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Abstract

A novel stochastic approach based on Markov-Chain Monte Carlo sampling is

investigated for the purpose of image denoising. The additive image denois-

ing problem is formulated as a Bayesian least squares problem, where the goal

is to estimate the denoised image given the noisy image as the measurement

and an estimated posterior. The posterior is estimated using a nonparametric

importance-weighted Markov-Chain Monte Carlo sampling approach based

on an adaptive Geman-McClure objective function. By learning the poste-

rior in a nonparametric manner, the proposed Markov-Chain Monte Carlo

denoising (MCMCD) approach adapts in a flexible manner to the underlying

image and noise statistics. Furthermore, the computational complexity of

MCMCD is relatively low when compared to other published methods with

similar denoising performance. The effectiveness of the MCMCD method

at image denoising was investigated using additive Gaussian noise, and was

found to achieve state-of-the-art denoising performance in terms of both peak

signal-to-noise ratio (PSNR) and mean structural similarity (SSIM) metrics
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when compared to other published methods.

Keywords: image denoising, Markov-Chain Monte Carlo.

1. Introduction

One of the fundamental challenges in the field of image processing and

computer vision is image denoising, where the underlying goal is to pro-

duce an estimate of the original image by suppressing noise from a noise-

contaminated version of the image. Image noise may be caused by different

intrinsic (i.e., sensor) and extrinsic (i.e., environment) conditions which are

often not possible to avoid. Therefore, image denoising plays an important

role in a wide range of applications such as photo restoration, visual track-

ing, and image segmentation, where obtaining the original image content is

crucial. While many algorithms have been proposed for the purpose of image

denoising, the problem of image noise suppression remains an open challenge,

especially in situations where the images are acquired under poor conditions.

Image denoising algorithms can generally be categorized as either trans-

form domain methods or spatial domain methods. In transform domain

methods, noise suppression is performed based on the characteristics of the

coefficients in a different domain (e.g., the Fourier, wavelet, or discrete co-

sine). Transform domain methods can be further divided into global meth-

ods, such as Fourier Wiener filtering [1], and local methods, such as em-

pirical Wiener filtering [2], Gaussian scale mixture denoising [3], wavelet

shrinkage [4, 5, 6, 7, 8, 9], and shape-adaptive discrete cosine transform fil-

tering [10].

Spatial domain methods take advantage of the spatial information re-
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dundancy inherent in images to suppress image noise and can be further

categorized as either local or global methods. A majority of existing de-

noising methods take advantage of information redundancy within small lo-

cal neighborhoods to suppress image noise. These methods include tradi-

tional denoising methods such as box filtering and Gaussian filtering [11],

and detail-preserving adaptive denoising methods such as Lee filtering [12],

total variation [13], Bayesian estimation [14, 15], anisotropic filtering [16], bi-

lateral filtering [17, 18, 19], and trilateral filtering [20]. The main advantage

of local spatial domain methods is that they are relatively computationally

efficient compared to global spatial domain methods. However, such meth-

ods generally perform poorly on images contaminated by a high level of noise

since the local information redundancy is insufficient to provide a good noise-

free image estimate.

To address the shortcomings of local methods, non-local spatial domain

approaches have been introduced that exploit information redundancy over

the whole image [21, 22, 23, 24]. The main advantage of such non-local

methods is that they are more effective at handling situations characterized

by low signal-to-noise ratio due to the high information redundancy found

within the entire image. However, despite performance optimizations that

have been introduced [22, 23], such methods remain computationally expen-

sive due to the amount of information that must be processed in obtaining

the image estimate.

In this study, we investigate an alternative approach to the problem of

image denoising based on stochastic optimization via Markov-Chain Monte

Carlo sampling. By formulating the problem as a Bayesian least squares
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problem and taking a nonparametric stochastic approach to solving this

problem, the proposed Markov-Chain Monte Carlo denoising (MCMCD)

approach adapts to the underlying image and noise statistics in a flexible

manner. The presented MCMCD approach has relatively low computational

complexity when compared to published methods with similar denoising per-

formance.

Given the wealth of literature on the use of Markov-Chain Monte Carlo

(MCMC) sampling for the purpose of image restoration, it is important

to distinguish the proposed MCMCD approach from other image denois-

ing methods that utilize stochastic sampling concepts. In the seminal work

by Geman and Geman [14], the problem of image restoration is formulated as

a maximum a posteriori (MAP) problem, where the goal is to maximize the

conditional probability of the original image given the degraded image. An

iterative simulated annealing approach is then employed to solve this problem

based on a Markov Random Field (MRF), where random local changes are

made to the image according to a local conditional probability distribution,

constructed using a Markov-Chain Monte Carlo sampling approach.

The use of MCMC sampling in the classical approach is fundamentally

different from the proposed method for two important reasons. First, the

classical approach employs MCMC sampling to randomly construct possible

configurations of the restored image from a posterior distribution defining all

possible spatial-intensity configurations indirectly. In contrast, the proposed

method employs MCMC sampling to construct an estimate of the posterior

distribution defining all possible intensity configurations on a per-pixel basis.

As such, the classical approach determines the restored image iteratively as
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the configuration that maximized the posterior, while the proposed method

computes the restored image in a non-iterative manner based on the con-

structed posterior distribution for each pixel, a distinction which leads to the

lower computational complexity of the proposed method compared to the

classical approach. Second, while the classical approach encodes the local

spatial context in a local MRF framework for the MCMC sampling process,

the proposed method takes into account local spatial context within a global

framework, allowing the proposed method to take greater advantage of in-

formation throughout the image than the classical approach.

In wavelet denoising approaches that employ MCMC sampling [8, 9],

an MRF of local wavelet coefficients is constructed in a stochastic manner.

MCMC sampling in the wavelet approach is fundamentally different from

the proposed method because the posterior distribution being estimated by

the wavelet approach relates to a binary decision about whether a wavelet

coefficient is noise-free or not, while the posterior distribution being estimated

by the proposed method relates to the underlying intensity at a particular

pixel in the image.

The paper is organized as follows. The theory behind MCMCD is pre-

sented in Section 2. A summary of the MCMCD algorithm is presented in

Section 3. The computational complexity of MCMCD is examined in Sec-

tion 4. The testing methods and experimental results are discussed in in

Section 5. Finally, conclusions are drawn and future work is discussed in

Section 6.
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2. Theory

The additive image noise problem formulation and the corresponding

Bayesian least squares solution formulation is presented in Section 2.1. The

Markov-Chain Monte Carlo sampling scheme is described in Section 2.2.

2.1. Problem formulation

Let S be the set of sites in a discrete lattice £ upon which an image

is defined and s ∈ S be a site in £. Let the measured noise-contaminated

image F = {F (s)|s ∈ S}, noise-free image G = {G(s)|s ∈ S}, and noise

N = {N(s)|s ∈ S} be random fields on S. The relationship between F , G,

and N in an additive image noise model can be generally expressed as

F (s) = G(s) +N(s), (1)

Given Eq. (1), the computation of G(s) can be viewed as an inverse prob-

lem and hence be solved as an estimation problem. Formulating the inverse

problem as a Bayesian least squares estimation problem [25], given the mea-

surement F (s), the state estimate of G(s) can be expressed as

Ĝ (s) = arg min
Ĝ(s)

{
E

((
G (s)− Ĝ (s)

)2
|F (s)

)}
= arg min

Ĝ(s)

{∫ (
G (s)− Ĝ (s)

)2
p (G (s) |F (s)) dG (s)

}
,

(2)

where p(G(s)|F (s)) is the posterior. Given Eq. (2), the analytical solution

can be derived as follows. Taking the derivative of Eq. (2) gives

∂

∂Ĝ(s)

∫ [
G(s)− Ĝ(s)

]2
p(G(s)|F (s))dG(s)

=
∫ {
−2
[
G(s)− Ĝ(s)

]
p(G(s)|F (s))dG(s)

}
.

(3)
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Setting the derivative to zero, an expansion of Eq. (3) can be expressed as

∫
Ĝ(s)p(G(s)|F (s))dG(s) =

∫
G(s)p(G(s)|F (s))dG(s). (4)

Given that∫
Ĝ(s)p(G(s)|F (s))dG(s) = Ĝ(s)

∫
p(G(s)|F (s))dG(s)

= Ĝ(s),
(5)

Eq. (4) simplifies into

Ĝ (s) =

∫
G (s) p (G (s) |F (s))dG (s)︸ ︷︷ ︸

E(G(s)|F (s))

, (6)

which implies that the optimal estimate of G (s) is E (G (s) |F (s)), the con-

ditional mean of G (s) on F (s). Unfortunately, the conditional mean of Ĝ (s)

can be a highly complicated and nonlinear function of F (s) and difficult to

solve in an analytical manner. To work around this issue, typical strate-

gies for computing Eq. (6) include approximating the problem as a simpler

Bayesian linear least squares problem [26], as well as modeling the posterior

p(G(s)|F (s)) using parametric statistical models [27]. However, such strate-

gies often result in poor state estimates for the image denoising problem

given the complex, nonlinear nature of images.

To improve the quality of the state estimate of G (s), a different strategy

is explored in this paper to tackle the problem of modeling the posterior.

Given the measurement F (s), we investigate the potential for computing a

nonparametric approximation of p (G(s)|F (s)), denoted as p̂ (G(s)|F (s)), us-

ing an importance-weighted Markov-Chain Monte Carlo posterior estimation

strategy that takes into account local spatial-intensity context within a global
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framework. The use of local spatial-intensity context is important as it allows

for improved discrimination between the underlying noise-free image G(s),

which is typically characterized by strong local spatial-intensity interactions,

and the noise N(s), which typically exhibits very low local spatial-intensity

interactions.

2.2. Markov-Chain Monte Carlo posterior estimation

The importance-weighted Markov-Chain Monte Carlo posterior estima-

tion strategy for computing p̂ (G(s)|F (s)) can be described as follows. Let

s be the site for which the posterior is being estimated. In Markov-Chain

Monte Carlo density estimation [28], an unknown target distribution (in this

case, the posterior) is estimated indirectly by drawing a sequence of sam-

ples Ω = {s0, s1, . . . , sη} from a known distribution Q(s′) that are likely to

be realizations of p(G(s)|F (s)). To initialize the sequence of samples Ω, let

s0 = s. At the kth iteration, a candidate sample s′k is drawn from a known

instrumental distribution Q(s′k|sk−1). There are two main general criteria in

the selection of a suitable instrumental distribution for the purpose of de-

noising. First, the chosen distribution should promote the sampling of sites

within close proximity to sk, as such sites are more likely to share similar

local spatial-intensity characteristics as sk and hence provides meaningful

information for estimating G (s). Second, the chosen distribution should

not completely prevent other sites within the image from being sampled, as

they may also contain important information. Based on these two criteria, a

convenient choice for the instrumental distribution Q(s′k|sk−1) is a Gaussian

distribution centered at sk−1, since such a distribution would allow the prob-

ability of sampling to monotonically decrease as we move away from sk−1,
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Figure 1: An example of the samples accepted in Ω (indicated by blue circles) for a

particular site s (indicated by the red circle). An important observation that can be made

from the locations of the samples is that the Markov-Chain Monte Carlo sampling “walks”

along sites with similar image characteristics that are relevant to the posterior estimation.

Hence, this approach to sampling takes advantage of the global framework without the

computational burden of evaluating all sites on S.

thus encouraging increased sampling of sites within close proximity while still

allowing sites farther away to still be sampled to better utilize global infor-

mation within the image. Based on testing, it was found that the use of a

Gaussian instrumental distribution provided high quality estimates of G (s),

although other instrumental distributions may also be used. For MCMCD,

the Gaussian instrumental distribution Q(s′k|sk−1) can be defined as

Q(s′k|sk−1) =
1

2πσs
exp

[
−

(
(s′k − sk−1)

2

2σ2
s

)]
, (7)

where σs represents the spatial variance of Q(s′k|sk−1).

To determine whether the sample candidate s′k is accepted as part of Ω,
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the acceptance probability of s′k given sk−1 is given by

α (s′k|sk−1) = min

{
1,

φ(s′k|s0)
φ(sk−1|s0)

}
(8)

where φ(s′k|s0) is an objective function that approximates the likelihood that

a sample is a realization of p(G(s)|F (s)). To take into account the local

spatial-intensity context inherent in the image, as well as the underlying

noise and image statistics, we propose a novel adaptive objective function

that evaluates the established and robust Geman-McClure error statistics [29]

between the local neighborhoods around the samples ρs0 and ρs′k ,

φ (s′k|s0) =
∏
j

exp

− (F
ρs′

k (j)− F ρs0 (j))2

σ4
n

σ2
l

+ (F
ρs′

k (j)− F ρs0 (j))2

 . (9)

where F
ρs′

k (j) and F ρs0 (j) are the intensities of the jth site in the local neigh-

borhoods around s′k and s0, respectively, and σn and σl are the noise variance

and local variance of ρs0 , respectively. The objective function in Eq. (9) gives

greater values to sites with similar local spatial-intensity relationships as s0,

as they are more likely to belong to the same distribution as s. The sample

candidate s′k is then accepted into Ω with a probability of α (s′k|s0). This

probabilistic acceptance step is realized in the proposed algorithm as follows.

First, a value u is randomly sampled from a uniform distribution U(0, 1).

If u > α (s′k|s0), then the sample candidate s′k is discarded. However, if

u ≤ α (s′k|s0), then s′k is included into the sequence of samples Ω.

The sampling process is repeated until the desired number of iterations m

have been met. The selection of m becomes a tradeoff between computational

performance (e.g., fewer iterations) and image quality (e.g., more iterations).

However, based on testing, it was found that setting m to values greater than

10



200 yields little additional benefit in terms of image quality, making m = 200

a good compromise between computational performance and image quality.

An example of the samples accepted in Ω for a particular site is shown in

Fig. 1. An important observation that can be made from the locations of

the samples is that the Markov-Chain Monte Carlo sampling “walks” along

sites with similar image characteristics that are relevant to the posterior

estimation. Hence, this approach to sampling takes advantage of the global

framework without the computational burden of evaluating all sites on S.

Furthermore, due to the stochastic acceptance criterion, the number of

accepted samples η can vary from pixel to pixel. An example of the variability

in η for the 512 × 512 “Lena” image contaminated by Gaussian noise with

σn = 30, with a section of the image and corresponding sampling density map

is shown in Fig. 2. The sample density is higher in areas of high local spatial-

intensity similarities (e.g., homogeneous regions) and lower in areas with

more unique local spatial-intensity characteristics (e.g., structured regions).

Given Ω, the posterior estimate p̂ (G(s)|F (s)) can be computed based

on the concept of importance-weighted Markov-Chain Monte Carlo posterior

estimation [30]. Let the set of objective values computed in Eq. (9) be used

as the associated importance weights defined on the set of samples given s,

Φ = {φ (s′0|s0) , φ (s′1|s0) , . . . , φ
(
s′η|s0

)
}. (10)

3. Summary of proposed method

To provide a clearer understanding of how the theory presented in Sec-

tion 2 can be applied in practice, MCMCD can be summarized as follows:
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1. At each site s, randomly draw a sample s′k from instrumental distribu-

tion Q(s′k|sk−1) in Eq. (7).

2. Compute acceptance probability α (s′k|sk−1) in Eq. (8).

3. Generate a random value u according to a uniform distribution U(0, 1).

4. If u ≤ α (s′k|sk−1), include s′k into the sequence of samples Ω. Other-

wise, discard s′k.

5. Repeat steps 1 to 4 until the desired number of iterations m is met.

6. Estimate posterior p̂ (G(s)|F (s)) based on the set of drawn samples Ω

in Eq. (??).

7. Compute the noise-free image estimate Ĝ(s) as the discrete form of the

conditional mean in Eq. (6).

4. Computational complexity

The general time complexity of MCMCD is O(n) thus the run-time of

the algorithm scales linearly with the size of the image. However, given

the stochastic nature of the Markov-Chain Monte Carlo posterior estimation

process, which is the most computational complex aspect of MCMCD, the

computational complexity of the algorithm can vary depending on the under-

lying image and noise characteristics. Nevertheless, the theoretical per-pixel

computational complexity upper-bound of MCMCD in an unoptimized form

can be expressed as

nρ ×m, (11)

where nρ is the number of pixels in a local region. In this case, the number

of iterations m is 200 and nρ = 49, making the per-pixel computational
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Noisy (F (s)) Denoised (Ĝ(s))

Sample density (η)

Figure 2: “Lena” image contaminated by additive Gaussian noise with σn = 30 and the

corresponding sample density map and denoised image. Higher intensity values in the

sample density map indicate that more samples were used to estimate the denoised image

at that particular pixel. The sample density is higher in areas of high local spatial-intensity

similarities (e.g., homogeneous regions) and lower in areas with more unique local spatial-

intensity characteristics (e.g., structured areas).

13



complexity of MCMCD for this particular case approximately

nρ ×m = 49× 200 = 9800. (12)

To put this into perspective, the per-pixel computational complexity of non-

local means [22] is

nρ × ns, (13)

where ns is the number of pixels in the search window. Using a search window

size of 21×21 and 7×7 regions [22], the per-pixel computational complexity

of non-local means is approximately

nρ × ns = 49× 441 = 21609. (14)

Furthermore, based on the computational complexity analysis presented in [24],

the per-pixel computational complexity of the state-of-the-art BM3D [24] al-

gorithm in an unoptimized form is

59488 + 22Ct2d + ((128/3)Ct1d), (15)

where Ct1d and Ct2d are the computational complexity of the 1D and 2D

transforms (e.g., DCT, DST, or wavelet transform). As such, discounting

algorithmic optimizations, MCMCD has a relatively low per-pixel compu-

tational complexity (9800) when compared to these state-of-the-art meth-

ods (21609 for non-local means, and greater than 59488 for BM3D). From

a practical perspective, the MCMCD method was implemented and tested

on an Intel Pentium 4 3 GHz machine with 1 GB of RAM, taking approx-

imately 20 seconds to denoise a 512×512 image. The speed of MCMCD

can be improved significantly through optimized code and parallel process-

ing paradigms. Finally, from an implementation complexity perspective, the
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concept of MCMCD is relatively straightforward to implement based on the

algorithm presented in Section 3.

5. Experimental results

In this section, two sets of experiments are performed to illustrate the

performance of the proposed MCMCD method. In the first set of experi-

ments, MCMCD is compared with the classical MCMC image restoration

approach [14] to demonstrate the advantage of proposed MCMCD approach

over the classical approach in terms of the visual quality of the denoised

images produced. In the second set of experiments, MCMCD is compared

to existing state-of-the-art denoising methods under different noise levels to

assess the overall performance of MCMCD both quantitatively and qualita-

tively. Standard test images such as Peppers, Lena, Barbara, and Hill were

used, as shown in Fig. 3, which is consistent with existing literature [24]. All

images are 512×512 in resolution with the exception of “Peppers”, which is

256×256 as presented in [24].

5.1. Comparison with classical MCMC approach

To evaluate the performance gains of the proposed MCMCD method when

compared with the classical MCMC image restoration approach [14], quali-

tative comparative analysis was performed for the standard Barbara and Hill

test images. For each test image, Gaussian noise was added with σn = 20.

Figs. 4 and 5 show the “Hill” and “Barbara” images contaminated by ad-

ditive Gaussian noise with σn = 20 and the corresponding denoised images

using the classical approach and the proposed MCMCD method. While the

classical approach is able to well preserve image detail for the most part,
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Figure 3: Set of test images (from top to bottom, left to right): Peppers, Barbara, Lena,

and Hill.
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there is noticeable degradation in finer scale details such as the windows in

the “Hill” image and the stripes in the “Barbara” image. Furthermore, while

much of the noise has been suppressed, the denoised images produced by the

classical approach exhibits noticeable artifacts in both cases. On the other

hand, MCMCD is able to effectively suppress noise in these images without

introducing artifacts while preserving image detail, which is particularly no-

ticeable in the windows in the “Hill” image and in the table cloth and stripes

in the “Barbara” image.

5.2. Comparison with state-of-the-art methods

To evaluate the potential of the proposed MCMCD method for image

denoising when compared with several state-of-the-art denoising methods,

qualitative and quantitative comparative analyses were performed for differ-

ent noise levels. For each test image, Gaussian noise was added with σn =

20, 30, 40, 50. The other denoising algorithms tested were the state-of-the-art

collaborative non-local filtering (BM3D) [24], NeighShrink SURE wavelet

denoising (NS) [7], and non-local means denoising (NLM) [22]. These meth-

ods were chosen as they represent the recent literature in transform-based

methods (NS), and non-local spatial domain methods (NLM and BM3D).

The tested methods are configured based on parameters presented in their

respective literatures.

For quantitative comparison purposes, the peak signal-to-noise ratio (PSNR)

was computed according to the formula,

PSNR
(
Ĝ
)

= 10 log10

 G2
MAX

1
N

∑(
Ĝ(s)−G(s)

)2
 , (16)
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Noisy Classical approach

MCMCD

Figure 4: “Hill” image contaminated by additive Gaussian noise with σn = 20 and the cor-

responding denoised image using the classical MCMC approach (top right) and MCMCD

(bottom).
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Noisy Classical approach

MCMCD

Figure 5: “Barbara” image contaminated by additive Gaussian noise with σn = 20 and

the corresponding denoised image using the classical MCMC approach (top right) and

MCMCD (bottom).
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where GMAX is the maximum possible value of G, and N is the total number

of pixels in the image. In addition to the peak signal-to-noise ratio, image

quality was also assessed using mean structural similarity (MSSIM) [32],

which has been widely used as an alternative metric to PSNR as an image

quality assessment metric. For MCMCD, σs = 21 (Eq. (7)), circular regions

with radius of 3 (Eq. (9)), and m = 200 were used for all tests as they provide

strong denoising performance based on testing.

Table I shows the PSNR and SSIM values at different noise levels for

the tested methods, and two key insights can be observed. First, MCMCD

is competitive with the tested state-of-the-art methods, producing better

PSNR and SSIM values than NS and NLM across all noise levels, albeit

lower PSNR and SSIM values when compared to BM3D. Second, the noise

suppression performance of MCMCD decreases as σn increases. This is due

to the fact that the spatial-intensity relationships of very fine image details

in the test images become almost indistinguishable from that of the noise for

situations characterized by low signal-to-noise ratios. Under these situations,

identifying samples that are likely to be realizations of the noise-free image

distribution is difficult. Therefore, more irrelevant samples are used under

these situations which reduces the quality of the denoised image.

Fig. 6 shows the “Barbara” image contaminated by additive Gaussian

noise with σn = 30 and the corresponding denoised images using the tested

methods. Based on visual inspection, all tested methods are effective at

suppressing image noise, with a zoomed-in region extracted from each of the

denoised images in Fig. 7. While NS provides good image detail preservation,

significant artifacts are visible in the produced image and as such degrade
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Table 1: PSNR and MSSIM results with respect to noise level (σ). MSSIM results are

shown in brackets.

Method σ=20 σ=30 σ=40 σ=50

Peppers

Noisy 22.22 (0.42) 18.56 (0.29) 16.09 (0.21) 14.13 (0.16)

BM3D [24] 31.21 (0.88) 29.27 (0.85) 27.71 (0.81) 26.35 (0.77)

NS [7] 29.14 (0.81) 26.90 (0.76) 25.23 (0.69) 24.04 (0.67)

NLM [22] 28.77 (0.83) 26.53 (0.78) 24.85 (0.74) 23.43 (0.70)

MCMCD 30.44 (0.86) 28.40 (0.81) 26.72 (0.78) 25.34 (0.72)

Barbara

Noisy 22.10 (0.47) 18.59 (0.34) 16.09 (0.25) 14.14 (0.19)

BM3D [24] 31.76 (0.90) 29.75 (0.86) 27.97 (0.82) 27.10 (0.78)

NS [7] 28.94 (0.84) 26.79 (0.77) 25.46 (0.72) 24.41 (0.68)

NLM [22] 29.23 (0.84) 26.75 (0.77) 25.10 (0.70) 23.96 (0.65)

MCMCD 30.53 (0.89) 28.76 (0.82) 26.48 (0.75) 25.82 (0.71)

Lena

Noisy 22.11 (0.34) 18.58 (0.21) 16.11 (0.15) 14.13 (0.16)

BM3D [24] 33.04 (0.87) 31.24 (0.84) 29.77 (0.81) 28.77 (0.78)

NS [7] 31.09 (0.84) 29.14 (0.80) 27.91 (0.77) 27.04 (0.73)

NLM [22] 29.13 (0.79) 27.30 (0.75) 26.18 (0.72) 26.51 (0.72)

MCMCD 32.18 (0.86) 30.05 (0.82) 28.86 (0.76) 27.61 (0.75)

Hill

Noisy 22.09 (0.41) 18.56 (0.26) 16.10 (0.17) 14.14 (0.13)

BM3D [24] 30.51 (0.79) 28.98 (0.74) 27.74 (0.68) 27.03 (0.66)

NS [7] 29.05 (0.74) 27.35 (0.68) 26.27 (0.63) 25.67 (0.60)

NLM [22] 26.57 (0.62) 25.45 (0.57) 24.86 (0.54) 24.61 (0.53)

MCMCD 29.83 (0.77) 28.02 (0.70) 26.86 (0.63) 25.94 (0.62)
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the overall visual quality of the image. The image produced by NLM exhibits

significantly fewer artifacts than NS, but does not preserve fine details such as

the stripe patterns in Barbara’s clothes as well as BM3D and MCMCD. The

images produced by BM3D and MCMCD both exhibit better image detail

preservation than NLM while introducing significant fewer artifacts into the

image when compared to NS.

Finally, particularly noticeable in the zoomed-in regions shown in Fig. 7,

the results produced by MCMCD are visually comparable to BM3D, with

BM3D providing slightly better detail preservation while MCMCD exhibits

slightly weaker artifacts in the homogeneous regions. Fig. 8 shows the “Lena”

image contaminated by additive Gaussian noise with σn = 40 and the cor-

responding denoised images using the tested methods. Based on visual in-

spection, the observations made from the “Barbara” image also hold true for

the “Lena” image, where MCMCD and BM3D provides the best image qual-

ity, with BM3D providing better detail preservation while MCMCD exhibits

weaker artifacts. It is important to note that MCMCD is less computational

complex than BM3D, as discussed in Section 4.

6. Conclusions

In this study, the use of stochastic optimization via Markov-Chain Monte

Carlo sampling is explored for the purpose of image denoising. The proposed

MCMCD approach allows the additive denoising problem to be solved in

a flexible, nonparametric fashion by adapting to the underlying image and

noise statistics. Furthermore, the proposed MCMCD approach has relatively

low computational and implementation complexity when compared to other
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Original Noisy

NS [7] NLM [22]

BM3D [24] MCMCD

Figure 6: “Barbara” image contaminated by additive Gaussian noise with σn = 30 and

the corresponding denoised images using the tested methods.
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Original Noisy

NS [7] NLM [22]

BM3D [24] MCMCD

Figure 7: Zoomed-in regions of “Barbara” image contaminated by additive Gaussian noise

with σn = 30 and the corresponding denoised images using the tested methods. NS

produced results with significant artifacts that degrade the overall visual quality of the

image. NLM produced results with significantly fewer artifacts than NS, but does not

preserve fine details such as the stripe patterns in Barbara’s clothes as well as BM3D

and MCMCD. BM3D and MCMCD produced visually comparable results with significant

fewer artifacts than NS as well as with better image detail preservation than NLM. Finally,

BM3D provides slightly better detail preservation while MCMCD exhibits slightly weaker

artifacts in the homogeneous regions.
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Original Noisy

NS [7] NLM [22]

BM3D [24] MCMCD

Figure 8: “Lena” image contaminated by additive Gaussian noise with σn = 40 and the

corresponding denoised images using the tested methods.
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published methods with comparable denoising performance. Experimental

results demonstrate the effectiveness of MCMCD in achieving strong image

denoising performance when compared to state-of-the-art methods. Future

work involves extending the algorithm for multichannel images, video, and

3D data volumes.
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