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Motivation

From the previous chapter, we know that the Bayesian
classifier achieves minimum probability of error.
Therefore, it performs better than MICD classifier for
situations where the class conditional PDFs (p(x |ci)) are
known.
Problem: In general, the PDFs are not known a priori, so
how do we perform Bayesian classification?
Idea:

What if we have samples with known class labels?
With these samples, we can try to learn the PDFs of the
individual classes.
These empirical PDFs allow us to apply Bayesian
classification!
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Motivation

Bayesian classification is optimal in terms of probability of
error ONLY if the true class conditional PDFs (p(x |ci)) are
known.
The use of empirical PDFs result in sub-optimal classifiers.
How close the performance is to the theoretical minimum
P(ε) depends on the accuracy of the estimated PDF
compared to the true PDF.
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Categories of Statistical Learning

There are two main categories of statistical learning
approaches:

Parametric Estimation: functional form of PDF is
assumed to be known and the necessary parameters of the
PDF are estimated.
Non-parametric Estimation: functional form of PDF is not
assumed to be known and the PDF is estimated directly.

(left) Parametric estimation (right) Non-parametric
estimation
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Parametric Learning

Here, we assume that we know the class conditional
probability function, but we don’t know the parameters that
define this function.
For example,

Suppose that p(x |A) is multivariate Normal, N (muA,ΣA)
We may not know what the actual value of parameters µA
and/or ΣA are!

In this scenario, what we want to do is estimate what these
parameters are based on a set of labeled samples for the
class!
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Types of Parametric Estimation

There are two main categories of parametric estimation
approaches:

Maximum Likelihood Estimation: Treat parameters as
being fixed but unknown quantities, with the goal of finding
estimate values which maximize the probability that the
given samples came from the resulting PDF p(x |θ).
Bayesian (Maximum a Posteriori) Estimation: Treat
parameters as random variables with an assumed a priori
distribution, with the goal of obtaining an a posteriori
distribution p(θ|x) which indicates the estimate value based
on the given samples.
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Maximum Likelihood Estimation

Supposed that we are given a set of samples {x i},
independently drawn from a distribution p(x) where the
form of the PDF is known (e.g., Gaussian).
The goal is to obtain estimates for the parameters θ that
defines this PDF.
For example, if the distribution is of the Gaussian form:
p(x |A) = N (muA,ΣA), then the set of parameters defining
this distribution is θ = (muA,ΣA).
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Maximum Likelihood Estimation

Writing the PDF as p(x |θ) to emphasize the dependence
on parameters, the Maximum Likelihood estimate of the
parameters θ is the set of parameters that maximizes the
probability that the given samples {x1, x2, . . . , xN} are
obtained given θ:

θ̂ML = argmaxθ [p({x i}|θ)] (1)
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Maximum Likelihood Estimation

Given an observation x i , the maximum likelihood estimate of
parameter θ is chosen to be that value which maximizes the

PDF p(x i |θ)
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Maximum Likelihood Estimation

Assuming that the sample are independent of each other,
p({x i} |θ) becomes:

p({x i} |θ) = p(x1, x2, . . . , xN |θ) =
N∏

i=1

p(x i |θ) (2)

Therefore, the sample set probability is just the product of
the individual sample probabilities.
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Maximum Likelihood Estimation

To maximize p({x i} |θ), we take the derivative and set it to
zero:

∂

∂θ
p({x i} |θ)|θ=θ̂ML

= 0 (3)

It is often more convenient to deal with p({x i} |θ) in log
form

l(θ) = log [p({x i} |θ)] =
N∑

i=1

log p(x i |θ) (4)

This gives us the final maximum likelihood condition:

∂

∂θ
l(θ)|θ=θ̂ML

= 0 (5)
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Maximum Likelihood Estimation: Example

Example 1: Suppose that we would like the learn the
underlying PDF and we are given the following information:

We know that the PDF is a univariate Normal distribution
p(x) = N (µ, σ2).
We do not know what the mean µ is.
We know what the variance σ2 is.

What is the maximum likelihood estimate of µ?
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Maximum Likelihood Estimation: Example

Since the parameter that we do not know is the mean µ,
what we have is θ = µ and p(x |θ) = N (θ|σ2).
Therefore:

p({xi} |θ) =
N∏

i=1

1√
2πσ

exp
[
−1

2
(
xi − θ
σ

)2
]

(6)

Taking the log gives us:

l(θ) = log

[
N∏

i=1

1√
2πσ

exp
[
−1

2
(
xi − θ
σ

)2
]]

(7)
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Maximum Likelihood Estimation: Example

Taking the log gives us:

l(θ) =
N∑

i=1

[[
−1

2
(
xi − θ
σ

)2
]
− log

√
2πσ

]
(8)

Taking the derivative:

∂

∂θ
l(θ) =

1
σ2

N∑
i=1

(xi − θ) (9)
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Maximum Likelihood Estimation: Example

Setting it to zero:

∂

∂θ
l(θ) =

1
σ2

N∑
i=1

(xi − θ) = 0 (10)

N∑
i=1

(xi)− Nθ = 0 (11)

θ =
1
N

N∑
i=1

(xi) (12)

Therefore, the maximum likelihood estimate for θ in this
case is just the sample mean!
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Maximum Likelihood Estimation: Example

Example 2: Suppose that we would like the learn the
underlying PDF and we are given the following information:

We know that the PDF is a univariate Normal distribution
p(x) = N (µ, σ2).
We do not know what the mean µ is.
We do not know what the variance σ2 is.

What is the maximum likelihood estimates of µ and
sigma2?
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Maximum Likelihood Estimation: Example

Since the parameters that we do not know are the mean µ
and variance σ2, what we have is:

θ = [θ1 θ2]T = [µ σ2]T (13)

and p(x |θ) = N (θ1, θ2),

p({xi} |θ) =
N∏

i=1

1√
2πθ2

exp
[
−1

2
(xi − θ1)2

θ2

]
(14)

Taking the log gives us:

l(θ) = log

[
N∏

i=1

1√
2πθ2

exp
[
−1

2
(xi − θ1)2

θ2

]]
(15)
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Maximum Likelihood Estimation: Example

Taking the log gives us:

l(θ) =
N∑

i=1

[[
−1

2
(xi − θ1)2

θ2

]
− log

√
2πθ2

]
(16)

l(θ) = −1
2

N∑
i=1

[
(xi − θ1)2

θ2

]
− N

2
log 2πθ2 (17)
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Maximum Likelihood Estimation: Example

Given that we have multiple parameters to estimate, we
must maximize l(θ) with respect to each of the
components of θ via a vector derivative:

∂l(θ)

∂θ
=

[
∂l(θ)

∂θ1

∂l(θ)

∂θ2

]T

(18)

Taking the derivative of each component gives us:

∂l(θ)

∂θ1
=

N∑
i=1

xi − θ1

θ2
(19)

∂l(θ)

∂θ2
=

1
2

N∑
i=1

(xi − θ1)2

θ2
2

− N
2θ2

(20)
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Maximum Likelihood Estimation: Example

Setting ∂l(θ)
∂θ1

= 0 and solving gives us:

∂l(θ)

∂θ1
=

N∑
i=1

xi − θ1

θ2
= 0 (21)

N∑
i=1

xi = Nθ1 (22)

θ1 =
1
N

N∑
i=1

xi (23)

Same as before! The maximum likelihood estimate for θ1 is
θ̂1,ML = 1

N
∑N

i=1 xi .
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Maximum Likelihood Estimation: Example

Setting ∂l(θ)
∂θ2

= 0, plugging in θ̂1,ML gives us:

∂l(θ)

∂θ2
=

1
2

N∑
i=1

(xi − θ̂1,ML)2

θ2
2

− N
2θ2

= 0 (24)

N∑
i=1

(xi − θ̂1,ML)2

θ2
2

=
N
θ2

(25)

N∑
i=1

(xi − θ̂1,ML)2 = Nθ2 (26)

θ̂2,ML =
1
N

N∑
i=1

(xi − θ̂1,ML)2 (27)
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Maximum Likelihood Estimation: Example

Example 3: Suppose that we would like the learn the
underlying PDF and we are given the following information:

We know that the PDF is a multivariate Normal distribution
p(x) = N (µ,Σ).
We do not know what the mean vector µ is.
We do not know what the covariance matrix Σ is.

What is the maximum likelihood estimates of µ and Σ?
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Maximum Likelihood Estimation: Example

To simplify derivation, let us defined our parameters as
follows:

θ1 = µ

θ2 = Σ−1

Therefore, p(x |θ) can be written as:

p(x |θ) =
|θ2|1/2

(2π)n/2 exp
[
−1

2
(x − θ1)T θ2(x − θ1)

]
(28)

Taking the log gives us:

l(θ) =
N∑

i=1

1
2

log |θ2|−
n
2

log 2π− 1
2

(x i−θ1)T θ2(x i−θ1) (29)
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Maximum Likelihood Estimation: Example

Taking the derivative ∂l(θ)
∂θ1

and setting it to zero

∂l(θ)

∂θ1
=

∂

∂θ1

[
−1

2

N∑
i=1

(x i − θ1)T θ2(x i − θ1)

]
= 0 (30)

N∑
i=1

(x i − θ1) = 0 (31)

N∑
i=1

(x i) = Nθ1 (32)

θ1 =
1
N

N∑
i=1

(x i) = µ̂ML (33)
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Maximum Likelihood Estimation: Example

Taking the derivative ∂l(θ)
∂θ2

∂l(θ)

∂θ2
=

1
2

N∑
i=1

∂ log |θ2|
∂θ2

− 1
2

N∑
i=1

∂

∂θ2

[
(x i − θ1)T θ2(x i − θ1)

]
(34)

∂l(θ)

∂θ2
=

1
2

N∑
i=1

cofθ2

|θ2|
− 1

2

N∑
i=1

(x i − θ1)(x i − θ1)T (35)

∂l(θ)

∂θ2
=

1
2

N∑
i=1

[θ−1
2 ]T − 1

2

N∑
i=1

(x i − θ1)(x i − θ1)T (36)
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Maximum Likelihood Estimation: Example

Setting ∂l(θ)
∂θ2

to zero:

1
2

N∑
i=1

[θ−1
2 ]T − 1

2

N∑
i=1

(x i − θ1)(x i − θ1)T = 0 (37)

N∑
i=1

[θ−1
2 ]T =

N∑
i=1

(x i − θ1)(x i − θ1)T (38)

[θ−1
2 ]T =

1
N

N∑
i=1

(x i − θ1)(x i − θ1)T (39)
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Maximum Likelihood Estimation: Example

Since we are dealing with a symmetric matrix:

[θ−1
2 ] =

1
N

N∑
i=1

(x i − θ1)(x i − θ1)T (40)

With θ−1
2 = Σ:

Σ̂ML =
1
N

N∑
i=1

(x i − µ̂ML)(x i − µ̂ML)T (41)
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Maximum Likelihood Estimation: Example

Example 3: Suppose we wish to find the maximum
likelihood estimate of the performance of a classifier
We are told that the classifier has a true error rate of θ.
On any given set of N test samples, the probability that k
samples are misclassified is given by the binomial
distribution:

p(k |θ) =

[
N
k

]
θk (1− θ)N−k (42)

where
[

N
k

]
= N!

k!(N−k)! is the number of ways that any k

out of the N samples can be misclassified.
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Maximum Likelihood Estimation: Example

Taking the log gives us:

l(θ) = log p(k |θ) = log
[

N
k

]
+ log[θk ] + log[(1− θ)N−k ]

(43)

l(θ) = log p(k |θ) = log
[

N
k

]
+ k log[θ] + (N − k) log[1− θ]

(44)
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Maximum Likelihood Estimation: Example

Taking the derivative and setting to zero:

∂l(θ)

∂θ
=

k
θ
− N − k

1− θ
= 0 (45)

(1− θ)k = θ(N − k) (46)

θ̂ML =
k
N

(47)

Therefore, the ML estimate of error rate is just the fraction
of samples misclassified.
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Estimation Bias

ML estimates are optimal in the sense of maximizing
probability of observing the given samples
However, we may also require that the estimates be
unbiased. What does that mean?
Formal definition: an estimate θ̂ is unbiased if its
expected value is equal to the true value:

E [θ̂] = θ (48)

Alexander Wong SYDE 372



Motivation
Parametric Learning

Maximum Likelihood Estimation
Estimation Bias

Bayesian Estimation

Estimation Bias

Example: Is the ML estimate of the mean unbiased?

E [µ̂ML] = E [
1
N

N∑
i=1

x i ] (49)

E [µ̂ML] =
1
N

N∑
i=1

E [x i ] (50)

Since µ = E [x ],

E [µ̂ML] =
1
N

N∑
i=1

µ = µ (51)

Therefore, the ML estimate of the mean is unbiased!
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Estimation Bias

Example: Is the ML estimate of the covariance matrix
unbiased?

E [Σ̂ML] = E [
1
N

N∑
i=1

(x i − µ̂ML)(x i − µ̂ML)T ] (52)

E [Σ̂ML] =
1
N

N∑
i=1

E [(x i − µ̂ML)(x i − µ̂ML)T ] (53)
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Since variance is expressed in terms of mean µ,

E [Σ̂ML] =
1
N

N∑
i=1

E [((x i−µ)−(µ̂ML−µ))((x i−µ)−(µ̂ML−µ))T ]

(54)
Expanding and plugging in µ̂ML = 1

N
∑N

i=1 x i :

E [Σ̂ML] = E [
1
N

N∑
i=1

(x i−µ)(x i−µ)T ]−E [(µ̂ML−µ)(µ̂ML−µ)T ]

(55)
Does the first term look familiar?
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The first term is just the variance Σ!

E [Σ̂ML] = Σ− E [(µ̂ML − µ)(µ̂ML − µ)T ] (56)

Substituting µ̂ML = 1
N
∑N

i=1 x i back in:

E [Σ̂ML] = Σ− E [(
1
N

N∑
i=1

x i − µ)(
1
N

N∑
i=1

x i − µ)T ] (57)

E [Σ̂ML] = Σ− E [(
1
N

N∑
i=1

(x i − µ))(
1
N

N∑
i=1

(x i − µ))T ] (58)

E [Σ̂ML] = Σ− 1
N2 E [

N∑
i=1

N∑
j=1

(x i − µ)(x j − µ)T ] (59)
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Since the samples are independent,

E [(x i − µ)(x j − µ)T ] = 0 for i 6= j (60)

Therefore,

E [Σ̂ML] = Σ− 1
N2

N∑
j=1

E [(x i − µ)(x i − µ)T ] (61)

Since Σ = E [(x i − µ)(x i − µ)T ],

E [Σ̂ML] = Σ− 1
N2 NΣ (62)
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Continuing to simplify:

E [Σ̂ML] = Σ− 1
N2 NΣ (63)

E [Σ̂ML] = Σ− 1
N

Σ (64)

E [Σ̂ML] =
N − 1

N
Σ (65)

Therefore, the ML estimate for the covariance matrix is
biased!
As N ←∞, the bias becomes negligible.
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Then how do we get an unbiased estimate?
Answer: Just multiply your ML estimate by N

N−1 !

E [
N

N − 1
Σ̂ML] =

N
N − 1

N − 1
N

Σ = Σ (66)

Bias stems from the use of ML estimate for mean, µ̂ML,
rather than the true mean in the expression for Σ̂ML.
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Bayesian Estimation

Idea: Instead of treating the parameters as fixed and
finding the parameters that maximize the probability that
the given samples come from the resulting PDF, we do the
following:

Treat the parameters as random variables with an
assumed a priori distribution
Use the observed samples to obtain an a posterior
distribution which indicates the parameters!
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Let p(θ) be the a priori distribution and {x i} be the set of
samples.
The a posteriori distribution can be written as:

p(θ|{x i}) =
p({x i}|θ)p(θ)

p({x i})
(67)

The term p({x i}) is treated as a scale factor which may be
obtained from the requirement for PDFs:∫

p(θ|{x i})dθ = 1 (68)
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Example: Suppose that we would like the learn the
underlying PDF and we are given the following information:

We know that the PDF is a univariate Normal distribution
p(x) = N (µ, σ2).
We do not know what the mean µ is.
We know what the variance σ2 is.

What is the Bayesian estimate of µ?
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Bayesian Estimation

Step 1: Assume an a priori PDF for parameter θ = µ

p(µ) = N (µ|µo, σ
2
o). (69)

What this means is that:
Initial guess for µ is µo, and
Uncertainty of our guess is normally distributed with
variance σ2

o .
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Bayesian Estimation

A Priori PDF for θ = µ
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Step 2: Given samples, compute p(µ|{xi})

p(µ|{xi}) = αp({xi}|µ)p(µ) (70)

Assuming that the samples are independent:

p(µ|{xi}) = α

N∏
i=1

p(xi |µ)p(µ) (71)

where α = 1
p({xi}) is a scale factor independent of µ.
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Substituting p(xi |µ) and p(µ) = N (µ|µo, σ
2
o):

p(µ|{xi}) = α

N∏
i=1

p(xi |µ)p(µ) (72)

p(µ|{xi}) = α
∏N

i=1
1√
2πσ

exp
[
−1

2

(xi−µ
σ

)2
]

1√
2πσo

exp
[
−1

2

(
µ−µo
σo

)2
] (73)
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Bayesian Estimation

This can be rewritten as:

p(µ|{xi}) = α′ exp
[
−1

2

{∑N
i=1

x2
i −2xiµ+µ

2

σ2 + µ2−2µµo+µ2
o

σ2
o

}]
.

(74)
p(µ|{xi}) = α′′ exp

[
−1

2

[
N
σ2 + 1

σ2
o

]
µ2 − 2

[
NmN
σ2 + µo

σ2
o

]
µ
]
.

(75)
where mN is the sample mean.
It can be seen that the exponent is quadratic in µ, making it
of the Gaussian form!
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Bayesian Estimation

If we complete the square, the a posteriori density is of the
form:

p(µ|{xi}) = N (µ|µN , µ
2
N) (76)

where µN can be defined as:

µN =
Nσ2

o

Nσ2
o + σ2

mN +
σ2

Nσ2
o + σ2

µo (77)

The peak of the density is at µN , with a variance of σ2
N .

Based on this, the Bayesian estimate of µ is

µ̂B = µN (78)
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Bayesian Estimation

Observations:
Bayesian estimate can be interpreted as weighted average
of initial guess µo and sample mean mN .
If σo = 0, we are so sure of initial guess that we ignore the
samples.
If σo > 0, there is some uncertainty and the sample mean
has greater dominance.
If σo >> σ, initial uncertainty is relatively large and samples
weighted more heavily.
As N →∞, σ2

N → 0 and µN → mN .
This means that as the number of samples increases, the
density narrows and peaks at true mean during the
Bayesian learning process!
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Bayesian Estimation

As measures arrive, the PDF of the estimate narrows, implying
that the estimation error is decreasing.
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