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Unsupervised polarimetric SAR image segmentation
and classification using region growing with edge

penalty
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Abstract—A region-based unsupervised segmentation and clas-
sification algorithm for polarimetric SAR imagery that incorpo-
rates region growing and a Markov random field (MRF) edge
strength model is designed and implemented. This algorithm is
an extension of the successful Iterative Region Growing with Se-
mantics (IRGS) segmentation and classification algorithm, which
was designed for amplitude only SAR imagery, to polarimetric
data. Polarimetric IRGS (PolarIRGS) extends several aspects
of IRGS by incorporating a polarimetric feature model based
on the Wishart distribution and modifying key steps such as
initialization, edge strength computation and the region growing
criterion. Like IRGS, PolarIRGS oversegments a SAR image into
regions and employs iterative region growing to reduce the size of
the solution search space. The incorporation of an edge penalty
in the spatial context model improves segmentation performance
by preserving segment boundaries that traditional spatial models
will smooth over. Evaluation of PolarIRGS with Flevoland fully
polarimetric data shows that it improves upon two other recently
published techniques in terms of classification accuracy.

Index Terms—synthetic aperture radar (SAR), image seg-
mentation, complex, polarimetry, Markov random field (MRF),
Wishart, region-based

I. INTRODUCTION

POLARIMETRIC synthetic aperture radar (SAR) imagery
provides useful information in a diverse number of

applications from sea ice monitoring [1], [2] to land cover
classification [3] and agricultural crop identification [4]. There
is now an increasing volume of fully polarimetric data available
due to the launch of sensors capable of fully-polarimetric
imaging such as RADARSAT-2. Therefore, automated image
segmentation and classification methods are desired in order
to replace manual interpretation, which remains subjective and
labour-intensive.

Automated segmentation and classification of fully polari-
metric SAR imagery has been an ongoing field of research.
Maximum likelihood classifiers based on the assumption that
classes are Wishart distributed have been developed [5]–[7]. An
alternative approach [8], based on the assumption that classes
are modelled by complex Gaussian distributions, additionally
incorporates a Markov random field (MRF) spatial context
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model that can overcome some of the effects of noise by
smoothing the segmentation according to the local interactions
between pixel labels. A recent work [9] uses a non-parametric
estimate of the class distributions in addition to a modified
spatial context model that attempts to prevent over-smoothing
of the segmentation result across true class boundaries.

The previously mentioned papers perform segmentation on a
per-pixel basis. However, region-based segmentation methods
also exist and are advantageous because they reduce the
computation demand working on regions instead of pixels,
they help the optimization procedure converge more effectively
to the global solution, and they help to alleviate problems with
noisy imagery by using region statistics instead of values of
individual pixels. Several recent papers advocate region-based
image segmentation. Wu et al. [10] use a Wishart distribution
with a region-based MRF framework for segmentation. The
image is first oversegmented into square regions, which are
then iteratively refined by a Wishart MRF (WMRF) model.
The refined regions are then classified with training data. Wu
et al.’s technique uses only a basic MRF spatial context model
which penalizes all class boundaries equally, including true
class boundaries which should not be penalized.

Agglomerative hierarchical clustering [11] is another tech-
nique that oversegments the image into many regions (based
on clustering over a polarimetric decomposition data space)
followed by region merging to produce the final segmentation.
Spectral graph partitioning [12] (SGP) is a recent technique
in which the image is first segmented into regions with
contour information and spatial proximity and the regions
are then grouped by spectral clustering. Neither agglomerative
hierarchical clustering [11] nor SGP [12] include a spatial
context model to improve segmentation results, although SGP
makes use of edge information in the image.

The advantage of a region-based approach combined with
an MRF spatial context model has been demonstrated for
non-polarimetric SAR imagery by the recent Iterative Region
Growing with Semantics (IRGS) algorithm [13], which has
outperformed other algorithms when applied to amplitude-
only SAR images of sea ice [14], generic imagery [15] and
optical imagery of savannah wetlands [16]. IRGS incorporates
edge strength between regions as part of the spatial context
model to ensure that true class boundaries are preserved as
regions grow using a merging criterion. This is similar to
the segmentation energy function defined in [17] but IRGS
incorporates a different type of edge strength penalty function to
aid in the segmentation process [13]. IRGS is an unsupervised
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algorithm, meaning that no training data is necessary prior to
segmentation and classification.

This paper presents an extension to IRGS for polarimetric
SAR imagery. By combining the successful region-based
approach and edge-strength spatial context model of IRGS
with the Wishart distribution model, unsupervised polarimetric
scene segmentation and classification can be improved.

Section II presents information about polarimetric SAR
imagery, image segmentation, classification and the IRGS algo-
rithm. Section III details the extension of IRGS to Polarimetric
IRGS (PolarIRGS). Section IV describes the test data set.
Section V presents the results of PolarIRGS as applied to real
fully polarimetric imagery. Conclusions and recommendations
for future work follow in Section VI.

II. BACKGROUND

A. Polarimetric SAR images

A fully polarimetric radar measures the complex scattering
matrix of the target medium, which in the monostatic case with
a reciprocal medium reduces to a complex scattering vector [5]:

u =
[
Shh

√
2Shv Svv

]T
(1)

The terms Shh, Shv, Svv correspond to the complex
scattering coefficients of the HH, HV and VV polarizations,
respectively. Multi-look processing is often performed for
speckle reduction and data compression of SAR data by
averaging several single-look outer products uu† [18]:

Z =
1

n

n∑
k=1

uku
†
k (2)

where n is the number of looks, uk is the kth single-look
scattering vector and † is the conjugate transpose operator. The
polarimetric covariance matrix Z, or a measure that can be
converted to it, is the measurement provided at each pixel from
a multi-look, polarimetric image. The matrix A = nZ has a
complex Wishart [19] distribution [18]:

p(A) =
|A|n−q exp (−tr(C−1A))

K(n, q)|C|n
(3)

where |A| is the determinant of A, tr(C−1A) is the trace of
C−1A, C = E[uu†] and:

K(n, q) = π
1
2 q(q−1)

q∏
i=1

Γ(n− i+ 1) (4)

The value of q is the number of elements in u and Γ is the
Gamma function. In the case of monostatic polarimetric radar,
q = 3 under the reciprocity assumption [18]. For the Wishart
distribution in Eq. (3) to be nonsingular, n ≥ q. Eq. (3) will
be used in Section III to develop PolarIRGS.

B. Region-based Image Segmentation Problem Definition

Let C be the number of segmented classes in the image. Let
S = {(i, j)|1 ≤ i ≤M, 1 ≤ j ≤ N} represent a discrete two
dimensional rectangular lattice of size M rows × N columns
(i.e. an M row × N column image) and let s ∈ S represent a
site in the lattice (i.e. a pixel in the image). Let X = {Xs|s ∈
S} be a set of discrete random variables forming a random field
on S, with each Xs taking a value from L = {1, . . . , C} that
indicates the class label of site s. Also, let Y = {Ys|s ∈ S}
be a random field on S. Each Ys represents a measurement
at site s and can take on a scalar, vector or matrix value.
For the polarimetric data in this paper, each Ys takes on a
positive definite Hermitian matrix which represents the complex
covariance matrix Zs measured at site s (see Eq. (2)).

Label field configuration x = {xs|xs ∈ L, s ∈ S} and
observed image y = {ys|s ∈ S} are realizations of X and Y,
respectively. The domain of ys depends on the type of image
data being considered: for a multichannel image with d bands,
ys are d-dimensional vectors (i.e., y = {ys|ys ∈ Rd, s ∈ S}),
while for multi-look polarimetric data, y = {Zs|s ∈ S}, where
the domain of Zs is the cone of positive definite Hermitian
matrices [18].

Image segmentation involves finding an optimal x according
to some criteria on x and y. After segmentation, Ω1, . . . ,ΩC
are disjoint subsets of S that denote the C classes in the
label field configuration x. Image segmentation, as defined
here, allows classes that consist of unconnected regions. This
definition of image segmentation is consistent with that given
by Gonzalez and Woods [20, p. 690] and Li [21, p.188]
and has been used in other published work [11] [9] [22].
By allowing classes that consist of unconnected regions and
by not using any training data to find the optimal x, the
segmentation result is also an unsupervised classification
result. Each of the regions is a connected image segment
with a classification label assigned. The proposed PolarIRGS
algorithm can therefore be considered a combined unsupervised
segmentation and classification algorithm. It is a region-based
method based on the IRGS algorithm [13], in which an image
is represented as a region-adjacency graph (RAG) [23]. Under
a RAG representation, the image is first oversegmented into
a number of disjoint and relatively homogeneous regions that
comprises more than one image site and the label field is
defined over the RAG [24] instead of the lattice S.

A RAG is represented as G = (V, E), where V denotes the
set of image regions as vertices of the graph and E denotes
the set of arcs that connect spatially adjacent regions. A region
v ∈ V represents an image region and Sv denotes the set of
image sites belonging to region v. An arc e ∈ E represents the
shared boundary between two adjacent regions. The random
field for the label configuration is now defined on G [24] and is
denoted by Xr = {Xr

v |Xr
v ∈ L, v ∈ V}, where the superscript

‘r’ denotes a region-based definition of each term. The region-
based label field configuration xr = {xrv|xrv ∈ L, v ∈ V} is
a realization of Xr. Here, xrv denotes the label for all sites
s ∈ Sv .

All regions are mutually separated by region boundaries,
which are comprised of image sites that are not part of any
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regions. The division of image sites into boundary sites and
sites that are part of regions follows several rules [25, Sec.
4.2.1]. All sites in the image are either boundary sites or part
of a region and sites that are a part of one region cannot be a
part of any other regions. Additionally, only sites that separate
two regions are boundaries. An arc on the RAG connects
regions v and w if they share a common boundary. These
rules generate the following formal definition of regions and
boundary sites [25, Sec. 4.2.1]:

1)
⋃
v∈V Sv

⋃
v∈V ∂Sv = S

2) ∀v, w : Sv
⋂
∂Sw = ∅

3) ∀v 6= w : Sv
⋂
Sw = ∅

4) ∀v : ∂Sv ⊆
⋃
w∈V,w 6=v ∂Sw

where ∂Sv is a one-pixel boundary outlining region Sv . Regions
v and w share a common boundary if ∂Sv ∩ ∂Sw 6= ∅.

There are fewer possible configurations of the region-based
label field xr than the pixel-based field as there are far fewer
regions than pixels. In Section II-C, it will be seen that MRF-
based segmentation problems are a combinatorial optimization
problem. Therefore, the region-based approach reduces the
solution search space, leading to better optimization results.
Additionally, region-based segmentation reduces the negative
effects of variation and noise within each region on the image
segmentation result.

C. IRGS Algorithm

This section provides a high level explanation and summa-
rizes the details of the IRGS algorithm to provide context
for understanding the polarimetric extension in this paper.
Additional details are described in previously published pa-
pers [13] [15]. Assuming that Xr is an MRF with respect to
a certain neighbourhood system on RAG G, the unsupervised
image segmentation and classification problem is formulated as
finding the label field configuration xr∗ that satisfies [15] [21]:

xr∗ = arg max
xr∈Xr

p(y|xr)P (xr) (5)

where p(y|xr) is the conditional probability density function of
the observed image y given the specific label field configuration
xr and P (xr) is the probability of a specific label configuration
and is defined by the specific MRF model chosen [21].
The operator arg max selects the label field configuration
xr that maximizes p(y|xr)P (xr). The selected label field
configuration is denoted by xr∗, where the superscript ∗
indicates that xr∗ is the optimal configuration with respect to
Eq. 5. The term p(y|xr) is called the feature model because it
models the distribution of the features (the observation values
in y) based on xr and P (xr) is called the spatial context
model because it models the probability of the various possible
configurations of xr, with some configurations being more
likely under the chosen MRF model. Extending the IRGS
algorithm to polarimetric data involves replacing the feature
model and adapting the spatial context model to match the
characteristics of polarimetric data.

Under a class-conditionally independent assumption, p(y|xr)
can be written as:

p(y|xr) =

C∏
i=1

∏
Sv∈Ωi

∏
s∈Sv

p(ys|xrv = i) (6)

where Sv ∈ Ωi selects the set of sites Sv for each region
v that belongs to class i (i.e. {Sv|{v|xrv = i}}). Although
the segmentation is region-based, (6) is written in terms of
image sites because the calculations are based on individual
site values. The term p(ys|xrv) describes the probability of
obtaining value ys given that the site belongs to the class
specified by xrv. Note that under the region-based definition,
xs = xrv for s ∈ Sv .

In order to solve (5), it is converted into an energy function
by taking the logarithm to change products into sums and
changing the sign to give an equivalent minimization problem:

xr∗ = arg min
xr∈Xr

Ef (y,xr) + Es(x
r) (7)

where Ef (y,xr) is the feature model term corresponding
to p(y|xr) and Es(x

r) is the spatial context model term
corresponding to P (xr). Ef (y,xr) is derived for polarimetric
data in Section III.

In IRGS, for a given region v, all regions that are connected
to it by one arc in the RAG are considered neighbours. Under
this MRF neighbourhood system, the spatial context model
energy Es(xr) is [15]:

Es(x
r) = β

C−1∑
i=1

C∑
j=i+1

∑
s∈∂Ωi∩∂Ωj

g(∇s) (8)

where g(∇s) is the edge penalty term and ∂Ωi comprises all
the boundary sites that separate regions assigned to class i from
regions assigned to other classes. Hence, ∂Ωi∩∂Ωj selects the
shared boundary sites between classes i and j. The parameter
β controls the degree to which the spatial context model is
weighted, with larger β resulting in smoother segmentations.

At a conceptual level, (8) penalizes segmentations where
adjacent regions are assigned to different classes. For every
boundary site that separates a region of class i from a region
of class j, Es(xr) is increased by β · g(∇s). The edge penalty
term g(∇s) is a monotonically decreasing function of ∇s,
where ∇s ∈ [0, 1] is a measure of the edge strength at site s.
The penalty is smaller when there is a strong edge between
two regions assigned to different classes than when the edge
is weak. This approach favours assigning adjacent regions to
the same class only when the edge between them is weak,
recognizing that strong edges indicate true class boundaries.

The spatial context energy used in IRGS is similar to the
spatial context energy in the multi-level logistic (MLL) [26]
model except for the addition of the edge penalty term g(∇s).
The MLL model may over-smooth across true class boundaries
since all boundaries are penalized equally.

The edge penalty function g(∇s) used in IRGS is [15, Eq.
(15)]:

g(∇s) = exp

[
−
(
∇s
K

)2
]

(9)
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Fig. 1. Major steps of the IRGS algorithm. 1a) To initialize the system, IRGS
computes the edge strength map and 1b) generates the watershed regions and
the region adjacency graph (RAG) from the SAR image. The watershed regions
have simplified shapes in this diagram and are more arbitrary in practice. 2)
The watershed regions are then given initial labels. 3) Regions are relabelled
by Gibbs sampling [28]. 4) Regions with the same label are merged. Steps
3 and 4 are repeated for a user-specified number of iterations. 5) The final
segmentation is produced.

The only difference between g(∇s) for PolarIRGS and g(∇s)
for IRGS [15] is the calculation of ∇s for polarimetric data,
which is described in Section III. The term K is a positive value
that controls the strength of the edge penalty term (see [13,
Sec. 3] for details).

IRGS iteratively searches for the configuration of labels
that solves (7). At each iteration, IRGS incorporates a region-
merging process on the intermediate segmentation to reduce
the number of nodes in the RAG, which makes subsequent
iterations more efficient and prevents the algorithm from
becoming trapped in local minima in the solution space [13].
IRGS merges adjacent regions that have the same class label
in a greedy fashion. It computes a merging criterion ∂E [13]
for each eligible pair of regions and merges the pair with the
most negative ∂E. This continues until no more negative ∂E
are found. Shared boundary sites between two regions become
absorbed into the merged region.

Fig. 1 shows the major steps of the IRGS algorithm. The
algorithm starts by accepting an image as input. The image
is first oversegmented with a watershed algorithm [27] using
an edge strength map ∇ = {∇s|s ∈ S}. The RAG is then
constructed with each watershed region becoming a vertex
in the graph. Neither IRGS nor the proposed PolarIRGS is
constrained to any particular oversegmentation algorithm for
the construction of the RAG; the Vincent and Soille watershed
algorithm [27] was chosen because it produces a reasonable
RAG for both IRGS and the proposed PolarIRGS. After the
RAG is constructed, each region is assigned an initial label
to initialize IRGS. IRGS then enters its iterative portion. At
each iteration, each region is assigned a label with Gibbs
sampling [28] to move the label configuration toward the
optimal solution. Regions are then merged and the next iteration
of IRGS is executed.

The combined segmentation and classification nature of
IRGS is apparent from the preceding high-level description.
Each of the regions is an image segment which is assigned a

generic label from L = {1, . . . , C} in an unsupervised fashion
as no a priori data is provided other than the number of classes.
The final output of IRGS is the label field configuration xr∗,
which is an unsupervised classification map of the scene.

III. PROPOSED METHOD

There are three main types of unsupervised classification
algorithms for polarimetric SAR data [18]: statistical (e.g. clus-
tering), physical and combined physical-statistical algorithms.
The proposed PolarIRGS algorithm is an extension of the
statistical type since it not only includes a statistical model, but
also a spatial context model. Algorithms with physical models
use domain knowledge such as the scattering characteristics
of broad categories of surfaces (e.g. vegetation, buildings and
water) to divide a scene into these categories. The combined
physical-statistical algorithms use both physical models and
statistical techniques. For example, Lee at el. [29] used a
Freeman-Durden decomposition to divide a scene into three
categories of scattering characteristics. Each category is then
separately classified with a statistical clustering technique in an
unsupervised fashion. This paper is focused on the development
of statistical unsupervised classification. The use of novel
statistical techniques such as PolarIRGS in a combined physical-
statistical classification framework could be investigated in
future work.

To implement PolarIRGS, the following details must be
described:
A) Derivation of the feature model energy Ef (y,xr) in (7)

for polarimetric data.
B) Definition of the region merging criterion ∂E.
C) Calculation of the edge strength measure ∇s, which is

used by both the watershed algorithm and the edge penalty
function g(∇s) in (8).

D) Initialization method to assign initial labels to all regions.
E) Choice of spatial context weighting parameter β.
F) Model for labeling the boundary sites that remain after

the region level label field configuration xr∗ is generated
to create the final segmentation and classification image
x.

A. Feature Model Energy

In (3), p(A) can be restated as p(As|xrv = i) [5]:

p(As|xrv = i) =
|As|n−q exp (−tr(C−1

i As))

K(n, q)|Ci|n
(10)

where Ci is the mean polarimetric covariance matrix of class
i. This corresponds to the p(ys|xrv = i) terms in (6), assuming
that ys = As = nZs. In the actual data, ys = Zs but this
can be ignored for the derivation. The feature model energy
Ef (y,xr) can be derived by substituting (10) into (6), taking
the natural logarithm and changing the sign:

Ef1(y,xr) =

C∑
i=1

∑
Sv∈Ωi

∑
s∈Sv

{n ln |Ci|+ ln(K(n, q))+

tr(C−1
i As)− (n− q) ln |As|} (11)
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Eliminating all terms that are not a function of i and substituting
As = nZs into (11) gives [5]:

Ef2(y,xr) =

C∑
i=1

∑
Sv∈Ωi

∑
s∈Sv

{n ln |Ci|+ ntr(C−1
i Zs)} (12)

The constant multiplier n can be dropped (which does not
affect the validity of the energy value), giving the final feature
model energy, in terms of Ci and Zs:

Ef (y,xr) =

C∑
i=1

∑
Sv∈Ωi

∑
s∈Sv

{ln |Ci|+ tr(C−1
i Zs)} (13)

The term in the sum is the Wishart distance measure derived
by Lee et al. [5].

B. Region-merging criterion

The region-merging criterion ∂E determines whether two
regions are to be merged during the region-merging stage.
Region-merging considers a single pair of adjacent regions
with the same class label at a time. Once a pair of eligible
regions is selected, the algorithm determines the energy for a
two region version of (7). In this modified version of (7), the
energy is calculated with only the two regions being considered
for merging. The energy for two cases is calculated [13]: 1)
the two regions are separate classes (unmerged) and 2) the two
regions are the same class (merged). If the energy is lower
for the merged case, the regions are merged. Formally, IRGS
merges regions v and w if ∂E(v, w) < 0, where:

∂E(v, w) = Emerged(v, w)− Eunmerged(v, w) (14)

The two energies in (14) have the following values for
polarimetric data:

Emerged(v, w) =
∑

s∈Sv∪Sw

{ln |Cvw|+ tr(C−1
vwZs)} (15)

Eunmerged(v, w) =
∑
s∈Sv

{ln |Cv|+ tr(C−1
v Zs)}+∑

s∈Sw

{ln |Cw|+ tr(C−1
w Zs)}+

β
∑

s∈∂Sv∩∂Sw

g(∇s) (16)

where Cv is the average polarimetric covariance matrix for
region v and Cvw is the average covariance matrix for the
union of regions v and w. Since Cv = 1

|Sv|
∑
s∈Sv

Zs, where |Sv|

indicates the cardinality of Sv , ∂E(v, w) can be simplified by
making the following substitution into Eqs. 15 and 16 for v,
w and vw:

∑
s∈Sv

{ln |Cv|+ tr(C−1
v Zs)}

= |Sv| ln |Cv|+ tr(C−1
v

∑
s∈Sv

Zs)

= |Sv| ln |Cv|+ tr(C−1
v |Sv|Cv)

= |Sv| ln |Cv|+ |Sv|tr(I) (17)

where I is the identity matrix of the same size as Zs. Since
|Svw| = |Sv|+ |Sw|, all terms involving tr(I) sum to zero in
the final merging criterion, which becomes:

∂E(v, w) =|Svw| ln |Cvw| − |Sv| ln |Cv|−

|Sw| ln |Cw| − β
∑

s∈∂Sv∩∂Sw

g(∇s) (18)

C. Edge Strength Measure

Both the watershed transform [27] and the edge penalty
function in (8) require an edge strength measure ∇s at each
site s. Two approaches for calculating the edge strength
measure were considered. The first was the vector field gradient
(VFG) [30] that is already used in IRGS, which works on real-
valued images. VFG computes the gradient magnitude of each
pixel in a real image, which can consist of one or more channels.
The second approach is a polarimetric edge strength calculation
that works on complex polarimetric data, e.g. [31], [32], [33].

Since the VFG calculation works only on real-valued images,
preliminary tests were used to evaluate several real-valued
decompositions of polarimetric data for use with VFG:

(i) The amplitude of the HH, HV and VV channels:

y||s =

 20 log |Shh|
20 log |Shv|
20 log |Svv|

 (19)

(ii) The Pauli decomposition [18]:

yPauli
s =

 20 log |Shh+Svv|
2

20 log |Shh−Svv|
2

20 log(2|Shv|)

 (20)

(iii) The H/α decomposition [18]:

yH/α
s =

[
H α

]T
(21)

where H is the entropy and α is the polarimetric scattering
parameter. The H/α decomposition has previously been
used for initializing unsupervised polarimetric segmenta-
tion algorithms [7].

The amplitude of the HH, HV and VV (i.e. y||s ) channels
produced the best overall classification accuracy in the tests and
are therefore used in the VFG computation for the results that
are reported in this paper. The amplitude images have a large
range of values and it was necessary to clip the values of each
channel to the range of [−40,−5] dB to prevent large values
from dominating the range of the computed gradient. The
implementation of VFG in IRGS expects data to be normalized
to [0, 255] and the normalization from [−40,−5] dB to this
range is done in floating point values to avoid quantization.
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A polarimetric edge strength calculation method [31], which
makes full use of the information in polarimetric data, was
also evaluated, but this approach did not lead to consistent
and accurate classification results. This approach computes a
likelihood ratio [34], also known as the Bartlett distance [35],
between pairs of pixels in different orientations as a measure
of the edge strength. Parameters of the method [31] were
adjusted, including the number of orientations considered, the
window size for filtering and whether estimation [36] of the
number of looks in each filter window is used. As none of these
adjustments produced consistent results and because the VFG
gradient calculated from y

||
s did generate consistent results, the

VFG gradient was chosen as the edge strength measure.

D. Initialization

IRGS requires that the statistics of each class (Ci in
(13)) be initialized before the algorithm can begin. Several
approaches are possible. The Ci can be set to values based
on a classification of a related scene and used as the initial
seed values for a polarimetric K-means algorithm with the
distance measure based on the polarimetric feature model [5].
Alternatively, the polarimetric matrices can be decomposed
into the polarimetric H/α parameters and classified into several
classes based on a pre-determined division of the H-α feature
space, after which the initial Ci are calculated with the
class labels in the H/α classification result [7]. Both of these
approaches require some initial set up with a priori knowledge:
a classification of a related scene or a pre-determined division
of the H-α plane. As IRGS aims to be as automated as possible,
several fully automated approaches were considered:

(i) Assign random labels to each region and compute the
mean Ci for each class.

(ii) The initial Ci from approach (i) are used as the initial
seed for polarimetric K-means [5] to calculate a refined
set of Ci.

(iii) Run the IRGS region-level K-means (RKM) [15] on
one of:

(a) The HH, HV and VV amplitude image from (19)
(b) The Pauli decomposition image from (20)
(c) The H/α parameters from (21)

and use the obtained class labels to compute the initial
Ci.

(iv) Use the initial Ci from one of approaches (iii)(a) - (c)
as the initial seed for polarimetric K-means [5] to find
a second, refined set of initial Ci.

Approach (iii)(a) with the amplitude of the HH, HV and
VV (i.e. y||s ) channels produced the best overall results across
the four image test cases described in Section IV. Thus, it is
the approach chosen for finding the initial Ci for all results
presented in this paper.

E. Spatial context parameter β choice

At the beginning of each iteration (step 3 in Fig. 1), the value
of β in (8) is automatically modified to change the weighting
of the spatial context model in a data driven manner, which
is described in previous literature [13] [15]. Standard IRGS

requires the Fisher criterion J [37, Sec. 4.10] between two
classes in the intermediate classification for computing β to
adapt to the class separability in the image. However, there is no
Fisher criterion between classes with Wishart-distributed mean
covariance matrices. Future work should investigate possible
analogous measures for Wishart matrices. For the time being, β
in PolarIRGS must be calculated without the Fisher criterion:

β(τ) = c1β0(τ) (22)

where τ is the iteration number to emphasize that β changes
at each iteration. The value of β0(τ) is calculated at each
iteration to maintain the expected class boundary length at the
next iteration [38] to preserve the current level of detail in the
image. c1 is a multiplier which allows the user to control the
overall smoothness and level of merging of the algorithm [15].
For this paper, c1 = 5 since it produced the best results.
Previous experiments have found that IRGS is not particularly
sensitive to c1 [39].

F. Boundary site labeling

After the region-based label field configuration is produced,
the single pixel boundary between regions remains unlabelled.
Each boundary site s is labelled by choosing the label that
minimizes the following energy:

xs = arg min
i∈L
{ln |Ci|+ tr(C−1

i Zs)+

β
∑

t∈Ns∩Slabelled

(1− δ(i, xt))} (23)

where Ns is the eight pixel neighbourhood of site s, Slabelled is
the set of all sites that have been labelled already, and δ is the
Kronecker delta function. Eq. (23) labels pixels based on their
similarity to the class statistics and the labels of its neighbours
and is very similar to the MLL model [26].

G. Polarimetric IRGS Algorithm

Table I lists the full PolarIRGS algorithm. The maximum
number of iterations τ in Step 2 is set to 100 iterations. This has
been found to be sufficient for convergence [14]. Convergence
is achieved when the label field remains constant on further
iterations. This is easily detected and for all tests in this paper,
this occurred in fewer than 100 iterations.

IV. DATA

Four-look, fully polarimetric L-band data from NASA/JPL
AIRSAR of Flevoland, The Netherlands [40] is used to evaluate
PolarIRGS. An red-green-blue (RGB) composite of the Pauli
decomposition is shown in Fig. 2(a). PolarIRGS’ unsupervised
classification accuracy was evaluated by four test images shown
in Fig. 2(b):

1) Mask 1: This sub-image was used by Wu et al. [10]
to evaluate their Region-based WMRF technique. The
ground-truth used in this paper to evaluate Mask 1
classification results is shown in Fig. 4(d) and is an
approximate recreation of Wu et al.’s ground-truth as
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TABLE I
ALGORITHMIC DESCRIPTION OF POLARIRGS

1. a) Compute edge strength map ∇ = {∇s|s ∈ S} to measure edge
strength at all sites using the image feature set defined in (19).

b) Oversegment image with the watershed algorithm [27] and construct
RAG with one vertex for each watershed region.

2. Let τ be the current iteration number and set τ = 1. Assign a random
initial label to each region and run a region-level K-means [15] on y

||
s

from (19) to produce an initial unsupervised classification. From this
classification, compute initial Ci (mean polarimetric covariance matrix)
for each class.

3. a) Update β according to (22).
b) Each vertex v ∈ V is visited once in a random order and assigned a

label with Gibbs sampling [28] to minimize (7). This step moves the
segmentation and classification result toward the optimal configuration.
If τ > τmax, go to Step 5, where τmax is a user-specified maximum
number of iterations.

4. a) Compute merging criterion ∂E with (18) for every pair of regions
with the same label and connected by one arc in the RAG.

b) Merge the pair with the most negative ∂E. Repeat Step 4a until all
∂E ≥ 0.

c) Go back to Step 3.
5. Label boundary sites using (23) to produce x, the final label field

configuration image.

the original authors could not be contacted. Evaluation of
PolarIRGS on Mask 1 with a similar ground-truth as Wu
et al. allows a comparison to be made between PolarIRGS
and Region-based WMRF.

2) Mask 2: This sub-image is an additional test case. The
ground-truth used to evaluate this sub-image is a portion
of a ground-truth map (which will be referred to as GT2
in this paper) that combines ground-truth information
from [41] and [35]. The portion of GT2 used for Mask 2
is shown in Fig. 5(d).

3) Mask 3: This sub-image was used to evaluate SGP by
Ersahin et al. [12]. The ground-truth map used for this
sub-image is also a portion of the GT2 map and is shown
in Fig. 6(d). This is the same ground-truth used by Ersahin
et al. for evaluating SGP. Mask 3 allows for comparison
against the SGP technique.

4) Full image: The full image was evaluated by using the
entire GT2 map as ground-truth. This ground-truth is
shown in Fig. 7(b).

The ground-truth map used for Mask 1 and by Wu et al. [10]
is a distinct version of the Flevoland ground-truth from the GT2
map (although the ground-truth maps do not contradict each
other). Thus, Mask 1 is evaluated separately from the other
test cases. None of the the ground-truth maps for the Flevoland
data set are complete; i.e. they do not give the label for every
single pixel. Therefore, accuracy statistics are computed only
for pixels of known class. The legend for the ground-truth
maps and classification results used in this paper is shown in
Fig. 3

V. TESTING AND RESULTS

A. Evaluation Methodology

PolarIRGS was implemented in C++ as a module in the
MAGIC image analysis system [42]. The algorithm was then
used to segment and classify the three sub-images and the full
scene shown in Fig. 2. The classification result initially does

not have meaningful labels (i.e., the generic label assigned by
the algorithm is not associated with the name of a ground-truth
class in the legend of Fig. 3). This is due to the fact that
PolarIRGS is an unsupervised segmentation and classification
algorithm (see Section II-B).

To compare with published ground-truth, each generic label
in the unsupervised classification result (one of {1, . . . , C})
must be associated with a ground-truth class (Stembeans,
Peas, etc.). This is accomplished by finding a mapping of
generic labels to ground-truth class names (i.e. label 2 maps to
Stembeans, label 1 maps to Peas) that maximizes the overall
accuracy, where overall accuracy is defined as the percentage
of pixels with ground-truth information that are assigned to
the correct ground-truth label. This mapping can be found by
exhaustively trying all possible mappings of generic labels to
ground-truth labels and finding the one with highest overall
accuracy, although in practice this is solved by finding the
mapping that maximizes the trace of the classification confusion
matrix, which translates into an assignment problem [43] that
can be solved by linear programming. The generic labels are
assigned to ground-truth labels in this optimal fashion rather
than labeling with training data so that the success of the
unsupervised classification algorithm can be evaluated without
introducing uncertainties due to an imperfect labeling process.
As the image segments have already been given generic labels
by PolarIRGS before meaningful names are assigned to each
generic label, the algorithm is not using any ground-truth
information to generate the classification.

The overall accuracy and the individual class accuracies (the
percentage of pixels of each class correctly classified) are used
as measures of the quality of a classification algorithm. The
ground-truth does not provide a label for each pixel of the
entire image so the accuracy calculation is limited to only those
pixels where the ground-truth provides a label. Since the Gibbs
sampling in Step 3 is a stochastic process [28] and because the
region-level K-means initialization [15] begins with a random
seed, the algorithm can produce slightly different results on
each execution on the same data. Therefore, PolarIRGS was
run 10 times for each sub-image and the full scene to determine
the stability and consistency of PolarIRGS.

To demonstrate the benefit of including edge strength
information as part of the segmentation cost function, an MLL-
based version of PolarIRGS was also implemented and tested.
This MLL implementation differs from PolarIRGS only in that
g(∇s) = 1 in all equations, penalizing all class boundaries
equally.

B. Mask 1 Results

The mean accuracy over the 10 executions of PolarIRGS
and the standard deviation of the accuracy are reported in
Table II for Mask 1. MLL results are also included. The results
from Wu et al.’s Region-based Wishart-MRF technique (Region
WMRF) [10] are also shown in the table for comparison; these
results are taken directly from [10]. The number of classes for
Mask 1 was set to 8 to match the Region WMRF paper. The
results in Table II show that PolarIRGS is highly successful for
classifying Mask 1: the overall accuracy is 98.3%. This is higher
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(a) Pauli RGB composite (b) Sub-images for testing

Fig. 2. The Flevoland 4-look polarimetric L-band scene. (a) The Pauli RGB composite is used to provide a partial visualization of polarimetric data. (b) The
sub-images were chosen to correspond with images that were tested in previously published papers. Mask 1 was used to evaluate the Region-based WMRF
segmentation technique [10] and Mask 3 was used to evaluate the spectral graph partitioning technique [12]. Mask 2 is an additional sub-image used in this
paper for testing. The full image was also tested.

Fig. 3. Legend for ground-truth maps and classification results used in this paper. Excess classes are distinct classes in the image in regions where ground-truth
information is absent.

than the MLL and Region WMRF technique, although Wu et
al. [10] do not report sufficient statistics (i.e. the confusion
matrix) to determine whether this improvement is statistically
significant. The consistency of PolarIRGS over 10 runs of the
algorithm is also excellent, with very low standard deviations
across the accuracy values for all classes. In terms of individual
class accuracies, PolarIRGS compares favourably with Region
WMRF, improving upon Region WMRF for 4 classes, although
Region WMRF outperforms PolarIRGS for the other 4 classes.
However, the overall accuracy shows that PolarIRGS has an
advantage.

Fig. 4 shows a classification result from one of the ten
runs of the algorithm alongside the Pauli decomposition RGB
and the ground-truth. Fig. 4(b) and Fig. 4(e) show the same
classification result but Fig. 4(e) is masked to remove pixels
where the ground-truth does not provide a label, which is
how the accuracy is calculated for Table II. The classification
result in Fig. 4 matches very well with the ground-truth, with
most pixels being correctly classified. The figure demonstrates
the effectiveness of the IRGS region-based MRF model: the
segment boundaries correspond very well to the expected
boundaries based on the ground-truth and each segment is
contiguous and nearly noise-free. For this particular case, MLL
and PolarIRGS produce results that are visually similar but
PolarIRGS has higher classification accuracy.

C. Mask 2 Results

Table III reports the accuracy statistics for Mask 2 (as well
as Mask 3 and the Full Image) using PolarIRGS and PolarIRGS
with an MLL spatial context model. It is clear that including
the edge penalty improves the accuracy compared to just using
the MLL model.

Mask 2 was segmented and classified with 11 classes.
Although this is larger than the number of classes in the

ground-truth in the Mask 2 area, it was necessary because
the ground-truth does not actually account for every single
class in the scene as not all pixels are labelled; the number of
true classes is higher than the number of ground-truth classes.
Since PolarIRGS is an unsupervised classification algorithm,
setting the number of classes equal to the number of ground-
truth classes produced unreasonable results because it is not
guaranteed that the classes found by the classification algorithm
will correspond with the ground-truth classes. Setting a larger
number of classes allows the algorithm to find the true classes
in the image.

The results shown in Table III indicate that the overall
accuracy for Mask 2 is lower than that of Mask 1. The high
standard deviation for the accuracy of rapeseed and grasses in
Mask 2 are due to a single outlier execution of PolarIRGS. The
consistency and accuracy of PolarIRGS are poorer for Mask
2 than for Mask 1. The increased number of classes used for
classification (from 8 to 11) makes the solution search space for
the optimal configuration of labels larger, which means that the
algorithm is more likely to be trapped in various local minima
of (7). This results in the lower consistency (as different runs
of the algorithm can be trapped in different local minima)
and lower accuracy (as the local minima are not the optimal
solution). However, accuracy remains at over 90% for most
classes and overall.

Fig. 5 displays the classification results in the same manner as
Fig. 4. Black or dark gray in the classification results indicates
pixels assigned to excess classes that cannot be associated with
a ground-truth class (due to setting the number of classes to
11 when there are only 8 classes in the ground-truth). These
are classes found in the image but are not represented in
the ground-truth labeling. The classification result shown in
Fig. 5(e) compares well with the ground truth image in Fig. 5(d).
Segment boundaries match accurately and the segments are
contiguous and free of small segment noise. Grasses and lucerne
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(a) Pauli RGB composite (b) Classification result for 1 run
of PolarIRGS

(c) Classification result for 1
run of PolarIRGS with the MLL
model (constant edge strength)

(d) Ground-truth, based on [10] (e) PolarIRGS classification result
masked to ground-truth pixels

(f) PolarIRGS with MLL model
classification result masked to
ground-truth pixels

Fig. 4. Mask 1 classification results.

TABLE II
ACCURACY STATISTICS USING MASK 1 TO COMPARE POLARIRGS, POLARIRGS WITHOUT EDGE PENALTY (ONLY MLL) MODEL, AND THE REGION-BASED
WISHART MRF (WMRF) SEGMENTATION TECHNIQUE [10]. POLARIRGS GENERATES THE HIGHEST OVERALL CLASSIFICATION RATE AT 98.2% WHILE THE

WMRF METHOD AND THE MLL MODEL GENERATE LOWER OVERALL ACCURACIES OF 95.5% AND 91.9%.

Algorithm PolarIRGS PolarIRGS with MLL Region WMRF [10]
# of Runs 10 10 N/A
# of Classes 8 8 8
Class Mean Acc. Std. Dev. Mean Acc. Std. Dev. Mean Acc. Std. Dev.

Peas 96.7 0.1 96.3 0.75 98.4 N/A
Beet 87.6 0.2 93.6 4.3 85.3 N/A
Bare Soil 98.6 0 98.5 0.05 99.8 N/A
Rapeseed 100 0 100 0 99.2 N/A
Lucerne 99.8 ∼ 0 95.6 12.7 100 N/A
Wheat 100 0 77.7 15.3 90.5 N/A
Potatoes 99.9 ∼ 0 100 0.02 100 N/A
Barley 99.1 0.05 93.2 18.1 90.2 N/A

OVERALL 98.2 0.02 91.9 3.8 95.4 N/A

N/A = Not Applicable
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TABLE III
ACCURACY STATISTICS FOR (a) POLARIRGS AND (b) POLARIRGS WITH NO EDGE PENALTY (MLL) MODEL FOR MASK 2, MASK 3 AND THE FULL IMAGE.

A DASH (-) INDICATES THAT THE CLASS DOES NOT EXIST IN THE SUB-IMAGE. FOR MASK 3, POLARIRGS (84.4% OVERALL) IMPROVES OVER THE
PUBLISHED SPECTRAL GRAPH PARTITIONING (SGP) SEGMENTATION [12] WHICH ACHIEVED 81.2% OVERALL ACCURACY (INDIVIDUAL CLASS

ACCURACIES ARE NOT REPORTED IN [12]). THE FULL IMAGE CLASSIFICATION DOES NOT HAVE ANY KNOWN COMPARABLE PUBLISHED RESULTS FOR
UNSUPERVISED CLASSIFICATION.

Sub-image Mask 2 Mask 3 Full Image
# of Runs 10 10 10

# of Classes 11 9 17
Class Mean Acc. Std. Dev Mean Acc. Std. Dev Mean Acc. Std. Dev

Peas 100 0 - - 99.4 0.6
Stembeans 99.8 0.1 14.3 26.9 92 7.2

Beet 98.6 0.4 96.5 5.1 92.1 9.1
Forest - - - - 100 ∼ 0

Bare Soil - - 100 0 83.6 5.5
Rapeseed 91.4 25 0 0 33.6 7.1

Grasses 72.3 9.5 99.8 0 34.6 38.0
Lucerne 100 0 0.2 0 59.2 31.2

Wheat 89 3.9 100 0 97.6 5.2
Potatoes 99.3 ∼ 0 83.3 ∼ 0 37.7 9.6

Barley - - - - 69.2 26.0
Wheat 2 - - 100 0 60 51.6
Wheat 3 - - - - 79 23.7

Water - - - - 38.9 4.4
Buildings - - - - 93.9 1.4

Overall 91.9 0.2 84.4 0.9 69.8 4.4

(a) PolarIRGS

Sub-image Mask 2 Mask 3 Full Image
# of Runs 10 10 10

# of Classes 11 9 17
Class Mean Acc Std. Dev Mean Acc Std. Dev Mean Acc Std. Dev

Peas 97.7 1.8 - - 70.2 36.8
Stembeans 92.6 0.1 11.1 27.9 71.3 16.2

Beet 91.8 6.5 81.5 16.9 65.8 15.8
Forest - - - - 99.9 0.1

Bare Soil - - 100 0 99.3 ∼ 0
Rapeseed 86.9 10.7 0 0 35.9 4.7

Grasses 85.1 26.5 99.8 0.1 38.4 28.2
Lucerne 30 48.3 0.2 0.2 66.6 23.4

Wheat 87.5 0.2 99.4 1.9 94.8 6.3
Potatoes 98.7 0.4 75.7 4 14.2 15.2

Barley - - - - 80 1.6
Wheat 2 - - 97.4 8.2 20 42.0
Wheat 3 - - - - 90 20.0

Water - - - - 43.6 6.7
Buildings - - - - 94 0.9

Overall 83.2 3.7 79.8 2.8 63.7 2.0

(b) MLL

are confused, as well as wheat and rapeseed. However, the Pauli
RGB image shows that such confusion may be unavoidable:
rapeseed and wheat appear similar, as do grasses and lucerne.
This suggests that there may be low separability between these
classes in the polarimetric data space.

Fig. 5 shows examples of the role of the edge strength model.
Fig. 5(b) is the result for PolarIRGS using the edge strength
model and Fig. 5(c) is the result when using PolarIRGS with
the MLL model (i.e., without considering edge strength). Note
the four corresponding circled regions in these two images
which demonstrate how visible class boundaries are ignored by
the MLL leading to erroneous region merging. (i) In the centre
of the MLL image, the Excess 1 class grows across the class
boundary and erroneously merges across the boundary with

the adjacent Rapeseed region. (ii) In the top right, the Grasses
segment is merged with Peas. (iii) At the top left corner, there
are two small regions identified as Stembeans and the MLL
model merges across their boundaries with Potatoes. (iv) In
the bottom left, a large region of Excess 1 and a large region
of Grasses are merged in the MLL case and their combined
statistics relabel the class as Peas. In each of these cases, using
the edge strength model preserves the class boundaries.

D. Mask 3 Results

Mask 3 was segmented and classified with 9 classes, the
same as the number of classes in the ground-truth and the same
number that Ersahin et al. [12] used to segment Mask 3 to
evaluate their SGP technique. The overall accuracy for Mask 3
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(a) Pauli RGB composite (b) Classification result for 1 run of Polar-
IRGS

(c) Classification result for 1 run of MLL

(d) Ground-truth (GT2) (e) Classification result masked to ground-
truth pixels

(f) MLL classification result masked to
ground-truth pixels

Fig. 5. Mask 2 classification results with 11 classes. Black or dark gray pixels are excess classes that are not associated with any ground-truth class. Circles
show locations where the MLL labeling smoothes across class boundaries while the edge strength model of PolarIRGS preserves the class boundary.

in Table III is higher for PolarIRGS as compared to MLL. The
SGP technique [12] achieved an overall accuracy of 81.2%, as
compared to PolarIRGS’ accuracy of 84.4% for the same sub-
image. Individual class accuracies were not reported for SGP.
For PolarIRGS, several classes have low accuracy (Stembeans,
Rapeseed and Lucerne). In Fig. 6, Rapeseed (orange in the
ground-truth) was assigned the same segment as wheat (pink
in the ground-truth). The lucerne (cyan) was assigned the same
segment as grass, which may be unavoidable due to the very
similar appearance between grass and lucerne in the Pauli
RGB image (Fig. 6(a)). The lucerne that does appear in the
classification result is actually an unidentified extra class that
does not appear in the ground-truth. Its appearance in the Pauli
RGB image is similar to potatoes but darker. The algorithm is
therefore finding potatoes, dark potatoes and grass rather than
potatoes, lucerne and grass. Stembeans (red in the ground-truth)
in Mask 3 is grouped together with potatoes. The small patch
of stembeans in the upper right of the image does not have

a strong enough edge with the potato patch adjacent to it to
remain separate in the IRGS model.

Although individual class accuracies are not reported in the
SGP paper [12], close examination of their visual results reveal
that Rapeseed and Wheat were both mislabelled as Wheat 2,
which would result in near zero percent accuracy for those
two classes. Lucerne is also confused with grass in the SGP
paper, although some of it is classified correctly. It is expected
that these classes (Rapeseed and Wheat, Lucerne and Grass)
are actually quite similar in the polarimetric data space since
both of these recent algorithms have trouble separating them
properly.

Dramatically improving the accuracy of classifying Mask 3
is possible by using a different method of edge strength calcu-
lation and initialization. For example, when the edge strength
∇s was calculated on the polarimetric H/α decomposition yH/α

s

(21) and initialization was performed using approach (ii) in
Section III-D, the overall accuracy improves from 84.3% to
93.4%, stembean accuracy improves from 14.3% to 87.6%,
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lucerne improves from 0.2% to 63.6% and potato accuracy
improves from 83.3% to 97.7% while all other classes remain
similarly accurate. The standard deviations of the accuracies are
all reduced to less than 1%. These results are not emphasized
to keep the edge strength calculation and initialization method
consistent across tests for all three sub-images and the full-
image. As mentioned in Section III-C and Section III-D, the
edge strength measure and initialization method chosen for
PolarIRGS are based on best overall performance across the
three sub-images and the full-image. However, this test does
indicate that there is potential for much better performance
provided the user is willing to tune the algorithm to a specific
data set.

The circled regions in Fig. 6 (Mask 3) illustrate additional
cases where the edge strength model helps preserve class
boundaries that are ignored by the MLL model.

E. Full Image Results

The full image segmentation and classification was per-
formed with 17 classes as the image appeared to contain many
more visually distinct classes than the previous sub-images.
Table III shows that the results for the full image are worse than
the previous cases, with lower accuracy and less consistency.
The authors know of no other papers that reported quantitative
accuracies for an unsupervised segmentation and classification
of the full Flevoland scene, so it is not possible to determine
the relative performance of polarimetric IRGS against other
algorithms for the full image.

There are several reasons for why full image segmentation
and classification produced poorer results. As explained previ-
ously, an increased number of classes leads to a larger solution
space with more possibilities for the algorithm to be trapped
by local minima of (7). The full image is also much larger and
contains more regions to be labelled, which again increases the
solution search space. The larger spatial extent of the image
encompasses more classes that can be confused with each
other, such as the potato and the forest class, which appear
very similar in the Pauli RGB image in Fig. 7(a). This is
reflected in the classification result shown in Fig. 7(d), where
many of the potato pixels were grouped together into the same
segment as the forest class.

Table IV shows the mean confusion matrix [44] for the full
image classification across 10 runs of the PolarIRGS algorithm.
This matrix was created by element-wise summing of the
individual confusion matrices for each run and dividing the
aggregate matrix by 10. This allows examination of which
classes are frequently confused by the classification algorithm.
Columns represent ground-truth classes. The numbers in each
column indicate how many pixels from each ground-truth class
are assigned to each of the classes in the classification result.
Table IV shows that Wheat 2 and Wheat 3 are frequently
confused with each other. The high standard deviation of these
two classes, as seen in Table III, reflect the fact that under
multiple executions of the algorithm, a pixel is assigned to
one or the other class, suggesting that they are quite poorly
separable. Rapeseed is often erroneously assigned to the three
Wheat classes, Grasses are assigned Barley and Wheat 3,

Potatoes is assigned to Forest and Water is assigned to Bare
Soil and either one of the Excess classes.

Some of these segmentation and classification errors can be
explained. There are several distinct signatures for Water in
the scene. At the top right corner of the Pauli RGB image
(Fig. 7(a)), water appears blue in the Pauli RGB composite but
dark elsewhere. The bright part appears to be a wind roughening
effect that causes a higher backscatter return. The confusion
between Wheat 2 and Wheat 3 is due to the fact that these are
actually one class (along with Wheat) that appear differently
enough that they are treated as different classes by the creator
of the GT2 ground-truth image. Due to their similarity, the
stochastic PolarIRGS finds many different classifications that
represent local minima in the solution search space. As a
result, across the 10 runs of the algorithm, any given region
of Wheat 2 and Wheat 3 may be assigned Wheat 2 or 3. This
produces the confusion seen in the matrix. Finally, Potatoes
appear very similar to Forest. Du et al. [22] grouped them
together as one class since they could not be distinguished in
dual-polarization data. Other authors were able to distinguish
between potatoes and forest in fully polarimetric data with
a supervised algorithm [41]. However, supervised algorithms
require training data that tell the system what clusters it can
expect, whereas PolarIRGS is fully unsupervised. Even with the
much more challenging test case of full image segmentation
and classification, the segmentation boundaries in Fig. 7(c)
visually match well with the image and there is still very
little noise in the segments. This indicates the strength of the
region-based spatial context model inherent in IRGS.

When the classification results in the overlapping areas
between Mask 1, Mask 2, Mask 3 and the full scene are
compared, it can be seen that the classification results in
these areas are not the same. This is because the labeling
of each RAG region in a sub-image is dependent on the
labeling of other regions in the sub-image due to the spatial
context model. Therefore, even if two sub-images overlap, the
classification result in the overlapping regions can be different
due to the presence of other non-overlapping regions in the
image, which affect the solution search space and the global
cost function in (7). This is a fundamental property of spatial
context models; the algorithm essentially considers the entire
sub-image as whole when finding the classification result. This
global approach helps PolarIRGS improve upon the results
of other published techniques but does not guarantee that the
overlapping areas will be labeled the same way in each sub-
image.

However, consistency is still maintained in a number of cases.
Segments classified as Beet and some segments classified as
Grass are generally the same in overlapping regions in all three
masks and the full image. Wheat is also consistent between
the test cases if the three wheat classes are considered on
class. Segments classified as potatoes are consistent between
Masks 1, 2 and 3. Although the Full Mask results identify
the Potato segments as Forest but as noted earlier, Potato and
Forest are difficult to distinguish. In areas where the full image
classification is correct, Rapeseed, Bare Soil and Peas are
consistent with the Mask 1 results.
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(a) Pauli RGB composite (b) Classification result for 1 run of Polar-
IRGS

(c) Classification result for 1 run of MLL

(d) Ground-truth (GT2) (e) Classification result masked to ground-
truth pixels

(f) MLL classification result masked to
ground-truth pixels

Fig. 6. Classification results for Mask 3 with 9 classes. Circles show locations where the MLL labeling smoothes across class boundaries while the edge
strength model of PolarIRGS preserves the class boundary.

TABLE IV
MEAN CONFUSION MATRIX [44] FOR THE FULL IMAGE SEGMENTATION ACROSS 10 RUNS OF THE POLARIRGS ALGORITHM. IT INDICATES THE GENERAL

TRENDS REGARDING WHICH CLASSES ARE FREQUENTLY CONFUSED. THE COLUMNS REPRESENT GROUND-TRUTH CLASSES; THE NUMBERS IN EACH
COLUMN INDICATE HOW MANY PIXELS OF THAT PARTICULAR GROUND-TRUTH CLASS WERE ASSIGNED TO EACH OF THE CLASSES IN THE SEGMENTATION
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(a) Pauli RGB composite (b) Ground-truth (GT2)

(c) Classification result for 1 run of PolarIRGS (d) Classification result masked to ground-truth pixels

(e) Classification result for 1 run of MLL (f) MLL classification result masked to ground-truth pixels

Fig. 7. Classification results for the full image with 17 classes. Black or dark gray pixels are excess classes that are not associated with any ground-truth class.

F. Modified Full Scene Analysis

The observations made in Section V-E about the poorer
accuracy of the full scene image motivate the need for a
modified analysis. Poor separability and intra-class variation
in polarimetric signatures make it difficult for an unsupervised
algorithm like PolarIRGS to find the proper classification
without a priori information in the form of training data that
tell the algorithm what clusters it can expect. The ground-truth
image and classification evaluation method was modified to

account for these factors so a more reasonable evaluation of
the algorithm’s performance can be obtained.

The ground-truth image was modified so that only the Water
in the top right corner of the image, where its signature is
constant, is included in the evaluation. Wheat, Wheat 2 and
Wheat 3 were grouped together as a single Wheat class. Forest
and Potatoes were also merged. Fig. 8(b) shows the modified
ground-truth image. The classification accuracy was evaluated
on the same 17 class full image segmentation and classification
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TABLE V
ACCURACY STATISTICS FOR POLARIRGS FOR THE FULL IMAGE WITH 17

CLASSES USING THE MODIFIED GROUND-TRUTH AND EVALUATION METHOD
OF SECTION V-F. BY ELIMINATING CLASSIFICATION ERRORS THAT OCCUR
DUE TO PROBLEMS INHERENT WITH THE DATA, A MORE REASONABLE SET

OF ACCURACY STATISTICS IS OBTAINED.

Algorithm PolarIRGS
Sub-image Full Image
# of Runs 10
# of Classes 17
Class Mean Acc. Std. Dev

Peas 99.4 0.6
Stembeans 92.0 7.2
Beet 92.1 9.1
Forest / Potatoes 99.5 0.1
Bare Soil 83.6 5.5
Rapeseed 33.6 7.1
Grasses 34.6 38.0
Lucerne 59.2 31.2
Wheat (combined) 99.2 2.5
Barley 69.2 26.0
Water 99.9 0.3
Buildings 93.9 1.4

OVERALL 85.8 3.0

results that were used earlier but the three Wheat classes in
the classification result were manually merged into one class.
Forest / Potatoes were also merged into one combined class.
This merging was done manually because there actually is
more than one signature for the Wheat class and certain Potato
and Forest patches are distinct. Thus, the algorithm cannot be
controlled to automatically merge the classes. The classification
accuracy was computed from the modified ground-truth and
segmentation result.

The result of this modified analysis are shown in Table V.
The accuracy has increased dramatically. Rapeseed, Grasses,
Lucerne and Barley remain problematic but all other classes
have high accuracies. The classification results are seen in
Fig. 8(c)-(d). Accounting for the limitations inherent in the
image data shows that PolarIRGS is capable of producing very
reasonable classification results.

VI. CONCLUSION

This paper has presented an extension to the IRGS algorithm
to use a polarimetric feature model based on the Wishart
distribution. PolarIRGS is unique among polarimetric segmen-
tation and classification techniques in that it is a region-based
algorithm that incorporates edge strength between regions as
part of its spatial context model and uses iterative region
growing to aid in successful segmentation and classification.
These properties allow it to compare favourably with and
improve upon the results of other recent techniques. The region-
based spatial context model is very successful at producing
contiguous and noise free segments whose boundaries appear
to match well with the ground-truth.

Future work should investigate improving the consistency
of the algorithm between different executions for large scenes
and scenes with a large number of classes. The bigger solution
space associated with larger scenes and more classes appears
to make it more likely for the current algorithm to be trapped
in different local minima. There is potential to address this

issue by investigating whether the current Gibbs sampling
optimization technique could be improved or replaced with a
more robust technique if one exists. Another line of future work
would involve investigating measures analogous to the Fisher
criterion for polarimetric data for setting the value of the spatial
context weighting parameter in the PolarIRGS energy function
to determine if any improvements can be made. Finally, the
edge strength measure used in this paper only makes use of
the amplitude information from the HH, HV and VV channels,
so future work should investigate whether polarimetric edge
strength measures can offer improvements once a consistent
set of parameters for the polarimetric edge strength filters can
be found.
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