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Motivation

Motivation

@ From the previous chapter, we know that the Bayesian
classifier achieves minimum probability of error.

@ Therefore, it performs better than MICD classifier for
situations where the class conditional PDFs (p(x|c;)) are
known.

@ Problem: In general, the PDFs are not known a priori, so
how do we perform Bayesian classification?
@ Ildea:

o What if we have samples with known class labels?

o With these samples, we can try to learn the PDFs of the
individual classes.

e These empirical PDFs allow us to apply Bayesian
classification!
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Motivation

Motivation

@ Bayesian classification is optimal in terms of probability of
error ONLY if the true class conditional PDFs (p(x|c;)) are
known.

@ The use of empirical PDFs result in sub-optimal classifiers.

@ How close the performance is to the theoretical minimum
P(¢) depends on the accuracy of the estimated PDF
compared to the true PDF.
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Motivation

Categories of Statistical Learning

@ There are two main categories of statistical learning

approaches:

o Parametric Estimation: functional form of PDF is

assumed to be known and the necessary parameters of the

PDF are estimated.

o Non-parametric Estimation: functional form of PDF is not
assumed to be known and the PDF is estimated directly.
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Parametric Learning

Parametric Learning

@ Here, we assume that we know the class conditional
probability function, but we don’t know the parameters that
define this function.

@ For example,

@ Suppose that p(x|A) is multivariate Normal, N'(mua, £ 4)
e We may not know what the actual value of parameters 1
and/or X5 are!

@ In this scenario, what we want to do is estimate what these
parameters are based on a set of labeled samples for the
class!
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Parametric Learning

Types of Parametric Estimation

@ There are two main categories of parametric estimation
approaches:

o Maximum Likelihood Estimation: Treat parameters as
being fixed but unknown quantities, with the goal of finding
estimate values which maximize the probability that the
given samples came from the resulting PDF p(x|0).

o Bayesian (Maximum a Posteriori) Estimation: Treat
parameters as random variables with an assumed a priori
distribution, with the goal of obtaining an a posteriori
distribution p(¢]x) which indicates the estimate value based
on the given samples.
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Maximum Likelihood Estimation

Maximum Likelihood Estimation

@ Supposed that we are given a set of samples {x;},
independently drawn from a distribution p(x) where the
form of the PDF is known (e.g., Gaussian).

@ The goal is to obtain estimates for the parameters ¢ that
defines this PDF.

@ For example, if the distribution is of the Gaussian form:
p(x|A) = N(muga, ), then the set of parameters defining
this distribution is § = (mua, X 4).

Alexander Wong SYDE 372



Maximum Likelihood Estimation

Maximum Likelihood Estimation

@ Writing the PDF as p(x|6) to emphasize the dependence
on parameters, the Maximum Likelihood estimate of the
parameters 6 is the set of parameters that maximizes the
probability that the given samples {x, X5,..., Xy} are
obtained given 6:

B = argmax, [p({x;}16)] (1)
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Maximum Likelihood Estimation

Maximum Likelihood Estimation

p({x}le)

>
ML =)

©

Given an observation x;, the maximum likelihood estimate of
parameter 6 is chosen to be that value which maximizes the
PDF p(x;|0)
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Maximum Likelihood Estimation

Maximum Likelihood Estimation

@ Assuming that the sample are independent of each other,
p({x,} |0) becomes:

N
p({xi}10) = p(xy,X2,. .., Xn[0) = HP(K;W) (2)

i=1

@ Therefore, the sample set probability is just the product of
the individual sample probabilities.
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Maximum Likelihood Estimation

Maximum Likelihood Estimation

@ To maximize p({x;} |6), we take the derivative and set it to

zero: 5
5P} 10)]o_,, =0 (3)
@ It is often more convenient to deal with p({x;} |6) in log
form

N
I(6) = log [p({x;} 16)] = ) _ log p(x;16) (4)

i=1
@ This gives us the final maximum likelihood condition:

0
51O, =0 5)
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Maximum Likelihood Estimation

Maximum Likelihood Estimation: Example

@ Example 1: Suppose that we would like the learn the
underlying PDF and we are given the following information:

o We know that the PDF is a univariate Normal distribution

p(x) = N (u, o®).
o We do not know what the mean p is.
e We know what the variance o2 is.

What is the maximum likelihood estimate of n?
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Maximum Likelihood Estimation

Maximum Likelihood Estimation: Example

@ Since the parameter that we do not know is the mean g,
what we have is § = p and p(x|0) = N (0|0?).
@ Therefore:

N PR—
pto =11 o o050 @

@ Taking the log gives us:
N

1(6) = log !H e | G)ZH )

i=1
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Maximum Likelihood Estimation

Maximum Likelihood Estimation: Example

@ Taking the log gives us:

@ Taking the derivative:

N
o —%Z ©)
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Maximum Likelihood Estimation

Maximum Likelihood Estimation: Example

@ Setting it to zero:

9 1) = 1ZN:(x-—9)—o (10)
00 - 02 P ! a
N
> (x)-No=0 (11)
i=
1 N
0= 2 00) (12)

@ Therefore, the maximum likelihood estimate for 6 in this
case is just the sample mean!
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Maximum Likelihood Estimation

Maximum Likelihood Estimation: Example

@ Example 2: Suppose that we would like the learn the
underlying PDF and we are given the following information:

o We know that the PDF is a univariate Normal distribution

p(x) = N(, 0?).
o We do not know what the mean p is.
e We do not know what the variance o2 is.

What is the maximum likelihood estimates of i and
sigma??
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Maximum Likelihood Estimation

Maximum Likelihood Estimation: Example

@ Since the parameters that we do not know are the mean u
and variance o2, what we have is:

0=1[01 62]" =[u 0?7 (13)
and p(x|0) = N(64, 62),

2

@ Taking the log gives us:

B 1 _1(x,-—01)2
1(6) = log [H mexp{ i H (15)
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Maximum Likelihood Estimation

Maximum Likelihood Estimation: Example

@ Taking the log gives us:

o 27
1(8) = Z H—;W — log /276, (16)

N L 21
0= 5> [W —glog 2n0,  (17)
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Maximum Likelihood Estimation

Maximum Likelihood Estimation: Example

@ Given that we have multiple parameters to estimate, we
must maximize /(#) with respect to each of the
components of ¢ via a vector derivative:

ale)  [alw) al@)]" (8)
o0 | 90y 062
@ Taking the derivative of each component gives us:
Xi—0
391 Z A (19)
i=1
aM0) 1 n (% 91 N
L
— 2
90 Z 20, (20)

/:1
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Maximum Likelihood Estimation

Maximum Likelihood Estimation: Example

o Setting 2 9) = 0 and solving gives us:
al0) <L X — 04
= = L 1-0 21
004 ; 0> (21)
N
> xi = Noy (22)
i=1
Y
91 = N Z Xj (23)

@ Same as before! The maximum likelihood estimate for 64 is
h _ 1N
Orme = D oimt Xi-
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Maximum Likelihood Estimation

Maximum Likelihood Estimation: Example

@ Setting M = 0, plugging in 6 ML gives us:

— 91 m)P N
B =2 Z "2, 0 @Y
N
-0
Z 1ML _eﬁ (25)
i=1 2
N
> (X — b1, m)? = N6 (26)
i=1
N
Oom = Z —01.m)? (27)
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Maximum Likelihood Estimation

Maximum Likelihood Estimation: Example

@ Example 3: Suppose that we would like the learn the
underlying PDF and we are given the following information:

o We know that the PDF is a multivariate Normal distribution

p(X) = N (11, T).
e We do not know what the mean vector y is.
@ We do not know what the covariance matrix X is.

What is the maximum likelihood estimates of . and X7
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Maximum Likelihood Estimation

Maximum Likelihood Estimation: Example

@ To simplify derivation, let us defined our parameters as

follows:
°0y=p
0 =31
@ Therefore, p(x|0) can be written as:
p(x) = 21 o [1(x9 )Tha(x —6y)|  (28)
=T (2m)n2 2\&H1 ves A

@ Taking the log gives us:

N
1 n 1
10) =Y 510g16z| - 5109 27— 5 (x;— 1) 02(x;— 1) (29)

i=1
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Maximum Likelihood Estimation

Maximum Likelihood Estimation: Example

@ Taking the derivative 8’(9) and setting it to zero

ole) _ o

’
26, — o0 —EZ(X/‘—Q1)T92(K;—Q1) =0 (30

=1

(x;i—61)=0 (31)

.MZ i

(x;) = No (32)

i=1

N
1 N
0y = N E (Ki) =HEu (33)
i=1



Maximum Likelihood Estimation

Maximum Likelihood Estimation: Example

@ Taking the derivative %Leg)
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Maximum Likelihood Estimation

Maximum Likelihood Estimation: Example

@ Setting (9) to zero:

(xi—0)(x,—01)" =0  (37)

Mz

|
DYEIE

Il
o

i

N N
D163 =D (xi—09)(x; — 64)7 (38)
i=1 =1

N
0 = - e -0 (@)
i=1
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Maximum Likelihood Estimation

Maximum Likelihood Estimation: Example

@ Since we are dealing with a symmetric matrix:
;N
(05" = 3 D_ (X = 01)(x; — 64)" (40)
i=1

® Withg,' =%

N
ZML - N Z MML NML)T (41)
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Maximum Likelihood Estimation

Maximum Likelihood Estimation: Example

@ Example 3: Suppose we wish to find the maximum
likelihood estimate of the performance of a classifier

@ We are told that the classifier has a true error rate of 6.

@ On any given set of N test samples, the probability that k
samples are misclassified is given by the binomial
distribution:

pkie) = | f | o+ - oy (42

@ where { 2’ ] = % is the number of ways that any k

out of the N samples can be misclassified.
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Maximum Likelihood Estimation

Maximum Likelihood Estimation: Example

@ Taking the log gives us:

1(0) = log p(k|6) = log [ I/\<l ] + log[6¥] + log[(1 — O)NK]
(43)
1(0) = log p(K|9) = log [ " ] + Kklog[d] + (N — k) log[1 — 6]
(44)
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Maximum Likelihood Estimation

Maximum Likelihood Estimation: Example

@ Taking the derivative and setting to zero:

ol0) k N-—k

o0 61— 0 (49)
(1—-0)k =06(N — k) (46)

A k
O = 4 (47)

@ Therefore, the ML estimate of error rate is just the fraction
of samples misclassified.
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Estimation Bias

Estimation Bias

@ ML estimates are optimal in the sense of maximizing
probability of observing the given samples

@ However, we may also require that the estimates be
unbiased. What does that mean?

@ Formal definition: an estimate § is unbiased if its
expected value is equal to the true value:

Eld =0 (48)
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Estimation Bias

Estimation Bias

@ Example: Is the ML estimate of the mean unbiased?

N
Elfyy ) = ELy > x) (49)
i=1

1N
E[QML] = N Z Elx;] (50)

i=1

@ Since = E[x],

| N

E[EML]:NZH:H (51)

@ Therefore, the ML estimate of the mean is unbiased!
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Estimation Bias

Estimation Bias

@ Example: Is the ML estimate of the covariance matrix
unbiased?

N

E[iML] E[ Z( :LLML)( MML)T] (52)
1:1

E[Sm] = ZE[ — P )X = fi,,)T] (53)
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Estimation Bias

Estimation Bias

@ Since variance is expressed in terms of mean ,

N
ES ] = 5 D EUCG—1) (g~ (1)~ ~12)]
i=1

(54)
@ Expanding and plugging in zi,, = 1N Zf\; X;:
. 1
Elm] = El > X=X =) 1= E[(yy, = 1) (g —12) 7]
i=1
(55)

@ Does the first term look familiar?
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Estimation Bias

Estimation Bias

@ The first term is just the variance X!
Eliml =X — El(fyy, — 1By, — )] (56)

@ Substituting /i, = & zﬁ 1 X; back in:

N
ElSw] =% - El( Zx WY x-wT (67

N
Elfw] =% — E[( Z(x (- ) 68)
N
(

ElSm] =% B> (- (- w] (69)

i=1 j=1
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Estimation Bias

Estimation Bias

@ Since the samples are independent,

E[(x; — p)(x; — )] = 0 for i # j (60)

@ Therefore,
E[Sm] = Z—fZE[X —w(x; - (61)

@ Since ¥ = E[(x; — p)(X; — )71,

. 1
Exm] =% - WNZ (62)
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Estimation Bias

Estimation Bias

@ Continuing to simplify:

A 1
Exm] =% - WNZ (63)
ESm] =% - Ts (64)
N N -1
Elfm] =~ = (65)
@ Therefore, the ML estimate for the covariance matrix is

biased!
@ As N + oo, the bias becomes negligible.
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Estimation Bias

Estimation Bias

@ Then how do we get an unbiased estimate?
@ Answer: Just multiply your ML estimate by !

N - N N-1

@ Bias stems from the use of ML estimate for mean, By
rather than the true mean in the expression for S L
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Bayesian Estimation

Bayesian Estimation

@ |dea: Instead of treating the parameters as fixed and
finding the parameters that maximize the probability that
the given samples come from the resulting PDF, we do the
following:

o Treat the parameters as random variables with an
assumed a priori distribution

@ Use the observed samples to obtain an a posterior
distribution which indicates the parameters!
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Bayesian Estimation

Bayesian Estimation

@ Let p(#) be the a priori distribution and {x;} be the set of

samples.
@ The a posteriori distribution can be written as:
p({xi}6)p(8)
O{x;}) = ————— 67

@ The term p({x;}) is treated as a scale factor which may be
obtained from the requirement for PDFs:

/ P(0]{x;})d0 = 1 (68)
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Bayesian Estimation

Bayesian Estimation

@ Example: Suppose that we would like the learn the
underlying PDF and we are given the following information:

o We know that the PDF is a univariate Normal distribution

p(x) = N (u, o®).
o We do not know what the mean p is.
e We know what the variance o2 is.

What is the Bayesian estimate of ;?
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Bayesian Estimation

Bayesian Estimation

@ Step 1: Assume an a priori PDF for parameter 6 = 1

p(1) = N (ulpo, 05). (69)

@ What this means is that:
o Initial guess for p is o, and
@ Uncertainty of our guess is normally distributed with

variance o2.
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Bayesian Estimation

Bayesian Estimation
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Bayesian Estimation

Bayesian Estimation

@ Step 2: Given samples, compute p(u|{x;})

p(ul{xi}) = ap({xi})p(1) (70)

@ Assuming that the samples are independent:

N

p(ul{xi}) = a ][ p(xilm)p(n) (71)

=1

_ 1 ;
where a = DL scale factor independent of .
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Bayesian Estimation

Bayesian Estimation

o Substituting p(x;|12) and p(u) = N (ulo, 73):

N
p(ul{xi}) = a ] p(xilw)p(n) (72)

i=1

plul{xi}) = oTIY, Qmexp[ b (%5

\/ﬂao N (

\_/q

I—l
—_~
\I
L
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Bayesian Estimation

Bayesian Estimation

@ This can be rewritten as:

e |
(74)
o) = o[ 3+ -2 1+ 1))
(75)

where my is the sample mean.

@ It can be seen that the exponent is quadratic in p, making it
of the Gaussian form!
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Bayesian Estimation

Bayesian Estimation

@ If we complete the square, the a posteriori density is of the
form:
p(ul{xi}) = N (ulins 1) (76)
where uy can be defined as:
No? o?
=M+ —5—— 77
HN = NoZ 1 g2 ™ T oz 2ho (77)
@ The peak of the density is at uy, with a variance of a%,.
@ Based on this, the Bayesian estimate of p is

fig = pN (78)
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Bayesian Estimation

Bayesian Estimation

@ Observations:

e Bayesian estimate can be interpreted as weighted average
of initial guess 1, and sample mean my.

e If oo = 0, we are so sure of initial guess that we ignore the
samples.

e If o, > 0, there is some uncertainty and the sample mean
has greater dominance.

o If o, >> o, initial uncertainty is relatively large and samples
weighted more heavily.

@ As N — oo, 02, — 0 and uy — my.

e This means that as the number of samples increases, the
density narrows and peaks at true mean during the
Bayesian learning process!
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Bayesian Estimation

Bayesian Estimation

%)

Pl .

As measures arrive, the PDF of the estimate narrows, implying
that the estimation error is decreasing.
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