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Multivariate Image Segmentation Using Semantic
Region Growing With Adaptive Edge Penalty
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Abstract—Multivariate image segmentation is a challenging
task, influenced by large intraclass variation that reduces class
distinguishability as well as increased feature space sparseness
and solution space complexity that impose computational cost
and degrade algorithmic robustness. To deal with these problems,
a Markov random field (MRF) based multivariate segmentation
algorithm called “multivariate iterative region growing using
semantics” (MIRGS) is presented. In MIRGS, the impact of
intraclass variation and computational cost are reduced using
the MRF spatial context model incorporated with adaptive edge
penalty and applied to regions. Semantic region growing starting
from watershed over-segmentation and performed alternatively
with segmentation gradually reduces the solution space size, which
improves segmentation effectiveness. As a multivariate iterative
algorithm, MIRGS is highly sensitive to initial conditions. To sup-
press initialization sensitivity, it employs a region-level �-means
(RKM) based initialization method, which consistently provides
accurate initial conditions at low computational cost. Experiments
show the superiority of RKM relative to two commonly used
initialization methods. Segmentation tests on a variety of synthetic
and natural multivariate images demonstrate that MIRGS consis-
tently outperforms three other published algorithms.

Index Terms—Initialization sensitivity, Markov random field
(MRF), multilevel logistic (MLL) model, multivariate segmenta-
tion, region adjacency graph (RAG), semantic region growing,
vector-valued image, watershed.

I. INTRODUCTION

C OMPUTER vision applications often require segmen-
tation of digital imagery into semantically meaningful

regions. The segmented regions can provide a basis for sub-
sequent tasks such as object detection and recognition, scene
understanding and content-based image retrieval. Therefore,
ultimate performance depends upon segmentation accuracy.

Rapid advances in image technologies lead to various types of
digital images. Multivariate (vector-valued) imagery (e.g., color
images) depicts each site using a vector that characterizes the
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same scene from distinct aspects, where the number of vector
elements is called the feature space dimension. Univariate im-
agery (e.g., grayscale images) can be regarded as a special mul-
tivariate case in which each site is depicted by a scalar. This
paper focuses on multivariate 2-D imagery which is defined on
a discrete 2-D rectangular lattice.

Multivariate image segmentation has been widely applied in
diverse fields [1]–[4]. Although theoretically feasible to extend
many univariate segmentation techniques to their multivariate
counterparts, practical performance is influenced by the mul-
tivariate nature of the image. Intraclass variation is typically
present since semantically meaningful regions (classes) are
often inhomogeneous due to scene characteristics, imaging en-
vironment, and image noise. Large intraclass variation usually
reduces class distinguishability and, thus, degrades segmenta-
tion performance. Multivariate imagery is especially sensitive
to large intraclass variation since every component image is
a variation contributor. Moreover, computational cost of seg-
mentation algorithms increases while algorithmic robustness
tends to decrease with increasing feature space sparseness and
solution space complexity.

Markov random field (MRF) based image segmentation [5]
is advocated for its intrinsic capability of reducing the impact
of intraclass variation using spatial context information. Yu and
Clausi [4], [6] built an iterative region growing using semantics
(IRGS) algorithm for univariate image segmentation, which
incorporates edge information with the MRF model. IRGS uses
watershed over-segmentation to build a region adjacency graph
(RAG), which then undergoes vertex labeling and merging by
alternating segmentation and semantic region growing pro-
cedures. Although IRGS demonstrates superior segmentation
ability, it cannot take multivariate images as inputs. Moreover,
IRGS is sensitive to initial conditions and may not consistently
provide accurate segmentation results.

We present a region-level MRF-based segmentation algo-
rithm named multivariate IRGS (MIRGS), which advances
the merits of the univariate IRGS to deal with multivariate
imagery. Similar to IRGS, MIRGS is also sensitive to initial
conditions, which becomes more pronounced as the feature
space dimension increases. Therefore, a region-level -means
(RKM) method is used to provide robust initialization for
MIRGS at low computational cost.

The next section describes the mathematical background for
multivariate image segmentation. Section III presents the re-
gion-level MLL model based segmentation, which leads to the
full description of MIRGS that is tested in Section IV.
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II. BACKGROUND

A. Image Segmentation Problem Statement

Let denote a discrete
2-D rectangular lattice of size . rep-
resents the multivariate 2-D image defined on , where

is the -dimensional feature vector defined
on site . Here, each image site denotes a pixel. represents
the univariate component image of . Suppose an image is
to be segmented into classes. Let denote
the set of class labels. is the random label
field defined on , where is the random variable taking a
value in .

Given an observed image with
as an instance of , image segmentation

aims at finding a label field configuration to
optimize certain criteria defined on and . The obtained con-
figuration partitions into disjoint subsets where

corresponds to a region or cluster of regions with defined
similar characteristics.

B. Multivariate Image Segmentation Techniques

Multivariate imagery may be produced by capturing several
images of a particular scene under varying circumstances (such
as frequency) or by extracting multiple features from each site
in a univariate image.

Among existing multivariate segmentation techniques, fea-
ture space thresholding and clustering methods [1], [7], [8] are
simple and time-efficient. However, they produce noisy seg-
mentations due to ignoring spatial context. Edge based methods
[9]–[11] segment using region boundaries. Although less sensi-
tive to regional inhomogeneity, edge-based performance is in-
fluenced by ill-defined noisy edges and often degrades when
multiple region boundaries are to be found in a globally optimal
sense.

Region based segmentation methods [2], [12], [13] merge or
split regions using region statistics as descriptors and, as such,
are less sensitive to noise. However, choosing suitable merging
and splitting criteria and thresholds is difficult especially when
region statistics are nonstationary.

Model based segmentation methods [9], [10], [14], [15]
have solid mathematical foundations. They perform well given
accurate model formulations and efficient optimization tech-
niques but are challenged by nonstationary image properties.
Hybridization [4], [6], [16], [17] provides a method to combine
the strength of region, edge and model based approaches.

C. MRF-Based Image Segmentation

Given that is a MRF with respect to a certain neighborhood
system on , the MRF-based image segmentation framework
[5], [14] can be formulated in a general form as

(1)

where is the conditional probability density function of
the observed image given a label field configuration .
follows the Gibbs distribution [5]

(2)

where denotes temperature typically assumed to be 1 and
represents the Gibbs energy function of the configuration

, which equals the sum of clique potentials over all possible
cliques in where each clique is a subset of [5].

The MRF-based segmentation can be formulated at the re-
gion level [4], [6], [18]–[22] using the region adjacency graph
(RAG) [7] based image representation. A RAG is denoted by

where and represent the set of vertices and the
set of arcs connecting neighboring vertices. Each vertex
depicts an image region with denoting the set of image sites
constituting that region. Each arc represents the boundary
between two neighboring regions.

In the region-level MRF-based segmentation, an input image
is first over-segmented into disjoint and relatively homogenous
regions upon which the RAG is constructed. Suppose that a cer-
tain neighborhood system and cliques are defined on [18].
Let denote the Markov random
label field on [18] with being its
instance. Here, denotes the label for all sites . The
region-level MRF-based segmentation is formulated as

(3)

Here, follows the Gibbs distribution with its energy
function defined according to a certain MRF model on

. Under the class-conditionally independent assumption, the
can be formulated as

(4)

Compared to the pixel-level formulation, the region-level
approach can dramatically reduce the solution space to facil-
itate optimization. Moreover, taking image regions instead of
pixels as processing units implicitly reduces the influence of
intraregion variation. However, performance is influenced by
the initial over-segmentation. Too many initial regions may still
lead to poor suboptimal solutions. Too few initial regions may
sacrifice some important structure information, which cannot
be recovered. Therefore, a desirable initial over-segmentation
scheme should produce a minimal number of regions with
boundaries preserved. Existing over-segmentation schemes
include watershed transform [21]–[23], partition mode test
[24], tone-region based segmentation [25], pixons extraction
[20], normalized cuts [26] and superpixel lattices [27].

The MRF-based image segmentation corresponds to a combi-
natorial optimization problem. Various optimization techniques
[5] have been used to search for its optimal solution.
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D. Initialization of MRF-Based Segmentation

Most optimization techniques solving the MRF-based seg-
mentation problem are iterative and, thus, initialization-sensi-
tive. However, typically such papers do not describe their ini-
tialization methods or use random initialization that can lead to
poor suboptimal solutions.

Initialization for the MRF-based segmentation is concerned
with both feature model class statistics and the label field
configuration, which are interrelated. The initialized feature
model class statistics can determine the initial label field
configuration and vice-versa. Among existing initialization
methods, -means and finite mixture models [3], [28], [29] are
simple and relatively time-efficient although they themselves
are sensitive to initial conditions. A multiagent system [30]
provides an evolutionary optimization framework using the
population-based initialization, which solves segmentation
problems at high computational cost. Tree-structure vector
quantization, agglomerative hierarchical clustering and region
growing or splitting schemes [31]–[33] explore proper initial
conditions in a hierarchical manner, which can be effective but
time-consuming. Existing initialization methods are typically
performed in the feature space without considering spatial
context information. Therefore, the obtained initial conditions
may correspond to unfavorable solutions for the MRF-based
segmentation and prevent convergence to preferred solutions.

III. MIRGS ALGORITHM

A. Multilevel Logistic (MLL) Model Based Segmentation

The MLL model [5] is a popular MRF spatial context model,
which imposes the local label consistency constraint to suppress
noisy label field configurations. Its typical pixel-level formula-
tion on only considers pair-site cliques with the corresponding
Gibbs energy function defined as

(5)

if
otherwise

(6)

where and denote a pair-site clique consisting
of two neighboring sites and its potential, represents
all pair-site cliques on , and is a positive number. Since
(5) is intrinsically related to the total class boundary length, the
pixel-level MLL model actually penalizes the existence of class
boundaries.

The MLL model formulated on leads to the region-level
MLL model based segmentation. Depending upon the definition
of region boundaries as RAG arcs, the MLL model on may
have different forms. If each pixel belongs to one of the regions
obtained from the initial over-segmentation, i.e., ,
region boundaries will be implicitly defined in-between image
sites and characterized by sets of neighboring pixel pairs astride
the boundary. In such a case, the region-level MLL model be-
comes the same as the pixel-level one. However, region bound-
aries, thus, defined cannot be efficiently stored and manipulated
as RAG arcs.

Fig. 1. Over-segmentation example using watershed transform. (a) Grayscale
image �� (378 � 279) described in Section IV-A. (b) Over-segmentation
within the region enclosed by the black box in (a) using watershed transform.

Here, we use an onsite region boundary definition [29] as
follows:

1) ;
2) ;
3) ;
4)

where denotes the one-pixel boundary outlining region .
This definition indicates that each pixel belongs to either a re-
gion or a region boundary, where all regions are mutually sepa-
rated by region boundaries. A region’s boundary pixels are nor-
mally boundary pixels for at least one other neighboring region,
e.g., represents the set of common boundary sites be-
tween neighboring regions and . Region boundaries, thus,
defined can be easily represented using the popular chain code
data structure [7]. Therefore, their storage and manipulation as
RAG arcs are both space and time efficient.

According to this onsite boundary definition, the Gibbs en-
ergy function of the region-level MLL model is defined as

(7)

if
otherwise

(8)

where and denote a pair-vertex clique in-
volving two neighboring vertices and and its potential.
represents all pair-vertex cliques on . Since (7) equals

times the total class boundary length, this region-level MLL
model also penalizes the existence of class boundaries.

We use the well-established watershed transform [23] for the
initial over-segmentation due to its high efficiency. An over-seg-
mentation example is shown in Fig. 1. This transform partitions
an input image into disjoint and relatively homogenous regions
(catchment basins) as well as one-pixel region borders (water-
sheds) based upon the gradient magnitude image. The number
of catchment basins equals the number of local minima detected
in the gradient magnitude image.

Using (4), assume that defines a class-conditional
multivariate Gaussian distribution, the region-level MLL model
based segmentation can be formulated as

(9)
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(10)

(11)

Here, and are energy functions related to
the feature and spatial context models. and denote mean
vector and covariance matrix of class . denotes the
set of common boundary sites between classes and . Note
that equals (7), and is regarded as a weighting
factor. In multivariate segmentation, increases pro-
portionally with the feature space dimension while
does not. Therefore, has to be dependent upon to make a
proper balance between and . To ensure the
proper balance, we normalize in (9) by .

In the MRF-based segmentation, an inaccurate spatial con-
text at early stages of optimization can mislead the estimation
of feature model class statistics. The estimation error can be
propagated in subsequent iterations, which generally results
in an incorrect segmentation. To address this issue, Deng and
Clausi [15] introduced a variable weighting into the
feature model, which is hereby extended to the region level

(12)

where is a constant parameter and is the current iteration.
This adaptive weighting scheme gradually increases the influ-
ence of the spatial context model to prevent an inaccurate spatial
context to mislead the estimation of feature model class statis-
tics at early iterations. Note that the feature model normalization
issue has already been taken into account in (12) via .

After all iterations for solving (9) or (12) are finished, we
need to deal with region boundary sites . Among
them, sites not belonging to class boundaries are directly as-
signed to the same class to which all its neighboring regions
belong. Class boundary sites may be removed using maximum-
likelihood classification [7] so that each site is assigned to one
of the classes to which its neighbors belong, namely,

where denotes the neighborhood of site and is ob-
tained from the completed iterations of MIRGS.

Hereafter, the region-level MLL model based segmentation
with and without the variable weighting factor are named
as (constant MLL) and (variable MLL).

B. MIRGS Properties

The multivariate extension from IRGS to MIRGS involves
both major and minor changes.

Major changes are related to the region boundary definition.
IRGS defines region boundaries in-between image sites, which
is not desirable for the following reasons:

• Watershed pixels obtained by watershed transform must be
assigned to one of its neighboring regions. Common as-
signment criteria based upon region statistics are less ef-
fective due to feature space sparseness especially in mul-
tivariate cases. Consequently, watershed pixels located at
edges may be wrongly assigned to undesirable regions and
cannot be rectified subsequently. Such incorrect assign-
ment may distort regional statistics, which successively in-
fluences segmentation performance. Moreover, this water-
shed removal step is time-consuming.

• Region boundaries are characterized by sets of neighboring
pixel pairs astride the boundary and cannot be represented
in a convenient data structure. Therefore, it is space and
time consuming to store region boundaries as RAG arcs
and to manipulate them.

• IRGS defines edge strength as intensity value differences
between neighboring sites astride the boundary. However,
a more reasonable measurement of edge strength is the gra-
dient magnitudes calculated on image sites.

MIRGS uses the onsite region boundary definition
(Section III-A) to address these undesirable aspects. Specif-
ically, watersheds are directly used as region boundaries to
avoid the problematic watershed removal process. Chain code
[7] based boundary representation enables efficient storage and
manipulation of region boundaries as RAG arcs. Edge strength
is naturally defined as gradient magnitudes on boundary sites.

Minor changes include:
• IRGS calculates the gradient magnitude image using a tra-

ditional gradient operator [8], which is only applicable to
univariate input images. MIRGS calculates gradient from
multivariate input images using a vector gradient method
[34], which extends watershed transform to multivariate
imagery.

• MIRGS generalizes the univariate feature model of IRGS
into its multivariate counterpart, which is further normal-
ized by the feature space dimension.

• MIRGS generalizes the univariate Fisher criterion used by
IRGS to adjust the spatial context model’s parameter to its
multivariate counterpart used by MIRGS.

MIRGS inherits many attractive properties from the uni-
variate IRGS [6]:

• MIRGS uses a monotonically decreasing edge penalty
function with the region-level MLL model.

• MIRGS changes edge penalty at each iteration to generate
a sequence of spatial context models.

• MIRGS performs on a hierarchical RAG with the
bottom-up nonincreasing vertex number, which gradually
reduces the solution space size to improve segmentation
effectiveness.

By incorporating an edge penalty function with (11)
in the formulation (9)

(13)

(14)
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MIRGS can be formulated as (15), shown at the bottom of
the page, where is a monotonically decreasing edge
penalty function with representing the normalized
gradient magnitude on site as the edge strength measurement.
Here, is defined as an exponential function with a varying
parameter . takes positive values and monotonically
increases with the iteration number , which controls how
quickly penalty decays with increasing edge strength. As
increases, the penalty difference between strong and weak
edge strength decreases. When approaches infinity, edge
penalty equals one. Therefore, the formulation (15) can be
regarded as making a smooth transition from the feature model
based segmentation to the MLL model based segmentation as
iteration proceeds, which implicitly solves the issue addressed
by [15].

MIRGS applies watershed transform [23] on the gradient
magnitude image calculated from the given multivariate image
(Section III-C) to produce an over-segmentation upon which
the initial RAG is built. Before the first iteration, feature model
class statistics ( and ) and the label field configuration

(class labels of vertices in the RAG) are initialized. At the
iteration, given the current feature model class statis-

tics, Gibbs sampling [14] is applied on the current RAG to find
a suboptimal solution for (15). Specifically, each RAG vertex is
visited once in a random order. Suppose is being visited
and the current label field configuration is , probabil-
ities ,

are first calculated using the Gibbs distribution with
the energy term defined as per (15) and the temperature param-
eter being a fixed constant. Then, class label is set to with
probability . After Gibbs sampling, a greedy semantic region
growing process is carried out to update the RAG. Specifically,
consider each adjacent vertex pair that has the same class label
in the current RAG, e.g., vertex pair and . The merging
criterion is defined by analogy with Section 4.1 in [6] as1

(16)

1If the cardinality of � , � , or � is too small, the corresponding covari-
ance matrices might become singular and, thus, have their determinant values
equal to zero, which nullifies logarithm operations. As such, we assign a small
positive value ��� � to the determinant of any singular covariance matrix so
as to always make feasible the calculation of (16).

where and denotes the covariance matrix
with respect to . Among all of the adjacent vertex pairs
under consideration, the neighboring regions corresponding
to the vertex pair having the smallest are merged if this

is negative, and subsequently update the RAG and the
corresponding region statistics. This merging process is re-
peated until the smallest is non-negative. Feature model
class statistics ( and ) are then recomputed based upon the
updated RAG as

if
otherwise

(17)

(18)

(19)

Here, singular will be regularized [35]. Iterations continue
until the prespecified maximum iteration number is
reached.

C. Gradient Magnitude Computation on Multivariate Imagery

Both watershed transform [23] and edge strength measuring
require a single gradient magnitude image derived from mul-
tivariate imagery. This is calculated using the vector gradient
method [34]. Instead of combining gradient magnitudes de-
rived independently from each univariate component image
according to certain rules, the vector gradient method directly
calculates the gradient in a vector field.

Given the observed multivariate image , the vector gradient
approach computes the gradient magnitude and direction on
site as the square root of the largest eigenvalue of the matrix

and its corresponding eigenvector, where is an
matrix defined as

...
...

...
...

(20)

where and denote the first partial deriva-
tives of the univariate component image of on site with
respect to vertical and horizontal directions, respectively. In
MIRGS, partial derivatives are computed using the Gaussian
derivative method [7]. The largest eigenvalue of the matrix

(15)
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can be calculated analytically using Eqns. (4)–(8) in
[34]. Accordingly, the gradient magnitude on site is with
its normalized value calculated as

(21)

D. Parameter Description

The parameter in (15) can be either set empirically as a fixed
value a priori [36] or estimated iteratively during segmentation
[37], [38]. The former is ad hoc with respect to the images under
examination while the latter is influenced by image noise and
complexity. Following [6], at each iteration, MIRGS first uses
a lookup table generated by the Monte Carlo method [38] to
obtain an intermediate parameter according to the ratio of
the current total class boundary length over the image size, and
then determines using and the two-class Fisher criterion
[35]

(22)

(23)

(24)

(25)

where is the minimum two-class Fisher criterion value among
all class pairs, and are two parameters controlling the
adjusting rule, and denote the pooled within-class
scatter matrix and between-class scatter matrix regarding
classes and , and represents the cardinality of .
measures the overall class separability in the feature space,
so that the larger the , the better the separability. Therefore,
when the feature model dominates the energy function (15)
at early iterations, is relatively large and accordingly is
large to emphasize the spatial context model. When the spatial
context model gradually plays a dominant role with increasing
iterations, decreases to reduce so as to avoid the under-seg-
mentation risk [6].

The parameter in the edge penalty function is defined
in a manner similar to [6]

if
if

(26)

where takes a value in [0, 1] to which percent of the class
boundary sites have the smaller in comparison.

E. RKM-Based Initialization

Multivariate iterative image segmentation, like MIRGS, re-
quires robust initialization to consistently achieve satisfying so-
lutions. Initialization sensitivity in multivariate cases is more
severe than that in univariate cases due to increased feature
space sparseness and solution space complexity. Thus, a re-
gion-level -means (RKM) based initialization method is incor-
porated into MIRGS to provide robust initialization. RKM takes

TABLE I
ALGORITHMIC DESCRIPTION OF MIRGS

image regions produced by watershed over-segmentation as
processing units instead of pixels.

RKM seeks a set of optimal class mean vectors ,
to minimize the following energy function:

(27)

To reduce initialization sensitivity, RKM employs a multistart
scheme. sets of class mean vectors are randomly initial-
ized. Each set performs iterations. At each iteration, the
label field configuration is updated using the current class
mean vectors according to the nearest center rule as

(28)

, is then recomputed using (17) and (18). From the
derived sets of class mean vectors, the set with the smallest
energy (27) is chosen as the starting point and refined further
by iterations. Both multistart and further refining

iterations can save time by terminating once the ratio of
the absolute energy difference between consecutive iterations
over the energy at the former iteration is below .

Class mean vectors obtained by RKM can determine a label
field configuration using (28) from which class covariance
matrices can be calculated using (17) and (19). Regularization
[35] will be applied in the case of singular covariance matrices.
Such class mean vectors, class covariance matrices, and label
field configuration provide the initial condition for further
segmentation.

The RKM-based initialization method has several attractive
features:

• low computational cost due to its simple formulation and
region-level optimization;

• minimal initialization sensitivity;
• implicitly takes into account spatial context information

via (28), i.e., class labels on any sites in one region depend
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Fig. 2. Original synthetic images for generating noisy test images.
(a) Grayscale image (378 � 279) of three gray levels: 96, 144, 160. (b) Color
image (378 � 279) of three RGB colors: (39, 39, 117), (78, 78, 78), (117, 156,
39).

upon the feature properties on all sites in the same region
and, thus, can provide accurate initial conditions for the
MRF-based segmentation.

F. Overall Algorithm

The overall algorithm of MIRGS is described in Table I. In
unsual cases, the final segmentation result obtained by MIRGS
contains the number of classes fewer than . This is triggered
by step 5 and considered as segmentation failure.

IV. EXPERIMENTS

Segmentation tests are performed on various synthetic and
natural multivariate images to evaluate two aspects:

1) Initialization Analysis: Determine which of the three
initialization methods (random—RAND, expectation-
maximization Gaussian mixture model—GMM, and
RKM) provides accurate initial conditions for further
segmentation.

2) Segmentation Analysis: Using the preferred initialization
method from 1), compare the (i) accuracy and (ii) compu-
tation time of three MRF-based segmentation algorithms:

, and MIRGS as well as GMM, where
GMM acts as a base reference case.

A. Test Images

1) Grayscale Images: The synthetic grayscale image
shown in Fig. 3(a) is a univariate image. It is generated by adding
Gaussian noise with mean 0 and variance 0.01 to a
synthetic grayscale image shown in Fig. 2(a), which has three
gray levels (96, 144, 160) corresponding to three classes (back-
ground, circle and triangle). Here, denotes the normalized
variance, i.e., where is the actual variance
used. The histogram of [Fig. 3(c)] shows that the image
noise creates tremendous intraclass variation resulting in a uni-
modal distribution.

2) Color Images: Segmentation tests on color images are
performed in the CIE color space [39] due to CIE

’s desirable perceptually uniform property. Two types
of color images with synthetic and natural intraclass variation
are used.

The synthetic color image shown in Fig. 2(b) is a color ver-
sion of Fig. 2(a), which consists of three RGB colors [(39, 39,
117), (78, 78, 78), (117, 156, 39)] corresponding to the three

Fig. 3. Histograms of two noisy test image examples. (a) Grayscale image
�� . (a) Color image �� . (c) Histogram of (a). (d) Histogram of (b) in
the normalized CIE � � � space.

classes. Additive Gaussian noise ( and , 0.03,
0.05, 0.07, 0.09) and multiplicative Gaussian noise ( and

, 0.3, 0.5, 0.7, 0.9), are independently imposed on each
RGB channel of Fig. 2(b), respectively to generate two groups
of synthetic color images ( and ). Fig. 3(d) illustrates
the histogram of an example image (Fig. 3(b)) in the nor-
malized CIE color space where each of , and
component images is normalized to [0, 255]. As in Fig. 3(d), the
individual class distributions are not distinct.

Natural color images are inherently characterized by consid-
erable intraclass variation since classes in the scene are typically
not homogeneous. Here, three natural color images (NC1, NC2,
NC3) are used (Fig. 6). NC1 contains three classes (horses,
green grasses and yellow flowers), NC2 contains three classes
(grass field, car and raceway), and NC3 contains four classes
(lake, mountain, blue sky, and clouds).

3) Textured Images: Three categories of nine Brodatz [40]
mosaic images (Fig. 5) corresponding to different degrees of
segmentation difficulty are used. The filter bank composed of
24 complex Gabor filters at four frequencies (22.63, 11.31, 5.66,
and 2.83 pixels per cycle) and six orientations (0 , 30 , 60 ,
90 , 120 , and 150 ) is applied on each image [41]. The magni-
tudes of 24 filtered complex images constitute the multivariate
features.

Category 1 includes three published mosaic images that have
relatively small intraclass variation and, thus, easy to segment:
T1 [15], [42] with four Brodatz textures2 D68, D55, D84, and
D77, T2 [43] with five Brodatz textures D77, D84, D55, D53
,and D24, and T3 [41], [42] with five Brodatz textures D77, D55,
D84, D17, and D24. As indicated in [42], the D17 (herring bone)
should be regarded as containing two different textures when
orientation-sensitive Gabor filters are used. Therefore, there are
four, five, six classes in T1, T2, and T3, respectively. Textured
images in this category are relatively easy to segment since their

2The � denotes the numbering system used in the Brodatz album.
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TABLE II
MAXIMUM VALUE (MAX), 3RD QUARTILE (Q3), 1ST QUARTILE (Q1), MINIMUM VALUE (MIN) AND MEAN VALUE (MEAN) OF ��� (%) AND � BY APPLYING

MIRGS USING RANDOM, GMM AND RKM INITIALIZATION 10 TIMES ON GRAYSCALE IMAGE �� , COLOR IMAGE �� AND TEXTURED IMAGE T2

TABLE III
MAXIMUM VALUE (MAX), 3RD QUARTILE (Q3), 1ST QUARTILE (Q1), MINIMUM VALUE (MIN) AND MEAN VALUE (MEAN) OF COMPUTATION TIME (MINUTES)

OF THE INITIALIZATION PART AND THE WHOLE SEGMENTATION BY APPLYING MIRGS USING RANDOM, GMM AND RKM INITIALIZATION 10 TIMES ON

GRAYSCALE IMAGE �� , COLOR IMAGE �� AND TEXTURED IMAGE T2

intraclass variation in the feature space is not too large to con-
siderably reduce class separability.

Category 2 involves three mosaic images created using com-
posite textures to artificially increase intraclass variation, which
leads to higher segmentation difficulty. The composite texture is
generated by linearly combining intensities of several Brodatz
textures on each image site. T4 is composed of D5 (top-left),

(top-right), D84 (bottom-left) and D92
(bottom-right). T5 is composed of (top-left),

(top-right), (bottom-left)
and (bottom-right). Due to the use of a
common component texture D1, the class separability among
all 4 composite textures in the feature space is reduced. T6 is
created from (top-left),

(top-right), (bottom-left) and
(bottom-right) where the weight of the

common component D104 in composite textures is increased to
further reduce the class separability in the feature space.

Category 3 contains three mosaic images generated using
Brodatz textures with similar visual perception. T7 consists of
D84 (top-left), D54 (top-right), D112 (bottom-left) and D22
(bottom-right). T8 consists of D81 (top-left), D85 (top-right),
D82 (bottom-left) and D80 (bottom-right). T9 consists of D6
(top-left), D19 (top-right), D55 (bottom-left) and D84 (bottom-
right).

B. Experimental Setup—Initialization Analysis

Three initialization methods—random (RAND), expectation-
maximization Gaussian mixture model (GMM) clustering [35],

and RKM—will be compared in terms of their capability to ini-
tialize MIRGS for segmenting gray, color and textured images
( , and T2) that have different feature space di-
mensions (1, 3, and 24).

RAND randomly labels each vertex in the initial RAG (i.e.,
randomly initializes ) and then calculates initial feature model
class statistics using (17)–(19). GMM is a pixel-level initializa-
tion method, which here uses the multistart pixel-level -means
for its own initialization. The final class mean vectors and co-
variance matrices estimated by GMM are used as initial feature
model class statistics from which the initial is determined
using the feature model. In both RAND and GMM, singular co-
variance matrices are regularized.

For GMM and RKM, setting to 25 and to 20 pro-
vides a good tradeoff between accurate initialization and reason-
able computational speed. is set to 500, which is normally
not exhausted since the early stopping criterion is met.

MIRGS’s parameters are obtained by trial and error and re-
main the same for all tests: , , . In
fact, is more dependent upon applications than other param-
eters [44]. We fixed the value of throughout our experiment
since we found that can produce satisfactory segmen-
tation results for the current test suite. In MIRGS, Gibbs sam-
pling is performed using a small constant temperature 0.01. The
number of classes is specified a priori.

With ground truth, segmentation accuracy (namely the
percentage of correctly labeled pixels) and kappa coefficient
[45] (that measures the degree of agreement between the seg-
mentation result and ground truth) can be determined. They are
used to quantitatively evaluate segmentation performance.
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Fig. 4. Poorest segmentation results corresponding to the minimum ��� and ����� among 10 runs by applying MIRGS with RAND, GMM and RKM initializa-
tion on grayscale image �� , color image �� and textured image T2, respectively. Results with regard to the RKM initialization are most visually agreeable
to segmentation ground truth.

TABLE IV
MEAN VALUES OF ��� (%) AND � OVER 10 RUNS BY APPLYING GMM,
���� , ���� AND MIRGS ON TWO GROUPS OF 10 SYNTHETIC

COLOR IMAGES WITH ADDITIVE AND MULTIPLICATIVE GAUSSIAN NOISE AT

VARYING NOISE LEVELS (AN EXAMPLE IS SHOWN IN FIG. 4). BOLD SHOWS

OPTIMAL MEAN VALUES OF ��� AND � AS WELL AS THOSE INDISCERNIBLE

FROM THE OPTIMAL BASED UPON WILCOXON SIGNED-RANK TEST

WITH SIGNIFICANCE LEVEL 0.05

All algorithms are implemented in C++, encapsulated in the
MAGIC system [46], and performed on a Windows XP PC with
an Intel P4 3.0 GHz CPU using 1 GB memory. Computation
time is recorded for each case.

For each test image, MIRGS uses each initialization method
10 times starting from different random seeds while all three
initialization methods use the same random seed with respect to
any individual run.

TABLE V
MEAN VALUES OF ��� (%) AND � OVER 10 RUNS BY APPLYING GMM,

���� , ���� AND MIRGS ON THREE CATEGORIES OF NINE TEXTURED

IMAGES AS SHOWN IN FIG. 5. BOLD SHOWS OPTIMAL MEAN VALUES OF ���

AND � AS WELL AS THOSE INDISCERNIBLE FROM THE OPTIMAL BASED UPON

WILCOXON SIGNED-RANK TEST WITH SIGNIFICANCE LEVEL 0.05. “CAT”
STANDS FOR “CATEGORY”

C. Tests—Initialization Analysis

For each test image, , , and computation time of the ini-
tialization part and the whole MIRGS segmentation over 10 runs
are summarized in Tables II and III. Minimum and maximum
values (Min and Max), first and third quartiles (Q1 and Q3), and
the mean value (Mean) are shown. Fig. 4 illustrates the poorest
segmentation results corresponding to the Min of and
in Table II.

RAND is the fastest initialization method (Table III) but
shows inconsistent segmentation performance (Table II). For
all three test images, interquartile ranges between Q1 and
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Fig. 5. Segmentation results on three groups of nine textured images using GMM, ���� , ���� and MIRGS. Each row refers to one textured image (T1
to T9 from top to bottom with image size/number of classes to be segmented in bracket). Each column from left to right shows the original image, segmentation
ground truth and segmentation results obtained by GMM, ���� , ���� and MIRGS. MIRGS consistently gives the most visually agreeable results.

Q3 with respect to both and are large. Discrepancies
between average and best segmentation results, as indicated by
differences between Mean and Max regarding both and ,
are also large. In fact, although very promising segmentation

results corresponding to the high Max of and can be
obtained, extremely poor results for RAND indicated by the
low Min of and reveal the occurrence of segmentation
failure, as shown in Fig. 4.
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The GMM-based initialization method is less sensitive to ini-
tial random seeds. Accordingly, MIRGS initialized by GMM
yields consistent segmentation performance, which is demon-
strated in Table II by small interquartile ranges as well as small
differences between Mean and Max with respect to both and

for all three test images. However, GMM has high computa-
tional cost. As indicated in Table III, the GMM-based initializa-
tion is very time-consuming. For all three test images, its com-
putation time is longer than the subsequent segmentation part.

Since no spatial context information is taken into account,
GMM may provide unfavorable initial conditions for MIRGS
and, thus, lead to unsatisfactory segmentation results. For the
univariate image, the GMM-based initialization facilitates
MIRGS to achieve very good performance in all of 10 runs
(Table II). For the multivariate color and texture feature images,
the GMM-based initialization consistently generates unsatis-
factory segmentation results. GMM fails in all of 10 runs for
the color image, with one such example shown in Fig. 4. In
fact, one of three class mean vectors and covariance matrices
derived by GMM corresponds to a noise-induced class with rel-
atively small size. According to the initial determined using
the feature model, only a few vertices in the initial RAG are
assigned with this noise-induced class. Since most neighbors of
these vertices belong to other classes, MIRGS inevitably yields
the segmentation result with one class missed, causing failure.

The RKM-based initialization method consistently provides
accurate initial conditions for MIRGS. Table II indicates
MIRGS incorporating RKM yields strong performance in all
of 10 runs for all three test images. Regarding both and

, high Max and Min, small interquartile ranges, and small
differences between Mean and Max are noted. Even the poorest
result corresponding to the Min of and as shown in Fig. 4
is visually close to ground truth. RKM has low computational
cost. As depicted in Table III, for all three test images, compu-
tation time of RKM is significantly shorter than that of GMM,
and is trivial compared to that of the subsequent MIRGS.

As such, RKM is the most effective method to suppress ini-
tialization sensitivity among the three schemes.

D. Experimental Setup—Segmentation Analysis

Four segmentation methods—GMM, , and
MIRGS—will be compared using a variety of multivariate im-
ages (two groups of 10 synthetic color images and ,
three categories of nine textured images T1–T9, and three nat-
ural color images NC1–NC3) to investigate the influence of in-
traclass variation on segmentation performance.

GMM uses the same formulation and parameter setting as
in initialization analysis, which is a base case to refer the suc-
cess of the other methods. The other three methods all use the
RKM-based initialization and the adjustment rule (22)–(25)
with the same parameter settings for a fair performance com-
parison. For , is set to 80 as in [15]. Gibbs sampler
with a simulated annealing schedule is ap-
plied using 300 iterations to solve and . RKM
and MIRGS use the same parameter settings as in initialization
analysis. For all segmentation methods, the number of classes

is specified a priori.

Segmentation performance is measured using and if
ground truth accompanies test images. Computation time is
recorded to evaluate computational speed.

For each test image, each segmentation method is applied
10 times starting from different random seeds while all four
methods share the same random seed with respect to any in-
dividual run.

E. Tests—Segmentation Accuracy

For synthetic color and textured images accompanied by
ground truth, mean values of and over 10 runs are
reported in Tables IV and V. The Wilcoxon signed-rank test
[47] with significance level 0.05 is applied on values of
or in 10 runs regarding any two segmentation algorithms to
determine whether the performance difference between these
two algorithms is statistically significant. For each test image,
the segmentation method with the highest mean and
values is reported in bold. Any method that generates mean

and values not statistically significantly different from
the highest is also shown in bold. In Tables IV and V, MIRGS
performs best for all test images.

For synthetic color images (Table IV), performance of all
segmentation algorithms reduces as the noise level increases.
This is most noticeable for GMM, moderate for , and
slight for and MIRGS. For textured image (Table V),
GMM has the poorest performance. and per-
form well on Category 1, but unsatisfactorily on the more diffi-
cult categories 2 and 3. Fig. 5 illustrates one segmentation ex-
ample with respect to each segmentation algorithm applied on
every textured image to provide direct visual perception. All
segmentation algorithms produce consistent segmentation re-
sults over 10 runs. Obviously, all segmentation algorithms ex-
cept MIRGS yield spotty segmentation results especially along
class and image borders where higher intraclass variation may
occur. MIRGS generates visually agreeable segmentation re-
sults on all of nine textured images.

For natural color images without ground truth, segmentation
results have to be evaluated via visual perception. Fig. 6 shows
one example of segmentation results in 10 runs with respect
to each segmentation algorithm applied on every natural color
image. All segmentation algorithms produce consistent seg-
mentation results over 10 runs. Different classes are separated
by closed boundary lines with distinct colors. For image NC1,
MIRGS successfully partitions the scene into three classes
(horses, green grass and yellow flowers). cannot ef-
fectively differentiate grass and flowers and incorrectly assigns
some body parts of horses (white spot on the head of the large
horse and hooves in the forelegs of both small and large horses)
to the class of grass. also mistakenly splits some
body parts of horses (white spot on the head and one hoof in
the foreleg of the large horse). For image NC2, three classes
(grass field, car and raceway) are well demarcated by MIRGS.

splits the car into several pierces and incorrectly
assign some pieces to the class of grass field. roughly
separates three classes with large errors occurring around class
borders. For image NC3, MIRGS generally separates the four
classes (lake including a small sailboat inside, mountain, blue
sky and clouds) except for a small region of dark cloud that is
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Fig. 6. Segmentation results on three natural color images using GMM, ���� , ���� and MIRGS with respect to one example run. Each row refers to one
natural color image (NC1 to NC3 from top to bottom with image size/number of classes to be segmented in bracket). Each column from left to right denotes the
original image and segmentation results obtained by GMLL,���� ,���� and MIRGS. Class boundaries are outlined in distinct colors. MIRGS consistently
gives the most visually agreeable results.

TABLE VI
MEAN (STANDARD DEVIATION) OF COMPUTATION TIME (MINUTES) AVERAGED

OVER 10 RUNS BY APPLYING GMM, ���� , ���� AND MIRGS ON

TWO GROUPS OF 10 SYNTHETIC COLOR IMAGES WITH ADDITIVE AND

MULTIPLICATIVE GAUSSIAN NOISE AT VARYING NOISE LEVELS

incorrectly assigned to the lake class due to the strong feature
similarity. This error similarly occurs in the results obtained by
the other three methods. and cannot properly
differentiate lake and mountain. For all three test images,
the GMM always yields spotty segmentation results due to
intraclass variation.

Overall, MIRGS has the strongest capability of handling in-
traclass variation among four algorithms.

F. Tests—Segmentation Computation Time

MIRGS adopts semantic region growing to yield a hierar-
chical RAG based image representation with bottom-up nonin-
creasing vertex numbers. Although such a hierarchical structure
reduces the size of the solution space and, thus, tends to speed up
segmentation, its construction may be time-consuming. Com-
putational complexity regarding region merging and the subse-
quent updating of the RAG depends upon the complexity of the
image under segmentation.

TABLE VII
MEAN (STANDARD DEVIATION) OF COMPUTATION TIME (MINUTES)
AVERAGED OVER 10 RUNS BY APPLYING GMM, ���� , ����
AND MIRGS ON THREE CATEGORIES OF NINE TEXTURED IMAGES.

“CAT” STANDS FOR “CATEGORY”

TABLE VIII
MEAN (STANDARD DEVIATION) OF COMPUTATION TIME (MINUTES) AVERAGED

OVER 10 RUNS BY APPLYING GMM, ���� , ���� AND MIRGS ON

THREE NATURAL COLOR IMAGES

Tables VI, VII and VIII report computation time (minutes)
with respect to the segmentation experiments in Section IV-E.
Generally speaking, MIRGS has reasonable computation time
for all test images, which is comparable to that of GMM. In most
cases except for natural color images NC1 and NC3, MIRGS
takes longer computation time than and due
to the computational cost associated with the region growing
procedure, however this extra computing time is warranted to
capture accurate segmentation.

V. CONCLUSION

We present a MRF-based multivariate segmentation algo-
rithm named MIRGS, which extends the applicability of IRGS
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to multivariate images while inheriting the merits of IRGS. To
suppress initialization sensitivity, MIRGS uses a RKM-based
initialization method, which consistently provides accurate
initial conditions at low computational cost. The superiority
of RKM relative to two commonly used initialization schemes
has been demonstrated on images with different feature space
dimensions. For a variety of synthetic and natural multivariate
images, MIRGS consistently achieves the highest segmentation
accuracy compared to three other published algorithms.

Computation time of MIRGS is closely related to the con-
struction time of the hierarchical RAG. Therefore, fast methods
to establish the hierarchical RAG are important for future inves-
tigation. Moreover, to automatically determine the number of
classes instead of prespecifying it as an algorithmic parameter
is desirable. Some previous attempts [32] made in the context of
the MRF-based segmentation deserve being investigated under
the MIRGS framework. In addition, MIRGS mentioned in this
paper is performed in an unsupervised manner, which does not
take into account any domain knowledge. However, the domain
knowledge can be easily incorporated into (15) and used in step
5 in Table I to produce the supervised MIRGS, which deserves
future investigation.
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