a classifier for a two class problem.
Both classes are multivariate normal. When both classes
are a priori equally likely, the Bhattacharrya bound is
P(ε) ≤ 0.3.
New information is specified, such that we are told that the
a priori probabilities of the two classes are 0.2 and 0.8, for
A and B respectively.
What is the new upper bound for the probability of error?
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Step 1: Based on old bound, compute the Bhattacharrya
coefficient

P(ε) = 0.3 ≤
√

P(A)P(B)

∫ √
P(x |A)P(x |B)dx (105)

0.3√
P(A)P(B)

≤
∫ √

P(x |A)P(x |B)dx (106)

ρ =

∫ √
P(x |A)P(x |B)dx ≥ 0.3√

0.5× 0.5
= 0.6 (107)
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Step 2: Based on Bhattacharrya coefficient ρ and new
priors P(A) = 0.2 and P(B) = 0.8, the new upper bound
can be computed as:

P(ε) ≤
√

P(A)P(B)

∫ √
P(x |A)P(x |B)dx (108)

P(ε) ≤
√

0.8× 0.2× ρ (109)

P(ε) ≤
√

0.8× 0.2× 0.6 = 0.24 (110)
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