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Abstract. In this paper, the effect of grey level quantization on the ability of co-occurrence probability statistics to classify
natural textures is studied. Generally, as a function of increasing grey levels, many of the statistics demonstrate a decrease in
classification ability while a few maintain constant classification accuracy. None of the individual statistics show increasing
classification accuracy throughout all grey levels. Correlation analysis is used to rationalize a preferred subset of statistics.
The preferred statistics set (contrast, correlation, and entropy) is demonstrated to be an improvement over using single
statistics or using the entire set of statistics. If the feature space dimension only allows for a single statistic, one of contrast,
dissimilarity, inverse difference normalized, or inverse difference moment normalized, is recommended. Testing that
compares (using all orientations separately), the average of all orientations and look direction averaging, when determining
the co-occurrence features, indicates that the look direction or all orientations is preferred. The Fisher linear discriminant
method is used for all classification testing. The Fisher criterion is used as a separability index to provide insight into the
classification results. Testing is performed on Brodatz imagery as well as two separate SAR sea-ice data sets.

Résumé. Dans cet article, on étudie l’effet de la numérisation des niveaux de gris sur la capacité des statistiques
probabilistiques à effectuer une classification des textures naturelles. En général, plusieurs types de statistiques montrent
une diminution de la capacité à effectuer une classification lorsque les valeurs de niveaux de gris sont plus élevées et peu de
types de statistiques conservent une précision de classification constante. Aucune statistique ne présentent une augmentation
de la précision des statistiques de classification parmi tous les niveaux de gris. On utilise l’analyse de la corrélation pour
suggérer les meilleurs sous-ensembles de statistiques. Il appert que les meilleurs ensembles de statistiques (contraste,
corrélation et entropie) constituent une amélioration par rapport aux statistiques simples ou à l’utilisation de tous les
ensembles de statistiques. Si l’espace des éléments ne permet qu’un seul type de statistiques, le contraste, la dissimilarité, la
différence inverse normalisée ou la différence de moment inverse normalisé sont recommandés. Lors de la détermination des
éléments de cooccurrence, les tests qui comparent les diverses orientations de façon séparée, la moyenne de toutes les
orientations et la moyenne des directions de visée indiquent qu’il est préférable d’utiliser la direction de visée ou toutes les
orientations. La méthode des discriminants linéaires de Fisher est utilisée pour toutes les vérifications de classification. Le
critère de Fisher est utilisé comme index de séparabilité pour aider à comprendre les résultats de classification. Les tests ont
été effectués sur des images de Brodatz ainsi que sur deux images RSO de glaces de mer.

[Traduit par la Rédaction]

62Introduction

The interpretation of synthetic aperture radar (SAR) images is
an important ongoing research field. Scientists’ efforts are
directed towards improving calibration of radar platforms,
participating in field validation programmes to correlate
ground measurements with remotely sensed data, and
predictive modelling of SAR backscatter, as well as developing
computer-aided algorithms for the identification of pertinent
features. This paper focuses on a subset of the last topic by
studying particular abilities of co-occurrence probabilities to
perform spatial texture analysis using SAR sea-ice imagery.

Sea-ice information, important for assisting ship navigation
in ice-infested waters and climate change monitoring in Polar
Regions, should be produced in a timely fashion (Barber et al.,
1992; Carsey, 1989). Given the abundant SAR digital imagery
that must be analyzed, it makes sense to provide computer-
assisted interpretation techniques, a requirement that has been
recognized by a number of agencies (Agnew et al., 1999;
Brown et al., 1999; Partington and Bertoia, 1997). The
development of reliable, robust methods for the consistent

classification of SAR sea-ice data has been evasive, even
though considerable efforts have been attempted (Barber et al.,
1993; Barber and LeDrew, 1991; Holmes et al., 1984; Nystuen
and Garcia, 1992; Shanmugan et al., 1981; Shokr, 1991; Soh
and Tsatsoulis, 1999). Since SAR sea-ice imagery contains
spatially dependent class characteristics, texture extraction
methods have been commonly used to generate feature
information for sea-ice classes. The most common texture
feature extraction method for remotely sensed data is the
application of co-occurrence probabilities.

This paper advances the research field by considering the
ability of co-occurrence statistics to classify across the full
range of available grey level quantizations. This is important,
since users usually set the image’s grey level quantization
arbitrarily without considering that a different quantization
might produce improved results. In fact, a popular commercial
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remote sensing image analysis package (PCI’s EASI/PACE©)
determines grey level quantization, preventing the user from
providing a more sound choice to potentially improve their
results. By investigating the behaviour of the co-occurrence
statistics across the full range of grey level quantizations, a
choice of grey level quantization and co-occurrence statistics
can be made. The author is not aware of any other published
research that examines co-occurrence probabilities in this
manner.

This paper is organized as follows. In the next section, the
application of grey level co-occurrence texture features within
the context of SAR sea-ice classification is described. This
leads to the “Methods” section that clearly identifies the
research questions to be answered, indicates the information
content techniques that will be used, and describes the image
data sets. Testing results and discussion, with respect to each
research question, follows.

Grey level co-occurrence texture features
Generation of co-occurrence texture features

The co-occurrence probabilities provide a second-order method
for generating texture features (Haralick et al., 1973). These
probabilities represent the conditional joint probabilities of all
pair wise combinations of grey levels in the spatial window of
interest given two parameters: interpixel distance (δ) and
orientation (θ). The probability measure can be defined as:

Pr(x) = {Cij | (δ, θ)}

where Cij (the co-occurrence probability between grey levels i
and j) is defined as:
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where Pij represents the number of occurrences of grey levels i
and j within the given window, given a certain (δ, θ) pair; and G
is the quantized number of grey levels. The sum in the
denominator thus represents the total number of grey level pairs
(i, j) within the window.

Statistics (Table 1) were applied to the co-occurrence
probabilities to generate the texture features. Although many
statistics exist (Haralick et al., 1973), eight grey level shift
invariant statistics that are commonly applied are used in this
study. Only statistics that are grey level shift invariant should be
considered when applied to SAR imagery so that classification
is not a function of tone. Descriptions of such statistics with
respect to texture characteristics have been the subject of
several studies (Barber and LeDrew, 1991; Nystuen and Garcia,
1992; Baraldi and Parmiggianni, 1995).

Historically, the probabilities are stored inefficiently in a
sparse matrix referred to as the grey level co-occurrence matrix

or GLCM. Since the matrix is dimensioned to G, the fewer the
number of grey levels the faster the computation when the
statistics are applied. More efficient storage of co-occurrence
probabilities is implemented by using a grey level co-
occurrence linked list (GLCLL) (Clausi and Jernigan, 1998) or
grey level co-occurrence hybrid structure (GLCHS) (Clausi
and Zhao, 2001). To gain computational speed faster than the
GLCM approach these methods avoid storing zero probabilities
for grey level pairs.

Interpretation of SAR sea-ice imagery using
co-occurrence features

Scientists have investigated different aspects of co-occurrence
texture features with respect to SAR sea-ice image
interpretation (Table 2). These investigations are performed to
produce recommendations on how to set necessary parameters
including: G, δ, θ, statistics (number and type), and window
size. In this paper, the role of G and θ are tested, while window
size is not discussed since it is accepted that larger window
sizes will, in theory, provide more accurate classifications.
Window size is a critical parameter for image segmentation,
where large windows have a higher potential of overlapping
two or more classes, but this aspect is not considered here for
the classification problem.

Grey level quantization

Typically, only one G is selected for a given study as indicated
in Table 2, although it is possible to produce features based on
multiple grey level quantizations. Smaller values for G
accelerate the calculation of the co-occurrence texture features
and reduce noise, however, this is offset by a reduction in
information. Soh and Tsatsoulis (1999) comment that, “We
assume that the information gain in noise-effect reduction does
not compensate the loss of information as a result of
quantization”. It is expected that coarser quantization would
reduce both classification accuracy and feature space
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Note: Short forms used in the text indicated in upper case within round
brackets. All summations are over all (i, j) pairs.

Table 1. Grey level shift-invariant co-occurrence texture statistics.



separability of the classes. Conversely, finer quantization is
expected to improve both accuracy and separability.

Soh and Tsatsoulis (1999) investigated feature values
produced by individual statistics as a function of quantization
level. Shokr (1991) also considered the effect of quantization
on co-occurrence feature values. In this paper, a different
approach is taken. Here, the effects of grey level quantization
on the classification ability and feature space separability of the
co-occurrence statistics are studied. Uniform quantization is
used since it has been demonstrated to produce preferred results
(Clausi, 2001).

Table 2 shows that a significant degree of quantization has
been used in other studies. Original images have 256 grey
levels and the quantization levels are 8, 16, or 32. Sometimes,
the quantization level is not reported. Soh and Tsatsoulis (1999)
indicate that 64 grey levels would be a better choice to improve
the recognition rate. Note that EASI/PACE© automatically
quantizes the image data to 16 grey levels prior to capturing co-
occurrence texture features.

Co-occurrence statistics

Many of the statistics produce correlated texture features
(Barber and LeDrew, 1991; Shokr, 1991; Baraldi and
Parmiggiani, 1995). From a pattern recognition standpoint, it is
preferred to minimize redundancy and the feature space
dimensionality in a feature set so as to improve classification
accuracy (Duda et al., 2001; Hughes, 1968). Barber and
LeDrew (1991) recommend the use of only three statistics.
Fewer statistics lead to fewer computations. Most of the studies
listed in Table 2 utilize grey level shift invariant texture
features with all using entropy (ENT). Note that the statistics
listed are the ones that the scientists used for the final studies,
although they might have considered many others at the onset
of their papers.

Orientation (θ)

Several of the studies listed in Table 2 average the four inter-
pixel orientations since the authors assume that texture
measures are insensitive to the direction of the sensor and/or
recognize that sea-ice formations rotate and position
themselves in all possible orientations. However, Barber and
LeDrew (1991) determined that the orientation of the look
direction produces results that have greater statistical
significance. In this paper, the set of all θ’s for nearest

neighbours (0°, 45°, 90°, 135°) is used in all cases except in
research Question #4 where all orientations, look direction
averaging, and overall average are compared.

Displacement (δ)

Barber and LeDrew (1991) statistically demonstrate that δ = 1
produces a significantly superior classification when compared
to δ = 5 and δ = 9. Holmes et al. (1984) indicate that
“Experimentation with the distance parameter led to our
selection of δ = 2 as the most appropriate”, but do not give
details of the experimental methodology or results. Shokr
(1991) experimentally compares δ = {1, 2, 3} and concludes
that δ = 2 is appropriate. Nystuen and Garcia (1992) use a
variety of distances from one to ten and conclude that the
features are consistent for distances greater than four. Soh and
Tsatsoulis (1999) advocate using additional displacement
values for classifying SAR sea-ice imagery. In this paper, δ will
be fixed at one to allow relative comparisons to be made with
respect to the parameters under consideration.

Methods
Objectives

Based on the background information provided above, the
following research questions are posed.

(1) What is the classification performance of each of the
individual statistics (Table 1) across the full range of quantized
grey levels for each data set? Do the statistics produce higher
classification accuracies with increasing G?

(2) What is the correlation relationship of the statistics as a
function of G?

(3) Given the responses to questions (1) and (2), can a
preferred set of statistics be advocated for consistent texture
recognition? How does this improved set compare with a brute
force approach of simply selecting all statistics?

(4) Is there any improvement to the classification accuracy
across the range of grey levels if look angles or the average of
the angles are considered?

Information content

As recommended by Kurvonen and Hallikainen (1999) the
information content of the texture measures can be evaluated
with test classification and a separability index. Test

© 2002 CASI 47

Canadian Journal of Remote Sensing / Journal canadien de télédétection

Author(s) δ θ G Co-occurrence statistics used

Barber and LeDrew (1991) 1*, 5, 10 0*, 45, 90 16 CON, COR, DIS, ENT, UNI
Holmes et al. (1984) 2 Average 8 CON, ENT
Nystuen and Garcia (1992) 4*–10 Variety N.P. CON, COR, ENT, IDM, UNI, cluster prominence
Shokr (1991) 1, 2*, 3 Average 16, 32 CON, ENT, IDM, UNI, MAX
Baraldi and Parmiggiani (1995) 1 0 N.P. CON, COR, ENT, IDM, UNI, variance
Soh and Tsatsoulis (1999) 1, 2, …N/2 Average 64 COR, ENT, IDM, UNI, autocorrelation, contrast

*Indicates a preferred choice; N.P. indicates that this information was not provided in the paper.

Table 2. Summary of selected papers that consider the application of co-occurrence texture features for the interpretation of SAR
sea-ice imagery.



classification considers the absolute accuracy of the texture
measures with respect to the true classification. A separability
index determines a relative estimate for information content of
the texture measure under scrutiny, to provide a basis for
comparing different methods.

Classification

A common technique for the classification of feature vectors is
the use of the maximum likelihood (ML) classifier. This
technique is not used here because the restricted number of
samples per class creates a class feature space representation
that can be sparse. The Fisher linear discriminant (FLD)
(Fisher, 1950; Duda et al., 2001) is less sensitive to the number
of features compared to ML because FLD uses a pooled
covariance matrix compared to the individual class covariance
matrix employed by ML. Also, the FLD is convenient since it is
non-parametric. Support for using the linear discriminant over
the ML technique is motivated by Tom and Miller (1984).
Further details of the FLD implementation used in this paper is
found in Clausi (2001).

Discriminants are created using training data. The
effectiveness of the discriminants is determined by applying
them to separate test data. Classification of the test data
produces error matrices. Kappa (κ) coefficients and associated
confidence intervals (σ) are used to evaluate each error matrix
(Bishop et al., 1975). When two error matrices are compared,
the following test statistic can be used to determine a
significance value (using a significance level of 5%):

Z ~
κ κ

σ σ
1 2
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2

2
2

−

+

where the κ coefficient is defined as
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M is the number of classes; xii is the ith value on the error
matrix diagonal; xi+ and x+i are the marginal sums of rows and
columns, respectively; and T is the total number of samples.

Classifying test data not used to generate the discriminants is
advocated since the true test of a classification system is its
ability to identify “unknown” data. Discriminants can be
designed to have a high classification rate for training data, yet
the same discriminants can have poor classification accuracy on
test data. A proper means for checking the reliability of a
classification system is to use separate training and test feature
vectors (Randen and Husoy, 1999). Even though this approach
is recognized to be preferred, recent published sea-ice
recognition research mix the training and test sets for some of

their results (Soh and Tsatsoulis, 1999; Nystuen and Garcia,
1992), which can lead to misleading interpretations.

Separability index

The Fisher criterion (Duda et al., 2001) is used as a measure of
the separability of two classes in the feature space. This
criterion calculates a ratio of the between class separability and
the within class variation. Larger Fisher criterion values
demonstrate improved separation of two classes.

Comparison of lines on plots

For the classification results, plots are created with G as the
independent variable and κ as the dependent variable. Different
criteria can be used to determine if a certain line on the plot is
an improvement over another line. Ideally, a set of co-
occurrence parameters would produce classifications that have
a strong consistent measurement over all quantized grey levels.
This is preferred so that classifications are not a function of G,
allowing users to select a quantization value that will produce
consistent results. In the testing, it was noted that lines
sometimes had significant variance, and this variance could
vary as a function of the statistics used or as a function of G.
Thus, if there are two lines that are generating consistent
results, one may not be a statistically significant improvement
over the other. Maximum and minimum κ values could be
considered, however, such values would identify specific
quantization levels which may not be consistent between data
sets, so this consideration is not used in this paper. Slope,
variance, and statistical significance are used in this paper to
determine if one line is an improvement on another.

If the slope of the line is close to zero, then the choice of
parameters is not a function of G, which is preferable. Thus,
even though two lines could have the same mean, the line that is
most consistent over the grey level range is a preferable choice.
High variance leads to classifications that are suspect and
unpredictable. Selections of G in ranges with relatively higher
κ variance are discouraged. The average κ and standard
deviation for each quantization level across a range of G can be
determined for a particular line that has a constant mean, i.e.,
approximately zero slope. These values can be used to test
statistical significance between a pair of lines using the Z-
statistic. A significance level of 5% is used in this paper.

Image data sets

To address the robustness of the parameter selections, three
texture image sources are studied: Brodatz images, SAR aerial
imagery from the Labrador Ice Margin Experiment (LIMEX),
and SAR satellite imagery from the North Water (NOW)
Polynya project.

Brodatz data set

Brodatz imagery (Brodatz, 1966) is the most common test
imagery used in the generic texture interpretation research
literature. This imagery provides a variety of classes and allows
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comparison with other research. Also, the training and test
image samples are assured to contain one class only; the same
cannot hold absolutely true for the SAR image samples,
although efforts are made to accomplish this. Eight different
Brodatz textures are used: cloth (D19), cork (D4), cotton
(D77), grass (D9), paper (D57), pigskin (D92), stone (D2), and
wood (D68). These textures were chosen since they have a
noticeable, but not necessarily regular, textural pattern and
several of the textures are similar in nature, somewhat
mimicking textures found in SAR sea-ice imagery. A key
distinction between Brodatz imagery and SAR imagery is the
absence of speckle noise in Brodatz imagery. Obviously,
speckle-free images (given all other parameters and data equal)
would produce superior texture classifications. The cotton
texture, used as a control, is the only one that has a well-defined
repeating pattern. Training samples are selected by dividing the
top left quadrant of a 256×256 image into sixty-four 16×16
sub-images. Sixty-four test samples are represented by the
16×16 sub-images from the bottom right quadrant. Due to
space limitations and the availability of this imagery, these
images are not presented in this paper.

LIMEX data set

The C-band HH polarization image (Figure 1) (Hirose et al.,
1993) was obtained using the Canada Centre for Remote
Sensing (CCRS) SAR carried on a Convair-580 platform for
LIMEX during the springtime of 1989 (the air temperature was
8°C) (Tang and Manore, 1992). The image is dimensioned to
2000×2000 pixels with 100 m resolution and was acquired in
nadir mode. A sub-scene that covers between 50 and 70 degrees
incidence angle was selected. Further details on the processing
characteristics are described by Ikeda and Tang (1992). This
image contains brash ice, open water (with the wind blowing
left-to-right across the image), and first year ice. One hundred
8×8 samples of each class were selected for training and sixty-
four 8×8 samples of each class were selected for testing.

NOW data set

Detailed information concerning the RADARSAT-1 SAR
imagery is contained in Mundy and Barber (2001). In brief,
ScanSAR data were acquired from the Canadian Ice Services
(CIS) with 150 m nominal resolution and 100 m pixel spacing
as part of the International NOW Polynya project. Nine classes
are included: nilas/new-ice, grey-ice, grey white-floes, medium
first-year ice-floes, rough open-water, calm open-water,
smooth first-year ice, rubble landfast-ice, and multiyear ice.
These ice types are illustrated in Figure 2. SAR sea-ice
classification studies usually consider fewer ice classes. Two
sets of image samples were created. The “validated” data set
contains those regions with field observations (during the NOW
programme) that were co-registered in the images. It was these
samples that were used for testing in this paper. The
“inspected” samples are based on regions that were in the NOW
vicinity, but not directly observed during the field programme.
These class samples were selected by inspection of the images,

to have similar visual characteristics as the validated classes. It
was these samples that were used for training in this paper.
Thirty-two non-overlapping samples of each class within each
set were selected. The window size of each sample was 16×16.

Results and discussion
Each of the research questions will now be addressed in
sequence.

(1) What is the classification performance of each of the
individual statistics (Table 1) across the full range of
quantized grey levels? Do the statistics produce higher
classification accuracies with increasing G?

Figure 3 contains three plots, one for each data set. Each plot
shows the κ test classification results for each statistic alone
(using θ = 0, 45, 90, 135 degrees and δ = 1 pixel, for a total of
four features). For comparison purposes, the y-axis is always
scaled between 0 and 1. A total of sixty-three quantization
values are used (8, 12, 16, …, 256). The classification
accuracies for the NOW data are much lower than the
classification accuracies of the LIMEX data. This difference is
probably due to LIMEX data having fewer classes (three versus
nine) and a finer resolution (100 m versus 150 m).

With higher G, it would be expected that, more information
is provided and improved classification would be achieved for
each statistic. Similarly, it is expected that a lower G would
have less information and poorer classification. However, this
is not always the case and for many statistics, the opposite
occurs, that is, poorer classification with higher G. A number of
these data trends are explained.

• The dissimilarity (DIS) and contrast (CON) statistics
(Table 1) produce consistently strong classifications across
all data sets. For the LIMEX and NOW data sets, coarse
quantization (G roughly less than 24 grey levels) results in
lower classification accuracy. For G approximately greater
than 24 grey levels, results are quite consistent with
minimal variability. Thus, above a certain threshold,
classification using DIS and CON is independent of the
value of G. DIS produces slightly higher results for the
Brodatz data set and CON produces slightly higher results
for the two SAR data sets. However, for each data set, there
is no statistical difference between the DIS and CON
results.

• The statistics entropy (ENT), uniformity (UNI), and
maximum probability (MAX) (Table 1) all have a strong
decrease in classification accuracy with increasing G. A
decrease in classification accuracy with increasing G was
not expected. However, these three statistics are based on
homogeneity, that is, quality of disbursement of the co-
occurring probabilities throughout the GLCM, in contrast
to the smoothness statistics (CON, DIS, inverse difference
(INV), inverse difference moment (IDM), which use a
weighted distance from the main diagonal of the GLCM,
(i.e., location). At full dynamic range, few (if any) grey
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level pairs are repeated. Classification using ENT, UNI, or
MAX at full dynamic range is poor, since the probabilities
tend to a near maximum state of entropy causing similar
texture feature values to be generated for each class. Thus,
quantization is a necessity to enhance the ability of the
statistics ENT, UNI, and MAX, and to move the system
away from the full entropy state. Historically, quantization
has been used to reduce the computational load; however,

it has not been recognized that the classification ability of
these statistics were simultaneously enhanced.

• The statistics INV and IDM have decreasing classification
accuracy with increasing G. This improvement in the
classification rate with increasing G was expected. These
statistics are based on the sum of Cij weighted by a
numerical series ({1, 1/2, 1/3, 1/4, …} for INV and {1, 1/2,
1/5, 1/10, …} for IDM). For a smooth texture (i ≈ j) these
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Figure 1. Aerial SAR image (Hirose et al., 1993) containing brash ice, open water, and first year ice.



statistics will likely sum Cij values to approximately one,
while coarse textures will likely sum to approximately
zero. The outcome is a sparser cluster for a smooth
(predictable) texture relative to a coarse (noisier) texture.
This outcome is opposite to the expected effect of these
statistics. Namely, texture features that use grey level

differences should generate relatively tighter clusters for
smooth textures and relatively sparser clusters for coarse
textures, leading to textures that are obviously smooth
being confused with other classes. That the IDM statistic
has a quadratic term accentuates this confusion and, as a
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Figure 2. RADARSAT subimages of selected ice types identified during NOW program (Mundy and Barber, to appear) (with permission). Bold
indicates those ice classes included in this study. Omitted ice types from this study had insufficient spatial coverage to provide samples for
classification testing. (a) Bright signature represents brash ice, which consists of very small ice floes broken up through wave and wind
disturbances. Dark homogeneous signature of calm open water surrounds brash ice. (b) Icebergs are apparent as distinct white dots surrounded
by slightly roughened open water. (c) Rough open water showing a very low frequency wave pattern (approximately 2 km wavelength) across
diagonal. (d) Wavy texture signature covering majority of window represents nilas/new ice with tear fractures and extensive finger rafting.
Toward lower edge of window, signature becomes a more constant grey tone, which represents transition from nilas to grey ice. (e) Grey ice with
minimal rafting (brighter signature) present throughout. (f) Bright linear signatures are strips of small pancake ice, less than 0.5 m in diameter,
created during wind event. Darker signature represents open water as well as frazil and grease ice formation which smoothes surface. (g) The
bright signature represents newly formed frost flowers on top of nilas/grey ice cover. Darker signatures are small leads with a new ice cover.
(h) Broken up through wind events, this window is covered with small (<25 m in length) angular grey-white floes with deformed edges where
floes converge with each other. (i) Large medium thick first-year ice floe nearly covers whole window. Well-defined ridge circles floe where it
has converged with other floes. Floe is conglomerate of smaller angular floes such as those in window H. Consequently, ridging within large floe
was also present. (j) Middle of window is covered with smooth thick first year ice represented by a very dark homogeneous signature.
Surrounding brighter signature represents rubbled first year ice. (k) Two parallel rubble ice shear zones amongst landfast first year ice are
present in this window, represented by very bright linear features oriented at diagonals across the window. Very thick ridging had occurred along
these zones. (l) The brighter signature represents a multiyear ice floe. Dark breaks can be observed within and around bright signature. These
breaks represent leads in and around multiyear ice floe where new ice types were being formed.



result, its classification accuracies are poorer relative to
INV, especially with increasing G.

To improve the classification ability of these two statistics,
the difference between i and j can be normalized by the

number of grey levels G. The modified statistics are
indicated by:
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Figure 3. Kappa values for each statistic as a function of grey level quantization (G) for each data set (a) Brodatz (b) LIMEX (c) NOW.
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These normalized statistics were used to classify the NOW
data set as a function of G (Figure 4). Clearly, the
normalized statistics results are a close match to the CON
results. Since the same type of result occurred for the
Brodatz and LIMEX data sets, only the NOW data set is
displayed. It will be shown in the results for Question #2 that
the features produced by these normalized statistics (INN
and IDN) are highly correlated with the features produced by
CON and DIS.

• The statistic COR has different classification ability for
Brodatz versus the SAR imagery. COR is the third best
statistic after CON and DIS for classifying the Brodatz data
set. However, COR does not classify the SAR data as well
as the Brodatz data. Brodatz texture contains more
structure than the SAR textures, which is an appealing
characteristic for the COR statistic.

Figure 5 illustrates the use of the Fisher criterion to compare
classification abilities of the different statistics. The value on
the y-axis represents the average Fisher criterion over all pair
wise classes generated when the discriminant rules were
created using the given statistic. These results support those
obtained in Figure 2 for the κ values. Once again, coarse
quantization decreases the separability of the classes in the

feature space. This decrease is especially noted for IDM, INV,
and ENT in the SAR data sets. As in the classification case
CON, DIS, and COR produce consistent results for
quantization levels greater than about G = 24. The statistics
INV, IDM, ENT, MAX, and UNI all have decreasing average
Fisher criteria with greater G. With increasing information, the
quality decreases for many of the statistics’ features.

The threshold value of G = 24 is smaller than the G = 64
advocated by Soh and Tsatsoulis (1999); however, they agree
that large G values (G = 128 or 256) are unnecessary. Both
thresholds are demonstrated to be acceptable and are larger
than the values typically used in other co-occurrence texture
studies. Setting G = 16, as in EASI/PACE©, can produce
unreliable classification results. The reason for EASI/PACE’s
low quantization level is probably based on maintaining
minimal computational demands. Current efforts to upgrade
this code with a faster algorithm (Clausi and Zhao, 2001) are
underway.

It is possible that with higher G, discriminants are better
tuned to the training data and are less able to classify the testing
data. This is another potential explanation for the decrease in
classification accuracy with increasing G observed in Figure 2.
However, Figure 5 illustrates that this is not the case. If the
discriminants overfitted the training data (Duda et al., 2001),
then there should be an increase in the average FLD with
increasing G, which is not seen.

(2) What is the correlation relationship of the statistics as a
function of G?

Figure 6 illustrates how the average correlation of all
features, averaged over all orientations, statistics, and classes,
varies as a function of G for each data set. The NOW data set
shows the highest correlations, followed by LIMEX, and then
Brodatz. Lower average correlations of all features have the
potential of greater feature diversity and were hoped to lead to
improved feature sets. However, according to Figures 3 and 5,
none of the statistics show classification improvement for
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Figure 4. Kappa values for each normalized (IDN, INN) statistics and the CON statistic as a function of grey level quantization (G) for the
NOW data set. LIMEX and Brodatz data sets produce similar results.



increasing G. That the Brodatz data set would have the lowest
correlations is not unexpected given the relative distinctiveness
of the imagery. That this reduced correlation does not generate

higher classification rates compared to the LIMEX data set is
probably due to the higher number of classes in the Brodatz
imagery (eight) compared to LIMEX (three).
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Figure 5. Average Fisher criterions for each statistic as a function of grey level quantization (G) for each data set (a) Brodatz (b) LIMEX
(c) NOW.



Table 3 represents pair wise correlations for a fixed value of
G = 64 for each data set. Since orientational sensitivity is
definitely important for the Brodatz data set, its correlations
(Table 3a) for each statistic are only for θ = 0 degrees. For the
SAR data sets (Table 3b and 3c), the average correlations over
all values of θ is reported. These tables show a number of
important trends. The statistics CON, DIS, IDN, and INN are
all highly correlated; absolute range of 0.930 to 1.000 across all
data sets. The statistics IDM and INV are also well correlated
with this group; absolute range of 0.723 to 0.998 across all data
sets. This suggests that only one of these six statistics is
required to be calculated for any given data set. The statistics
ENT, MAX, and UNI also have strong correlations; absolute
range of 0.619 to 0.966 across all data sets. The statistic COR is
surprisingly uncorrelated with the rest of the statistics.
Although results are only presented for G = 64, comparable
results were produced for each value of G considered.

(3) Given the responses to questions (1) and (2), can a
preferred set of statistics be advocated for consistent
texture recognition? How does this improved set compare
with a brute force approach of simply selecting all
statistics?

The responses to Questions #1 and #2 leads to a natural
grouping of the statistics: smoothness statistics, homogeneity
statistics, and COR. Each of these will now be discussed.

Moments of the non-zero probability entries about the
GLCM diagonal measure the degree of smoothness of the
texture. The statistics CON, DIS, IDN, INN, IDM, and INV
measure textural smoothness. Since all of these statistics
produce correlated features, only one smoothness statistic
needed to be selected. Since IDM and INV produce poorer
results with finer quantization, they were removed from
consideration, which parallels the recommendation of Baraldi
and Parmiggiani (1995) who dismissed the use of IDM since it
did not provide any additional information beyond what other
favoured statistics provided. Due to strong correlation between

IDM and INV, INV must be removed from consideration.
Thus, only one of CON, DIS, IDN, and INN needed to be
selected. Since CON produced the highest results for the SAR
data sets, it was selected to be used in this paper.

Homogeneity statistics (ENT, MAX, and UNI) measure the
uniformity of the non-zero entries in the GLCM. If the grey
levels in a particular window tend to be homogeneous, then
only a few grey level pairs represent the texture. Non-
homogeneity generates many different pairs of grey levels.
Since these homogeneity statistics tend to be well correlated,
only one needs to be selected. Due to the poor classification
ability of the MAX statistic, plus the fact that it does not add
any new information to the classification process, it was not
considered an important statistic. Soh and Tsatsoulis (1999)
excluded MAX from consideration since they felt it was
volatile. Since ENT consistently produces the best results of
any of the homogeneity statistics, this statistic was used as part
of the preferred statistic set.

The COR statistic is an independent measure, that is, not
correlated with any of the other statistics, that provides
appropriate features for the classification process. It was
included as one of the selected statistics in this paper. Thus, to
generate a complete feature set, one homogeneity statistic
(ENT), one smoothness statistic (CON), and COR need to be
selected. Choosing only three statistics agrees with
recommendations by Barber and LeDrew (1991) and parallels
those of Baraldi and Parmiggiani (1995) who felt that CON and
UNI were the two most important statistics (they also felt that
UNI and ENT were quite similar in behaviour). If
computational time restrictions and limited feature space
dimensionality only permit the use of two statistics, then CON
and ENT are recommended by the author.

Does the application of CON, ENT, and COR improve the
classification accuracy over using individual statistics?
Figure 7 displays classification results for each data set given
five different cases. CON, ENT, and COR are considered
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Figure 6. Correlations (averaged over all classes, angles, and statistics) for each data set (Brodatz, LIMEX, NOW) as a function of quantization
level.



independently (same results as Figure 2) and as a group of
three (ALL3). In addition, the brute force case of using all eight
statistics (Table 1) at once is also provided (ALL8).

ALL8 in the Brodatz set (Figure 7a) produces results
comparable to ALL3 (no statistical significance). Each of
ALL8 and ALL3 are statistically more significant than CON
alone. So, ALL8 and ALL3 are improvements compared to
using any single statistic. However, ALL3 is the preferred
choice due to computational reasons and because it has
relatively lower variance (0.011 compared to 0.023 of ALL8).
In the LIMEX results (Figure 7b), there is no statistical
significance between ALL8, ALL3, and CON. In this case,
CON would be the preferred choice because its variance
(0.006) is much lower than that of ALL8 (0.015) or ALL3
(0.010) and its computational requirements are lower. For the
NOW data set (Figure 7c), ALL3 and CON are a statistical
significant improvement over ALL8. CON is the preferred

measure since it has lower variance compared to ALL3 (0.008
compared to 0.019, respectively).

That ALL8 would lead to a decrease in effectiveness for the
NOW data set was not unexpected. Using eight statistics with
four orientations creates a 32-dimensional feature space. Each
class in the NOW data set has thirty-two samples. Sixty-four
samples (thirty-two samples from each class) are used to create
the pooled covariance matrix required for the FLD, so two
samples per feature space dimension (spd) are provided by the
NOW data set. These two samples are probably insufficient
information to model covariance behaviour. Both LIMEX and
Brodatz have better representation (6.2 and 4 spd respectively).
Thus, the decrease in effectiveness of the ALL8 data set is
probably due to ineffective covariance representation.

Other papers may be suffering from the same drawback. For
example, Soh and Tsatsoulis (1999) use six samples to
represent a covariance matrix in a 10-dimensional feature space
(0.6 spd) to perform Bayes classification, for three of their
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(a)

CON DIS IDN INN IDM INV ENT MAX UNI COR

CON 1 0.973 –1.000 –0.964 –0.727 –0.777 0.689 –0.367 –0.591 –0.295
DIS — 1 –0.976 –0.999 –0.846 –0.885 0.755 –0.436 –0.674 –0.298
IDN — — 1 0.967 0.732 0.782 –0.692 0.37 0.595 0.296
INN — — — 1 0.863 0.900 –0.763 0.446 0.684 0.297
IDM — — — — 1 0.995 –0.749 0.568 0.734 0.247
INV — — — — — 1 –0.766 0.568 0.743 0.259
ENT — — — — — — 1 –0.619 –0.956 0.090
MAX — — — — — — — 1 0.747 –0.010
UNI — — — — — — — — 1 –0.077
COR — — — — — — — — — 1
(b)

CON DIS IDN INN IDM INV ENT MAX UNI COR
CON 1 0.945 –1.000 –0.930 –0.723 –0.765 0.746 –0.432 –0.612 0.100
DIS — 1 –0.951 –0.999 –0.881 –0.913 0.870 –0.558 –0.759 0.072
IDN — — 1 0.937 0.734 0.776 –0.755 0.438 0.622 –0.097
INN — — — 1 0.897 0.927 –0.879 0.570 0.773 –0.067
IDM — — — — 1 0.995 –0.896 0.689 0.858 –0.023
INV — — — — — 1 –0.908 0.691 0.862 –0.033
ENT — — — — — — 1 –0.701 –0.941 0.267
MAX — — — — — — — 1 0.813 –0.097
UNI — — — — — — — — 1 –0.229
COR — — — — — — — — — 1
(c)

CON DIS IDN INN IDM INV ENT MAX UNI COR
CON 1 0.976 –1.000 –0.965 –0.815 –0.831 0.870 –0.529 –0.784 0.035
DIS — 1 –0.979 –0.999 –0.909 –0.920 0.930 –0.611 –0.868 0.011
IDN — — 1 0.968 0.821 0.836 –0.874 0.534 0.789 –0.033
INN — — — 1 0.926 0.935 –0.939 0.626 0.883 –0.007
IDM — — — — 1 0.998 –0.931 0.732 0.934 0.034
INV — — — — — 1 –0.936 0.728 0.934 0.032
ENT — — — — — — 1 –0.705 –0.966 0.189
MAX — — — — — — — 1 0.795 –0.037
UNI — — — — — — — — 1 –0.141
COR — — — — — — — — — 1

Note: For (a) Brodatz, correlations are represented by θ = 0 degrees. For (b) LIMEX and (c) NOW, correlations are averages over all four angles. For each
data set, correlations are also averaged over all classes.

Table 3. Representative example (G = 64 grey levels) of inter-statistic correlations for each data set.



seven classes. Nystuen and Garcia (1992) use values as low as
one spd using a Mahalanobis classifier. Barber and LeDrew
(1991) recognize this potential shortcoming in their testing and

have some tests where class covariance matrices are estimated
with spd values below one when using a Mahalanobis
classifier.
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Figure 7. Kappa values for three individual statistics (CON, ENT, COR), these three statistics considered together (ALL3), and all eight
statistics indicated on Table 1 (ALL8) as a function of grey level quantization (G) for each data set (a) Brodatz (b) LIMEX (c) NOW.



Overall, this discussion demonstrates that a brute force
approach of selecting all statistics (ALL8) does not improve the
classification ability relative to choosing only CON, ENT, and
COR. For the SAR data alone, CON seems to be the best
choice. However, with structured textures (as in the Brodatz
case) ALL3 is the preferred choice. Since it may not be known
a priori that the SAR sea-ice textures are highly structured
(especially in an unsupervised application), it is safer to create
a classification system using ALL3 statistics, given that a
sufficient number of samples per class are available to properly
estimate class covariance. Using this approach, a robust texture
feature set will be created.

To support the classification results, plots of the Fisher
criterion measured using the training data are provided in
Figure 8. Comparatively, the individual Fisher criterion lines
and the classification lines follow similar patterns as a function
of G for each texture feature set. Surprisingly, ALL8 generates
dramatically higher Fisher criterion values compared to ALL3,
ENT, COR, and CON even though ALL8 does not demonstrate
superior classification ability (Figure 7). ALL8 is
demonstrating that the decision rules for classification are
overfitted (Duda et al., 2001), that is, ALL8 generates features
that are fine-tuned for the training data set but cannot classify
the test set properly. If the classification of training data is only
considered, results can be biased. In this paper, if the training
results alone were considered, ALL8 would be the
overwhelming choice for statistic selection for each data set.
However, it is quite clear from the classification of the test data
that this is not the preferred statistic set. Similarly, looking only
at the training data would indicate that ALL3 would be a
preferred choice compared to the CON statistic, however, this
trend is not followed in the classification of the test data.

(4) Is there any improvement to the classification accuracy
across the range of grey levels if look angles or the
average of the angles is considered?

Three test scenarios are considered in this paper. Earlier
testing considered feature extraction using separate
orientations (SEP), for example 0, 45, 90, 135 degrees. Since
Barber and LeDrew (1991) concluded that the look direction
produces statistically significant results, a feature set that
accounts for the look direction (LOOK) can be created. In this
paper, the following are considered independent: the look
direction (θ = 0 degrees), normal to the look direction (θ =
90 degrees), and 45 degrees relative to the look direction (θ =
average of 45 and 135 degrees). The third scenario is averaging
over all four orientations (AVG).

Since both CON and ALL3 produced preferred results in the
above-mentioned testing of Question 3, they will both be
considered. Figure 9 depicts the results for LIMEX and NOW
using the ALL3 set of statistics and the three orientation
considerations while Figure 9 illustrates LIMEX and NOW
results using the CON statistic. The Brodatz data set is not
considered since its textures are noticeably directionally
sensitive.

When ALL3 statistics are used with both LIMEX and NOW
data (Figures 9a and 9b) there is no statistically significant
difference in any of the results. Using CON alone with the
LIMEX data, there is no statistical significance between the
three plots (Figure 10). However, when CON is applied to the
NOW data, the AVG features generate classification accuracies
that are statistically lower compared to LOOK and SEP. These
results tend to support the use of ALL3 statistics and either
LOOK or SEP orientation selections.

Conclusions
This paper makes a number of important observations with
respect to the classification of SAR sea-ice imagery using co-
occurrence texture features.

Many of the individual statistics have peak classification
accuracy at a relatively coarse quantization level, as well as a
decrease in classification accuracy with increasing G. Arbitrary
selections of G for these statistics can produce misleading
results for the classification of textured imagery. It is
recommended that the COR, ENT, IDM, INV, MAX, or UNI
statistics not be used as a sole statistic for any classification
study. One of CON, DIS, IDN, or INN is recommended in
situations where the number of samples per class are
insufficient to support a high dimensional feature space, and
only one statistic can be selected.

A preferable choice of statistics is the combined use of three
fairly independent statistics: CON, ENT, and COR. This
statistic set demonstrates consistent classification accuracy
over the range of grey level quantizations and consistently
produces preferred classification results compared to individual
statistics and all eight statistics. The use of all eight statistics is
perilous, since, given selected orientations and displacements, a
high dimensional feature space may be produced and there may
be insufficient class samples to accurately represent the class
covariance matrices. Also, generating texture features given
eight statistics requires additional computations.

As indicated in Table 2, various authors consider statistics
that measure the same characteristic based on a GLCM – a
weighted value of | i – j | (CON, DIS, IDM, and INV as well as
INN and IDN introduced in this paper). IDM and INV are
excluded from consideration since they do not contributing any
additional information to the classification process (Baraldi and
Parmiggiani, 1995) and because their classification rates are
more sensitive to G than the other four statistics. CON, DIS,
INN, and IDN all generate similar classification patterns as a
function of G, probably because they produce features that are
extremely well correlated. These statistics are subtly different,
so the calculated feature values are different. As a result, each
statistic has different absolute classification success with
respect to a certain data set. For example, CON may generate
higher classification rates than DIS for one data set while the
opposite might occur for another data set. Regardless, the
features produced by CON and DIS will produce results that
are expected to be statistically the same. As a result, this author
highly recommends that only one of these four statistics ever be

58 © 2002 CASI

Vol. 28, No. 1, February/février 2002



considered in any given study. There really is no need to
determine which statistic is producing the best absolute

classification since each is expected to perform statistically at
about the same level.
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Figure 8. Average Fisher criterions for ALL8, ALL3, CON, ENT, and COR as a function of grey level quantization (G) for each data set
(a) Brodatz (b) LIMEX (c) NOW.



The same type of argument holds for ENT and UNI. These
statistics measure the same type of information found in a
GLCM – the homogeneity of the probability values – and they
produce features that are highly correlated. There is no need to
include both of these statistics in a given study. In fact,
inclusion of redundant features unnecessarily increases the
dimensionality of the feature space and are not expected to
improve the classification quality.

In terms of selecting appropriate orientations, the results in
this paper seem to support Barber and LeDrew’s (1991)
observation that independent orientations can produce
significantly improved results. While the motivation presented
by others for using the average of the orientations is sound, the
evidence presented in this paper seems to encourage the use of
independent orientations.

In the analysis of the three data sets, using the preferred
statistic set {CON, ENT, COR}, any value of G greater than
twenty-four is advocated. However, large values of G (greater
than 64) are deemed unnecessary since they do not improve the
classification accuracy and are computationally costly. Setting

G to a value under twenty-four can produce unreliable
classification results.
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