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Motivation

So far, all of the model learning methods have been based
on parametric estimation, where functional form of PDF is
assumed to be known and the necessary parameters of
the PDF are estimated.
However, in many pattern recognition problems:

The functional form of the PDF is not known, or
The statistical distribution cannot be well modeled using
parametric PDF models (i.e., p(x |θ).

Solution: we need to directly estimate the class
distribution p(x) from the samples {x i}!
Such methods are called non-parametric estimation
methods.
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Motivation

(left) Parametric estimation (right) Non-parametric estimation
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Non-parametric Learning

Here, we assume that we do not know ANYTHING about
the class conditional probability function.
All we are given are N samples x i , which are labeled so we
know that they belong to a single class.
In this scenario, what we want to do is estimate the
distribution directly based on a set of labeled samples for
the class!
Here, we will focus on learning a single class from labeled
samples. In practice, we need to learn multiple
distributions based on samples with different class labels.
All we need to do is just run the non-parametric learning
process multiple times, once for each class.
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Types of Non-parametric Estimation

There are three main categories of non-parametric
estimation approaches:

Histogram estimation: Group given labeled samples into
discrete regions to approximate p(x).
Parzen window estimation: Approximate p(x) in a
continuous manner based on the local contribution of each
sample, thus controlling resolution along x-axis explicitly,
with resolution along PDF axis data dependent.
kNN Estimation: Approximate p(x) in a continuous
manner based on contribution of nearest neighbor samples,
thus controlling resolution along PDF axis explicitly, with
resolution along x-axis data dependent.
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Histogram Estimation

The simplest approach to non-parametric estimation of
p(x) is just constructing the normalized histogram!
Why is this true?

Consider some interval R = [a,b]
If p(x) is constant over this region, then

Pr(x ∈ R) = pR =

∫ b

a
p(x)dx = p(a) · (b − a) (1)
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Histogram Estimation

Supposed that we have N samples x1, . . . , xN taken from
PDF p(x)
The number of samples M that fall within region R must
obey a binomial distribution:

p(M) =

[
N
M

]
pM

R (1− pR)
N−M (2)

Taking the log gives us:

log p(M) = log
[

N
M

]
+ log[pM

R ] + log[(1− pR)
N−M ] (3)

log p(M) = log
[

N
M

]
+M log[pR]+(N−M) log[1−pR] (4)
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Histogram Estimation

Taking the derivative and setting to zero:

∂ log p(M)

∂pR
=

M
pR
− N −M

1− pR
= 0 (5)

(1− pR)M = pR(N −M) (6)

This gives us the ML estimate of pR as:

p̂R =
M
N

(7)
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Histogram Estimation

Recall that:
pR = p(a) · (b − a) (8)

Plugging our ML estimate for pR gives us:

p̂R = p̂(x) · (b − a) (9)

p̂(x) =
p̂R

(b − a)
(10)

p̂(x) =
M/N
(b − a)

(11)

p̂(x) =
M

N|R|
(12)

where |R| is the size of region R
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Histogram Estimation: Steps

Given a set of bins Ri :
1 Count the number of samples Mi that falls into each bin i
2 Count the total number of samples N
3 For a particular pattern x , p(x) can be computed as:

p̂(x) =
Mi

N|Ri |
for x ∈ Ri (13)

What this means: For a particular pattern x , find which bin
i it belongs to (Ri ), and compute the ratio between the
number of samples in that bin (Mi ) and the total number of
samples N times the region size |R|.
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Histogram Estimation

There is a fundamental tradeoff between resolution along x
and resolution along p(x):

For good resolution along x , we want to have small-sized
regions. However this leads to small Mi , thus poor PDF
resolution.
For good resolution along p(x), we want to have large Mi
and thus large-sized regions. However this leads to poor x
resolution.

Other major disadvantages:
Estimated PDF is ALWAYS discontinuous.
Shifting origin changes the shape of the estimated PDF.
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Histogram Estimation: Example

Example: 100 samples from a Gaussian distribution

(left) Small region sizes (right) Large region sizes
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Histogram Estimation: Example

Suppose you are given the following set of samples
x = {1,1.1,1.23,2,3,3.1,3.5,4.1,5,5.8}.
Based on the histogram estimation method, with a region
size of |R| = 2 and a range between 0 and 6, what is
p(x = 3.2)?

Step 1: Count the number of samples Mi that falls into each
bin i (M1 = 3, M2 = 4, M3 = 3)
Step 2: Count the total number of samples N (N = 10)
Step 3: Find the bin the pattern belongs to (x = 3.2 belongs
to bin R2)
Step 4: Compute p(x = 3.2) based on identified bin

p̂(x = 3.2) =
4

10(2)
= 0.2 (14)
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Parzen Window Estimation

Aside from the problems mentioned before, the most
obvious flaw in the histogram estimation approach is that
we assume that the PDF p(x) is constant over each region.
Solution: the Parzen Window estimation approach does
away with predefined regions and bin counting!
Advantages:

No need to predefine region sizes
Estimated PDF is ALWAYS continuous.
Method is origin-independent.
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Parzen Window Estimation

Fundamental idea:
Every sample xi locally influences the estimated PDF in the
vicinity of xi
In other words, since we observed xi , the PDF there can’t
be too small; and if we see lots of samples in an area, then
we expected the PDF to be correspondingly larger.
Given this mentality, the estimated PDF is then the sum of
the contributions from each sample:

p̂(x) ∝
∑

i

φ(x − xi) (15)

where φ is a window function which controls how each
observed sample influences the PDF.
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Parzen Window Estimation

Properties of window function φ:
Window function must be normalized:∫ ∞

−∞
φ(x)dx = 1 (16)

To change the locality of influence of a sample, we may
wish to stretch or compress the window function:

φ

(
x − xi

h

)
(17)

where h is a scaling factor
To keep things normalized:∫ ∞

−∞

1
h
φ

(
x − xi

h

)
dx = 1 (18)
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Parzen Window Estimation

Given N samples {xi , . . . , xN}, the Parzen Window
estimation of p(x) is:

p̂(x) =
1
N

∑
i

1
h
φ

(
x − xi

h

)
(19)

Common window functions include: rectangular, triangular,
Gaussian, and exponential.
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Parzen Window Estimation: Example

Example: 6 samples, Gaussian window function
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Parzen Window Estimation: Example

Suppose you are given the following set of samples
x = {1,1.1,1.23,2,5.8}.
Based on the Parzen Window estimation method, with a
Gaussian window function with h = 1, what is p(x = 3.2)?

p̂(x) =
1
N

∑
i

1
h
φ

(
x − xi

h

)
(20)

p̂(x = 3.2) =
1
5

5∑
i=1

φ (3.2− xi) (21)
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Parzen Window Estimation: Example

Therefore,

p̂(x = 3.2) = 1
5

[
1√
2π

(
exp

(
−1

2(3.2− 1)2))]
+1

5

[
1√
2π

(
exp

(
−1

2(3.2− 1.1)2))]
+1

5

[
1√
2π

(
exp

(
−1

2(3.2− 1.23)2))]
+1

5

[
1√
2π

(
exp

(
−1

2(3.2− 2)2))]
+1

5

[
1√
2π

(
exp

(
−1

2(3.2− 5.8)2))]
(22)

p̂(x = 3.2) = 0.0689 (23)

Alexander Wong SYDE 372



Motivation
Non-parametric Learning

Histogram Estimation
Parzen Window Estimation

k-Nearest-Neighbor Estimation

Parzen Window Estimation: Scaling factor

One drawback of Parzen Window estimation is that we still
need to choose a window function and scale factor h
As a general rule, one option is to try h = K/

√
N for some

constant K .
For small N, the constant K is important:

If it is too small, the estimate is noisy with sharp peaks at
the samples
If it is too large, the estimate is smeared with low resolution
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Parzen Window Estimation: Scaling factor

Example: 6 samples, Gaussian window function, different K

(left) small K , (middle) medium K , (right) large K
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k-Nearest-Neighbor Estimation

In histogram and Parzen Window estimation methods, we
fix the region size/window function width
This explicitly controls the resolution along the x-axis, and
the resolution along the PDF axis is data dependent.
In the kNN method, we instead fix the number of samples
M, and determine the size of region required at each point
to enclose this many samples.
Therefore, this explicitly controls the resolution along the
PDF axis, and the x-axis resolution becomes data
dependent.
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k-Nearest-Neighbor Estimation

To compute the kNN estimate of p(x):
Create an interval [x − α, x + α] centered around x
Increase α until it contains a suitable number of
observations M
Compute estimate of p(x) as:

p̂(x) =
M

N|R(x)|
=

M
N · 2α

(24)

where R(x) is the smallest region, centered around x ,
which encloses M sample points.
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k-Nearest-Neighbor Estimation

Frequently we set M =
√

N, in which case the kNN method
has no free parameters.
If sample density is high, |R(x)| will be small, and the
estimate will have high resolution where it is needed.
If sample density is low, |R(x)| will be large, and resolution
will be low which is probably acceptable in sparsely
populated regions.
Main advantage of kNN estimation: avoids setting p(x)
identically to zero in regions which happen not to have any
samples, but instead results in a more realistic non-zero
probability.
Disadvantage: estimated PDF is highly “peaked” and
non-normalized.
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k-Nearest-Neighbor Estimation: Example

Suppose you are given the following set of N = 5 samples
x = {1,1.1,1.23,2,5.8}.
Based on the k-Nearest-Neighbor estimation method, with
M = 3, what is p(x = 3.2)?
Given x = 3.2, the interval around x is
[3.2− 2.1,3.2 + 2.1] = [1.1,5.3], as it encloses M = 3
samples {1.1,1.23,2}
Compute estimate of p(x = 3.2) as:

p̂(x = 3.2) =
M

N · 2α
=

3
5 · 2(2.1)

= 0.1429 (25)
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