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Abstract

An interesting problem in computer vision is that of image registration, which plays an

important role in many vision-based recognition and motion analysis applications. Of par-

ticular interest among data registration problems are multimodal image registration prob-

lems, where the image data sets are acquired using different imaging modalities. There are

several important issues that make real-world multimodal registration a difficult problem to

solve. First, images are often characterized by illumination and contrast non-uniformities.

Such image non-uniformities result in local minima along the convergence plane that make

it difficult for local optimization schemes to converge to the correct solution. Second, real-

world images are often contaminated with signal noise, making the extraction of meaningful

features for comparison purposes difficult to accomplish. Third, feature space differences

make performing direct comparisons between the different data sets with a reasonable level

of accuracy a challenging problem. Finally, solving the multimodal registration problem

can be computationally expensive for large images.

This thesis presents a probabilistic complex phase representation (PCPR) objective

function for registering images acquired using different imaging modalities. A probabilistic

multi-scale approach is introduced to create image representations based on local phase

relationships extracted using complex wavelets. An objective function is introduced for

assessing the alignment between the images based on a Geman-McClure error distribution

model between the probabilistic complex phase representations of the images. Experi-

mental results show that the proposed PCPR objective function can provide improved

registration accuracies when compared to existing objective functions.
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Chapter 1

Introduction

Image registration is the process of matching points in one image to their corresponding

points in another image. The problem of image registration plays a very important role

in many visual and object recognition and motion analysis applications. Some of these

applications include visual motion estimation [1, 2], vision-based content-based retrieval [3,

4], image registration [5–8], and biometric authentication [9]. In the best case scenario, the

images exist at the same scale, in the same orientation, as well as represented in the same

feature space. However, this is not the case in most real-world applications. There are many

situations where the images exist in different feature spaces. This particular problem will be

referred to as the multimodal registration problem and is a particularly difficult problem to

solve. Examples of this problem in real-world situations include medical image registration

and tracking of MRI/CT/PET data [10] and building modeling and visualization using

LIDAR and optical data [11, 12]. In the past, the task of multimodal registration was

performed manually by placing markers on the scene during the image acquisition process

and then finding the geometric transformation that brings the markers into alignment.

This approach to multimodal registration is very laborious and time consuming. As such,

methods for registering images acquired using different modalities in an automated fashion

is highly desired.

While current methods differ in their specific approach to the automatic image reg-

istration problem, the majority of these methods can be broken down into the following

steps:

1. Feature representation: Global and/or local descriptors are extracted from the

set of images under evaluation based on a particular feature representation.
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2. Similarity analysis: Similarity analysis is performed between the set of image

descriptors using an objective function.

3. Transformation estimation: Based on the similarity analysis, the transformation

model is estimated to provide the best alignment between the images.

4. Transformation and resampling: The images are transformed based on the de-

termined model and are resampled using an interpolation method.

Each of these steps plays an important part in the image registration procedure. There-

fore, the following criteria are important in the design of an automatic multimodal image

registration framework:

1. Efficiency: Certain applications such as medical and remote sensing imaging anal-

ysis require the registration of large images. This is further complicated when reg-

istering large volumes of image data. Therefore, to minimize the computational

effort required to perform each of these steps while maintaining alignment accuracy

is important.

2. Robustness: Differences in multimodal images of the same scene exist due to factors

such as environmental noise, differences in illumination and contrast, differences in

viewpoint and differences in imaging modalities. Therefore, to minimize the effect of

such image variances on image registration accuracy is important.

3. Accuracy: Visualization and analysis of images typically require that a reasonable

level of accuracy be achieved during the registration process. Therefore, the regis-

tration process should produce an image that is visually and numerically correct.

The goal of the thesis is to design and develop an objective function that satisfies

the criteria associated with robustness and accuracy for the purpose of registering images

acquired using different imaging modalities.

1.1 Multimodal Registration Problem

The multimodal registration problem can be defined in the following manner. Suppose

there exist two images f and g, each containing Nf and Ng points respectively. Further-

more, points in f and g are represented using two different feature spaces. For every point

2



in f , the goal of registration is to determine a corresponding point in g such that f and

g are aligned. This problem can alternatively be formulated as finding the optimal trans-

formation T that maps all points from f to the points from g such that the alignment

between f and g is achieved, resulting in the following optimization problem:

Topt =argmaxT [Ψ (g(x), f(T (x)))] (1.1)

where Topt is the optimal transform and Ψ(.) is the objective function assessing similarity.

1.2 Challenges of Multimodal Registration

There are many important issues that make automated multimodal registration a very

challenging problem to solve.

1. Geometric Distortions: First, images being acquired using different modalities

(i.e., MR and CT) are captured using different imaging devices at different times. As

such, the images acquired using different modalities often contain different geometric

distortions that make it difficult to compare image content.

2. Noise: Real-world images are also characterized by point noise, making the extrac-

tion of meaningful features for comparison purposes difficult to accomplish.

3. Intensity Mapping Differences: Images acquired using different modalities are

mapped to different intensity values. This makes it difficult to compare images based

on their intensity values since the same content within the images may be represented

by different intensity values. The problem is further complicated by the fact that

various intrinsic (for MRI, static field and RF non-homogeneity [13, 14]) and extrinsic

(patient motion) sensing conditions can lead to image non-uniformities. Such image

non-uniformities result in the same content within a single image to be represented

by different intensity values.

4. Convergence Issues: The disparity between the intensity values of multimodal

images can lead to coincidental local intensity matches between non-corresponding

content. These matches can result in local minima that make it difficult for local

optimization schemes such as conjugate gradient [15], Nelder-Mead simplex [16], and

sequential quadratic programming (SQP) methods [17] to converge to the correct
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solution, particularly when the initial overlap is small and the distance traveled during

the optimization process is large.

5. Computational Complexity: Solving the multimodal registration problem can be

computationally expensive for large images.

The goal of the proposed objective function is to address the issues associated with noise,

intensity mapping differences, as well as convergence.

1.3 Thesis Contributions

The thesis makes the following contributions:

• A novel approach to structure-based image representations based on local phase

relationships extracted using complex wavelets was introduced, which is described in

detail in Chapter 3,

• a novel probabilistic multi-scale approach is introduced for constructing structure-

preserving and noise-resilient multi-scale representations of images, which is described

in detail in Chapter 4, and

• a robust objective function is introduced for determining the alignment between the

images based on a Geman-McClure error distribution model between the probabilistic

complex phase representations of the images, which is described in detail in Chapter 5.

4



Chapter 2

Overview of Automatic Registration

Methods

This chapter provides an overview of existing research literature related to automatic image

registration, as well as a discussion of the advantages and disadvantages of viable solutions

for multimodal image registration. The background literature pertaining to the individual

concepts behind the proposed objective function for multimodal image registration is pro-

vided in subsequent chapters. An overview of existing complex wavelet representations is

provided in Section 3.2. An overview of existing scale space representations is provided in

Section 4.2. Finally, an overview of existing estimation functions used for estimating the

alignment between images is provided in Section 5.3.

2.1 Types of Registration Methods

A large number of methods have been proposed for the purpose of image registration,

where the underlying goal is to find the optimal alignment between a set of images. In

general, current methods can be grouped into four main types:

1. Methods based on relative distances [18–23]

2. Methods in the frequency domain [24–26]

3. Methods based on direct comparisons [5, 6, 8, 27–39]
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4. Methods based on extracted features [40–50]

2.2 Relative Distance Methods

Methods based on relative distances exploit the spatial relationships between neighboring

pixels within an image to determine the best match between two points. These algorithms

are based on the assumption that if a point pf,0 in image f has a corresponding point pg,0
in image g, then there exist other points {pf,1, pf,2, ..., pf,n} in f that have corresponding

points {pg,1, vg,2, ..., pg,n} in g, such that the distance between pf,0 and point pf,k is equal

to the distance between pg,0 and point pg,k. Methods based on relative distances can be

further subdivided into two types: i) relaxation-based methods, and ii) iterated closest

point (ICP) methods. In relaxation-based methods [18–20], a support value is calculated

between each possible point pair and a match is made if it yields the best support from

other points. In ICP-based methods [21–23], points from f and g are first matched to each

other using a nearest neighbor algorithm. Parameter estimation is then performed based

on these initial point pairs to determine a transformation that maps points from f to g.

The points in f are then transformed using the estimated parameters and the entire process

is repeated until a residual error condition is satisfied. As such, ICP-based methods require

a good initial transformation estimation to produce reasonable results. Methods based on

relative distances are primarily useful for situations where the transformation between the

images consists only of translations and rotations.

2.3 Frequency Domain Methods

Methods in the frequency domain [24–26] exploit the frequency characteristics such as

phase to estimate the transformation between two images. A common frequency domain

registration method is phase correlation, where the Fourier coefficients calculated from

image f are divided by those calculated from image g. Performing the inverse transform

on the result yields a single peak indicating the translation that matches the two images.

This technique has been extended to account for global rotations and scale by Reddy et

al. [25]. As such, frequency domain methods are currently only suited for globally rigid

point correspondences (e.g., scale, rotation, and translation).
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2.4 Direct Comparison Methods

Methods based on direct comparisons [5, 6, 8, 27–39] attempt to find point correspondences

between two images by performing matches directly in their respective feature spaces.

Many techniques in this group make use of feature information from neighboring points

to determine the similarity between two points. Some common similarity metrics used in

direct comparison methods include maximum likelihood [7], correlation [28, 31], correlation

ratio [33–35], and mutual information [5, 6, 27, 8, 38, 39].

Of particular interest in recent years are techniques based on mutual information, which

attempt to match points by finding the mutual dependence between the two images. An

objective function based on mutual information can be expressed as follows:

Ψ
(

g (x) , f (T (x))
)

= H
(

g (x)
)

+H
(

f (T (x))
)

−H
(

g (x) , f (T (x))
)

(2.1)

where H(·) denotes the marginal intensity entropy and H(·, ·) denotes the joint intensity

entropy. In this case, maximizing the objective function maximizes mutual information,

which in effect minimizes the joint intensity entropy. Methods that utilize mutual in-

formation based objective functions take advantage of the fact that correctly registered

images are characterized by tightly packed joint distributions and that minimizing the

joint intensity entropy effectively minimizes the dispersion of the joint distribution. The

main advantage of mutual information is that it allows for the direct intensity-based com-

parison of multimodal images, making no underlying assumptions regarding the intensity

relationships between the images under evaluation.

2.5 Feature-based Methods

In methods based on extracted features [40–50], the images are transformed into a common

feature space before they are compared. This is in contrast to direct comparison methods,

which match points in their respective feature spaces. Methods based on extracted features

attempt to find point matches between two images by indirectly comparing points using

extracted features that exist in a common feature space. Common features used in such

methods include edges [50], contours [43, 44], invariant moments [46], orientation [48],

and shape properties [42]. By comparing methods using derived features in a common

feature space, this allows such techniques to match data images existing in different feature

spaces in cases where similar features can be extracted from both images. A particularly

interesting case is the method proposed by Mellor et al. [40, 41], which extracts the local
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phase from the images and finds point matches between them using mutual information.

Local phase extracted from multimodal images in itself cannot be compared in a direct

manner. However, since the local phase is highly invariant to feature non-uniformities

that may occur in real-world situations (such as illumination and contrast non-uniformity

in the case of imaging data) and greatly emphasizes the structural characteristics of the

underlying data, the use of local phase can greatly improve the performance of mutual

information. This method can be considered one of the state-of-the-art techniques for

matching multimodal data.

2.6 Discussion

Based on the above descriptions, the methods best suited for registration of multimodal

image data appear to be those based on extracted features and those based on mutual

information. However, there are a number of issues associated with these registration

methods. The major drawback associated with methods based on extracted features is

that they require the extraction of features within a common feature space. While this

allows such methods to match images existing in different feature spaces, it requires similar

features to be extracted from both images for them to work effectively.

There are also several drawbacks to the use of mutual information based methods. First,

since the intensity relationship between the images is relatively unconstrained by mutual

information, the convergence planes associated with mutual information based methods

possess high non-monotonicity with many local optima [34]. Some causes that can lead to

high non-monotonicity include sampling (i.e., number of histogram bins and image reso-

lution) and interpolation effects. Since local optimization schemes are dependent on the

monotonicity of the underlying cost function, such schemes can often get trapped in local

maxima. This is particularly problematic in situations with small initial overlaps, where

the optimization scheme must travel a long distance to the correct solution. Direct meth-

ods based on mutual information require good initial estimates for good results. However,

this is not always possible, particularly in cases where a large volume of images need to be

matched. This need for careful initialization of the system to achieve proper registration is

one of the drawbacks of using mutual information. Furthermore, techniques based on mu-

tual information are computationally expensive as they require the calculation of marginal

and joint entropies. As such, mutual information based methods may not be practical

for certain situations where computational speed is important. More importantly, mutual

information based objective functions suffer from what is referred to as the “curse of di-
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mensionality” [51]. As the number of dimensions increase, the number of samples required

to reliably approximate entropy grows exponentially. Therefore, this makes it very difficult

to extend entropy-based methods to high-dimensional multimodal registration problems as

there are typically insufficient number of samples to estimate entropy properly.

In addition to the issues associated with these registration methods, it is important

to deal with factors such as environmental noise and contrast non-uniformities due to

imaging modalities. The proposed objective function aims to address the issues associated

with methods based on extracted features, as well as noise and contrast non-uniformities.

9



Chapter 3

Complex Phase Representation

This chapter describes in detail the overall design and performance analysis of the pro-

posed complex wavelet representation. The computation of complex amplitude and phase

information using complex wavelet transforms is presented. An overview of existing com-

plex wavelet representations is presented to examine the challenges and issues that need to

be addressed in the design of complex wavelet representations. An image representation

based on complex phase relationships is described in detail. The structural sensitivity of

the complex phase representation is studied and novel methods for improving structural

sensitivity is proposed. Finally, the noise sensitivity of the complex phase representation

is studied and novel methods for reducing sensitivity to signal noise is proposed. The

main contributions in this chapter are: i) the introduction of a new phase order response

weighting function for improving the response sensitivity to structural characteristics for

improved structural contrast, as described in Section 3.4, and ii) the introduction of a new

bilateral soft threshold scheme for reducing noise sensitivity, as described in Section 3.5.

3.1 Complex Amplitude and Phase

To compute the complex amplitude and phase information of an image f , multi-scale

complex wavelet representations of f are constructed using a complex wavelet transform

such as the Gabor complex wavelet transform and the Log-Gabor complex wavelet trans-

form [52, 53], with each of the α scales (s) and β orientations (θ) maintaining the resolution

of the original images.

One of the most popular complex wavelet transforms used for feature extraction is
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Figure 3.1: Gabor complex wavelets (Eq. (3.1)) at increasing frequencies (from top to

bottom) with an octave bandwidth. The even- and odd-symmetric quadrature pair are

shown for each complex wavelet.

the Gabor complex wavelet transform. The Gabor wavelet can be defined as the product

between a harmonic function and a Gaussian function,

J(x) =

(

1

2πσ
e
−x2

2σ2

)

ej2πwox, (3.1)

where wo is the center frequency and σ controls the standard deviation of the Gaussian

envelope. Five Gabor complex wavelets at different frequencies with an octave bandwidth

are shown in Fig. 3.1. One of the benefits of the Gabor complex wavelet transform is that

it provides excellent localization of spatial-frequency information at different orientations.

A limitation of Gabor complex wavelets described in Eq. (3.1) is that the zero mean

criterion cannot be achieved for bandwidths over one octave [54]. This limitation of Gabor

complex wavelets is illustrated in Fig. 3.2, which shows the even-symmetric components

of three Gabor complex wavelets with bandwidths of two octaves and their corresponding

amplitude spectra. Each of the even-symmetric components have non-zero DC components,
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Figure 3.2: The even-symmetric components of three Gabor complex wavelets with band-

widths of two octaves and their corresponding amplitude spectra. The amplitude spectra

of each even-symmetric component have non-zero DC components, thus violating the fun-

damental zero mean criterion of wavelets.

thus violating the fundamental zero mean criterion of wavelets. Therefore, Gabor complex

wavelets are restricted to bandwidths below one octave and hence a large number of Gabor

complex wavelets are necessary for wide spectral coverage. This makes Gabor complex

wavelets poorly suited for efficient representation of broad spectral information.

To achieve efficient representation of broad spectral information while attaining excel-

lent spatial-frequency information like the Gabor complex wavelet transform, one effective

approach is to utilize the Log-Gabor complex wavelet transform proposed by Field [52].

Based on a statistical analysis of natural imagery, Field observed that the amplitude spectra

of such imagery is highest at low frequencies and decays rapidly by a factor of approxi-

mately 1
w
. Intuitively, a complex wavelet with similar amplitude spectra characteristics as

the imagery would be better suited to represent such imagery in an efficient manner. The

Fourier transform of the Log-Gabor complex wavelet can be expressed as
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Figure 3.3: An example amplitude spectrum of a Log-Gabor complex wavelet (Eq. (3.2))

in both linear and logarithmic frequency scales.

J(w) = exp

[

− log (w/wo)
2

2 log (B)2

]

, (3.2)

where B determines the bandwidth of the complex wavelet. An example amplitude spec-

trum of a Log-Gabor complex wavelet in both linear and logarithmic frequency scales is

shown in Fig. 3.3. There are several important observations that can be made about

the Log-Gabor complex wavelet. First, the DC component of the Fourier transform of a

Log-Gabor complex wavelet is always zero. This guarantees that any Log-Gabor complex

wavelet will satisfy the zero mean criterion of wavelets. Therefore, the Log-Gabor complex

wavelet transform allows for the construction of wavelets with arbitrarily large bandwidths

to provide wide spectrum coverage with fewer wavelets than the Gabor complex wavelet

transform is capable of. Second, the amplitude spectra of the Log-Gabor complex wavelet

decays rapidly at the high frequencies, which is similar to that observed by Field for nat-

ural imagery. Hence, Log-Gabor complex wavelets can potentially provide more efficient

representation for such imagery. Finally, the Log-Gabor complex wavelet has a symmet-

ric Gaussian shape in the logarithmic frequency scale. This symmetry in the logarithmic

frequency scale is consistent with the response properties of mammalian cortical cells [52].

Fig. 3.4 shows the Log-Gabor complex wavelets at the same frequencies and bandwidth

as the Gabor complex wavelets shown in Fig. 3.1. The Log-Gabor complex wavelets are

very similar to the Gabor complex wavelets. As a contrast to the amplitude spectra
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Figure 3.4: Log-Gabor complex wavelets at the same frequencies and bandwidth as the

Gabor complex wavelets shown in Fig. 3.1. The even- and odd-symmetric quadrature pair

are shown for each complex wavelet.

shown in Fig. 3.2, three even-symmetric components of Log-Gabor complex wavelets with

bandwidths of two octaves and their corresponding amplitude spectra is shown in 3.5. The

overall shapes of the Log-Gabor complex wavelets are similar to that of the Gabor complex

wavelets shown Fig. 3.2, but with sharper peaks and extended tails. The sharper peaks

and extended tails of the Log-Gabor complex wavelet allows the zero mean criterion to be

satisfied, as seen in the DC component of the corresponding amplitude spectra. As such,

the use of the Log-Gabor complex wavelet transform allows for wider spectral coverage

while still providing high spatial localization like Gabor complex wavelets.

For the proposed framework, the Log-Gabor complex wavelet transform was performed

over α = 4 scales and β = 6 orientations, with wavelengths of 3, 9, 27, and 81 pixels

to maintain bandwidths of two octaves. Each point x in the multi-scale complex wavelet

representation is represented by a set of αβ complex wavelet responses Υs,θ, where

Υs,θ = As,θ(x)e
jφs,θ(x). (3.3)
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Figure 3.5: The even-symmetric components of three Log-Gabor complex wavelets with

bandwidths of two octaves and their corresponding amplitude spectra. The overall shapes

of the Log-Gabor complex wavelets are similar to that of the Gabor complex wavelets shown

Fig. 3.2, but with sharper peaks and extended tails. The sharper peaks and extended tails

of the Log-Gabor complex wavelet allows the zero mean criterion to be satisfied, as seen

in the DC component of the corresponding amplitude spectra.

The amplitude As,θ(x) and phase φs,θ(x) for a complex wavelet response Υs,θ presented in

Eq. (3.3) can be computed as

As,θ(x) =

√

(

f(x) ∗ Je
s,θ(x)

)2
+

(

f(x) ∗ Jo
s,θ(x)

)2
, (3.4)

and,

φs,θ(x) = tan−1

(

f(x) ∗ Je
s,θ(x)

f(x) ∗ Jo
s,θ(x)

)

, (3.5)

where Je
s,θ(x) and Jo

s,θ(x) are the even- and odd-symmetric Log-Gabor quadrature pairs,

and ∗ denotes a convolution.
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3.2 Complex Wavelet Representations

Images acquired using different modalities have different intensity mappings for the same

content, making them difficult to compare in a direct manner. One possible solution to this

problem is to construct representations of the multimodal images that allow for compari-

son independent of the underlying image intensity. A common approach to an intensity-

independent representation of the images is based on its structural characteristics such as

edges and corners. This type of approach assumes that two images obtained of the same

scene using different modalities can have significantly different intensity characteristics but

should have very similar structural characteristics. Therefore, based on this assumption,

the structural characteristics of the disparate images can be compared in a direct fashion.

While previous attempts have been made to develop structural representations using gra-

dient fields [48, 50], these methods are sensitive to image non-uniformity and can lead to

incorrect alignments. Therefore, such structural feature representations are not suitable

for situations characterized by image non-uniformities.

In recent years, considerable interest has been shown towards developing structural

feature representations based on complex wavelets [40, 41, 54–60]. This is partly motivated

by the fact that complex wavelets have been shown to provide a good basic model of

the human visual cortex, which is effective at identifying structural significance in visual

information under various conditions [55, 61–63]. This makes such representations very

well suited for the purpose of multimodal image registration, where the same scene is

represented using different intensity mappings but have the same underlying structure.

Another motivation for developing feature representations based on complex wavelets is

that, unlike feature extraction methods such as those proposed in [42, 44, 45, 48, 50], they

allow for structural analysis across multiple scales, thus allowing for extraction of both

fine and coarse structural details from the visual information. Given these benefits, several

feature representations have been proposed based on complex wavelets. One of the earliest

complex wavelet feature representations is based on the Fourier representation [55], which

can be defined as the normalized weighted summation of cosine-weighted complex phase

deviations from the amplitude-weighted mean phase φ̄ (x) across α scales,

R(x) = max
φ̄∈[0,2φ]

α
∑

s=1

As (x) cos
(

φs (x)− φ̄ (x)
)

α
∑

s=1

As (x) + ǫ
. (3.6)

where s denotes the wavelet scale and ǫ is a small constant used to avoid division by
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zero. An alternative formulation of this feature representation was proposed by Venkatesh

and Owens [64], which is defined as the the ratio between the energy of complex wavelet

components E and the sum of amplitudes As,

R(x) =
E(x)

α
∑

s=1

As(x) + ǫ
, (3.7)

where s denotes the wavelet scale and ǫ is a small constant used to avoid division by zero.

While this representation is robust to illumination and contrast non-uniformities, this

feature representation is very sensitive to noise and provides poor localization of structural

information [65]. To account for the poor structural localization issues associated with the

representation proposed by Morrone et al., Kovesi proposed the use of local phase order

at different orientations θ for the purpose of image representation [65]. The basic image

representation proposed by Kovesi can be expressed as the normalized summation of phase

deviations across different scales and orientations,

R(x) =

β
∑

q=1

α
∑

s=1

Wθq(x)
⌊

As,θq (x)∆Φθq(x)− τ
⌋

β
∑

q=1

α
∑

s=1

As,θq (x) + e

(3.8)

∆Φθ(x) = cos
(

φs,θ (x)− φ̄θ (x)
)

−
∣

∣sin
(

φs,θ (x)− φ̄θ (x)
)∣

∣, (3.9)

where As,θ and φs,θ represent the amplitude and phase at wavelet scale s and orientation θ

defined in Eq. (3.4) and Eq. (3.5) respectively, φ̄θ represents the weighted mean phase at

orientation θ, ⌊.⌋ denotes a truncation operator that sets all negative values to zero, τ is a

hard noise threshold, and e is a small constant used to avoid division by zero. This feature

representation is robust to low levels of image noise and provides improved localization

of structural information [57]. There are several drawbacks to this representation. First,

the weighting function used has limited sensitivity to structural characteristics with high

structural significance, which is important in capturing and distinguishing fine structural

detail. The weighting function used by Kovesi also has some counterintuitive characteristics

that affect the reliability of the feature representation. Furthermore, the method proposed

by Kovesi for estimating local phase order runs into problems in situations characterized

by low signal-to-noise ratios.
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Mellor et al. [40, 41] proposed the use of local phase obtained using complex wavelets

directly as a basis for feature representation.

φn(x) = tan−1
(

(f(x) ∗ Je
n(x))

(f(x) ∗ Jo
n(x))

)

(3.10)

where Je
n(x) and Jo

n(x) are the even-symmetric and odd-symmetric wavelets at scale n. The

key advantage to the use of local phase representations over other representations is the

fact that it is largely independent of intensity. Thus, it is highly robust to the presence of

image non-uniformities. There are major drawbacks to this representation. First, the local

phase is not directly comparable for images acquired using different imaging modalities [66],

thereby requiring more computationally complex techniques such as mutual information for

similarity analysis. Secondly, these local phase representations provide no information on

structural significance, thus placing no importance on significant structural characteristics.

Finally, image noise is not accounted for.

Fauquer et al. [56] proposed a feature representation created based on the sum of

products of subband amplitudes ρ extracted using Dual-tree complex wavelets [58]. While

this representation accounts for image noise, it is solely based on amplitudinal information,

making it sensitive to image non-uniformities. Liu et al. [59] and Hemmendorff et al. [60]

proposed the use of local phase gradients for feature representation. The main disadvantage

of such representations is that the computation of local phase gradients is heavily dependent

on maximum local amplitude, making it sensitive to image non-uniformity. Furthermore,

these representations do not account for image noise.

Based on the aforementioned complex wavelet representations, it can be seen that the

main advantage to such methods is that they are highly robust to image non-uniformities,

which is very important for the purpose of registering images acquired using different

modalities. However, current representations are highly sensitive to situations character-

ized by low signal-to-noise ratios and some are sensitive to intensity mappings. Therefore,

a complex wavelet representation that is highly robust to image noise is desired.

3.3 Representation Based on Complex Phase Rela-

tionships

Images acquired using different modalities have different intensity mappings for the same

content, making them difficult to compare in a direct manner. One possible solution to this

18



problem is to construct representations of the multimodal images that allow for compari-

son independent of the underlying image intensity. A common approach to an intensity-

independent representation of the images is based on its structural characteristics such as

edges and corners. This type of approach assumes that two images obtained of the same

scene using different modalities can have significantly different intensity characteristics but

should have very similar structural characteristics. Therefore, based on this assumption,

the structural characteristics of the disparate images can be compared in a direct fashion.

While previous attempts have been made to develop structural representations using gra-

dient fields, these methods are sensitive to image non-uniformity and can lead to incorrect

alignments. Therefore, a structural representation that is relatively independent of image

non-uniformity is desired.

The approach used in the proposed framework for constructing a structural represen-

tation of the images is to use local phase relationships extracted using complex wavelets to

identify structurally significant characteristics within an image. Local phase relationships

was recently proposed as an effective method for determining structural significance in an

image [57, 63, 67]. This approach to measuring structural significance is based on the the-

ory that the local phase order peaks at locations of high perceptual significance [63]. More

importantly, these points of high perceptual significance coincide with points of high struc-

tural significance within an image. Furthermore, representations based on local complex

phase relationships is largely independent of intensity. These properties make the use of lo-

cal complex phase relationships an effective method for creating a structural representation

of the images that can be evaluated in a direct fashion.

To capture the structural characteristics of images using local complex phase relation-

ships, the representation proposed by Morrone et al. [55] is extended for use with the

Log-Gabor complex wavelet by integrating across different complex wavelet orientations.

For the proposed framework, the structural significance at a point x can be quantified as

the normalized weighted summation of cosine-weighted complex phase deviations from the

amplitude-weighted mean phase φ̄ (x, θ) across α scales and β orientations,

R(x) =

β
∑

q=1

α
∑

s=1

As,θq (x) cos
(

φs,θq (x)− φ̄θq (x)
)

β
∑

q=1

α
∑

s=1

As,θq (x)

. (3.11)

Based on Eq. (3.11), phase order across scales and orientations increases, corresponding to

increasing structural significance, the cosine-weighted complex phase deviations approach
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one and R(x) approaches one as well. Conversely, as phase order decreases, corresponding

to decreasing structural significance, the cosine-weighted complex phase deviations ap-

proach negative one and R(x) approaches negative one as well. As such, it can be seen

that complex phase relationships can be very effective at providing a image representation

that is robust to intensity differences and contrast non-uniformities.

A simplified visualization for the concept of local complex phase order is illustrated in

Fig. 3.6. Suppose that the local complex wavelet components (from different scales) at a

particular point are plotted on a polar plot in the form of a vector sum. When the complex

wavelet components are maximally in phase, the magnitude of the vector sum is equal to

the sum of the individual amplitudes and the local phase order goes to one. Conversely,

as the complex wavelet components go out of phase, the local phase order decreases.

To demonstrate the correspondence between local phase order and structural signifi-

cance, as well as robustness to intensity differences and contrast non-uniformities, a multi-

scale complex wavelet representations of a piece-wise step function are constructed using

a Log-Gabor complex wavelet transform with four scales. The complex wavelet responses

to the piece-wise step function (composed of two steps of different amplitudes) at different

frequencies are shown in Fig. 3.7. The complex wavelet responses across the different fre-

quencies exhibit maximum phase order at the edges of the piece-wise step function. Based

on the complex wavelet responses, the complex wavelet phase representation of the piece-

wise step function is computed and shown in Fig. 3.8. The representation peaks at the edges

of the piece-wise step function where maximum phase order is achieved. This demonstrates

that the correspondence between local phase order and structural significance holds true

for simple structures such as step edges. It can also be observed that the representation

peaks are similar in value, despite the fact that the steps they correspond to have signif-

icantly different amplitudes. This demonstrates that the complex phase representation is

robust to intensity differences and contrast variations.

For a more complex demonstration of correspondence between local phase order and

structural significance, as well as robustness to intensity differences and contrast non-

uniformities, the complex wavelet phase representation of the well-known Shepp-Logan

phantom test image is computed using a 2D Log-Gabor complex wavelet transform with

four scales and six wavelet orientations and bandwidths of two octaves and shown in

Fig. 3.9. The structural information from the phantom test image are well preserved in the

complex phase representation. Furthermore, the structural significance indicated by the

complex phase representation is robust to contrast and intensity differences in the image.

The key benefit of this complex phase representation is that such representations can
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Figure 3.6: Simple visualization of local complex phase order. An and φn represents the

amplitude and phase of the nth wavelet component respectively. φ̄ represents the amplitude-

weighted mean phase. When the complex wavelet components are maximally in phase, the

magnitude of the vector sum (i.e., the dashed line) is equal to the sum of the individual

amplitudes and the local phase order goes to one. Conversely, as the complex wavelet

components go out of phase, the local phase order decreases.
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Figure 3.7: The complex wavelet responses (even-symmetric responses f(x) ∗ Je
s,θ(x) and

odd-symmetric responses f(x) ∗ Jo
s,θ(x)) to the piece-wise step function f(x) (composed of

two steps of different amplitudes) at different frequencies.

be compared in a direct manner while intensity representations rely on techniques such as

mutual information [27] to determine intensity correspondence relationships between two

images. Hence, this complex phase representation allows for the use of more constrained

similarity objective functions than mutual-information based objective functions. Further

extensions to the complex wavelet phase representation from Eq. (3.11) to improve struc-

tural sensitivity and reduce noise sensitivity is discussed in Section 3.4 and Section 3.5

respectively.

3.4 Structural Sensitivity

A major challenge that needs to be addressed in the design of the complex phase repre-

sentation is in dealing with the poor structural contrast inherent in images captured using
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Figure 3.8: The complex wavelet phase representation R(x) (Eq. (3.11)) of the piece-wise

step function.

certain imaging systems such as fluoroscopy [68] and laser scanning ophthalmoscope [69].

Poor structural contrast makes it difficult to capture and distinguish fine structural detail,

which is very important in quantifying the structural dissimilarities between two images.

One approach to addressing the issues associated with poor structural contrast is to increase

the response sensitivity of the complex wavelet representation to structural characteristics.

Since the proposed complex phase representation relies on complex phase relationships to

capture and distinguish structural characteristics, it is important to first study the be-

havior of the measure R(x) described in Eq. (3.11) with respect to phase order. Let ̟

represent the phase deviation between a phase angle φθ and the amplitude-weighted mean

phase angle φ̄θ,

̟ = φθ − φ̄θ. (3.12)
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Figure 3.9: The complex wavelet phase representation R(x) (Eq. (3.11)) of the Shepp-

Logan phantom test image computed using a 2D Log-Gabor complex wavelet transform

with four scales and six wavelet orientations. The structural information from the phan-

tom test image are well preserved in the complex phase representation. Furthermore, the

structural significance indicated by the complex phase representation is robust to contrast

and intensity differences in the image, as can be seen by the boundaries between the white

and black regions having similar structural significance as the boundaries between the

light-gray and dark-gray regions.

Based on Eq. (3.11), R is proportional to a periodic phase deviation weighting function

Λ = cos(̟). (3.13)

As such, the analysis can be simplified by studying the behavior of Λ. It can be also

observed in Eq. (3.11) that the absolute value of the phase deviation term |̟| decreases as
phase order increases, which corresponds to an increase in structural significance. Further-

more, given the properties of the cosine function, the decrease of |̟| results in an increase

of Λ. Therefore, one can study the response sensitivity of Λ to phase order by taking the

derivative of Λ with respect to ̟,

∂Λ

∂̟
= − sin(̟). (3.14)

A plot of both Λ = cos(̟) and its derivative ∂Λ
∂̟

is shown in Fig. 3.10a. Based on ∂Λ
∂̟

, the

rate of change of Λ near the peak of Λ (where ̟ is minimal and phase order is maximal) is
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very slow and gradual. For example, a reasonably large phase deviation of 37o would still

result in a large value of Λ that is 80% of the maximum value of Λ. This slow, gradual

rate of change near the peak of Λ results in the poor response sensitivity of R(x) to phase

order and consequently to significant structural characteristics.

Figure 3.10: The plots of Λ (top) and its derivative ∂Λ
∂̟

(bottom) for: a) weighting function

proposed by Morrone et al. [55], b) weighting function proposed by Kovesi [65], and c)

proposed weighting function (Eq. (3.15)). The response sensitivity of the proposed weight-

ing function to significant structural characteristics is noticeably higher than the other

weighting functions. It can also be observed that the proposed weighting function does

not suffer from the undesirable phenomenon exhibited by the weighting function proposed

by Kovesi [65], where the function Λ decreases as phase deviation |̟| decreases in certain

regions.

In an attempt to address this issue, Kovesi [65] proposed an alternative periodic phase

deviation weighting function that exhibits a sharper rate of change near the peak of Λ,

as shown in Fig. 3.10. While this weighting function increases the response sensitivity of

R(x) to significant structural characteristics when compared to the cosine weighting func-

tion proposed by Morrone et. al [55], there are two important limitations that need to

be considered. First, the weighting function decreases almost linearly from minimum |̟|
to maximum |̟|. As such, the response sensitivity of the weighting function to phase or-

der, and consequently to significant structural characteristics does not noticeably increase
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as phase order increases. Hence, the weighting function does not emphasize structural

characteristics with high structural significance, which is important in capturing and dis-

tinguishing fine structural detail. More importantly, the weighting function exhibits regions

where the decrease of |̟| actually results in a decrease of Λ, which is counterintuitive. To

address all of the aforementioned limitations associated with the weighting function pro-

posed by Kovesi [65], an alternative periodic weighting function based on the exponential

difference of sinusoids is proposed,

Λ = exp
[

cos(̟)−
∣

∣

∣
sin

(̟

2

)∣

∣

∣

]

− 3

2
. (3.15)

Based on Eq. (3.15), the corresponding derivative ∂Λ
∂̟

can be expressed as,

∂Λ

∂̟
= exp

[

cos(̟)−
∣

∣

∣sin
(̟

2

)∣

∣

∣

]

(

− sin (̟)− 1

2

∂
∣

∣sin
(

̟
2

)∣

∣

∂̟
cos

(̟

2

)

)

. (3.16)

The plots of the proposed weighting function (Eq. (3.15)) and its corresponding deriva-

tive (Eq. (3.16)) are shown in Fig. 3.10c. The proposed weighting function emphasizes

high phase order (low |̟|), as indicated by the high rate of change near the peak of Λ.

Furthermore, the proposed weighting function Λ never decreases as phase deviation |̟|
decreases, thus avoiding the undesirable phenomenon exhibited by the weighting function

proposed by Kovesi [65]. Given this new weighting function Λ, the modified complex phase

representation R(x) can be expressed as,

R(x) =

β
∑

q=1

α
∑

s=1

As,θq (x)
(

exp
[

cos(φs,θq (x)− φ̄θq (x))−
∣

∣

∣
sin

(

φs,θq (x)−φ̄θq (x)

2

)∣

∣

∣

]

− 3
2

)

β
∑

q=1

α
∑

s=1

As,θq (x) + e

,

(3.17)

where e is a small constant to handle situations where all the amplitude components are

zero.

3.5 Noise Sensitivity

Another major challenge that needs to be addressed in the design of the complex phase

representation is in dealing with image noise. Real-world images are also characterized by
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noise, which makes it difficult to capture and distinguish structural detail with which to

quantify the structural dissimilarities between images. As such, it is of great importance

to study the effects of noise on the complex phase representation, as well as devise meth-

ods for reducing the noise sensitivity of the representation to produce meaningful image

representations.

To study the effects of noise in the complex phase representation described in Eq. (3.17),

additive Gaussian noise was applied with standard deviations of σ = {8%, 16%, 22%, 25%}
to a set of images acquired from the NLM Visible Human Project. A summary of the test

images is given below.

1. BMR: Brain, axial, 1mm resolution, PD-weighted MR.

2. PMR: Pelvis, axial, 1mm resolution, T2-weighted MR.

3. TMR: Torso, coronal, 1.875mm resolution, T1-weighted MR.

4. BCT: Brain, axial, 1mm resolution, CT.

5. PCT: Pelvis, axial, 1mm resolution, CT.

6. TCT: Torso, coronal, 1.875mm resolution, CT.

The test images are shown in Fig. 3.11. To provide a quantitative assessment of the noise

sensitivity of the complex phase representation, the peak signal-to-noise ratio (PSNR) and

the mean Structural Similarity (MSSIM) [70] were measured between the complex phase

representations with noise and without noise.

The PSNR and MSSIM results for the tested images are shown in Fig. 3.12 and Fig. 3.13

respectively. The PSNR is noticeably low under all noise scenarios for all test images. Fur-

thermore, the MSSIM is very low for all noise scenarios as well. This means that the

complex phase representation acquired under the noise scenarios provides a poor char-

acterization of the structural information from the original image. The low PSNR and

MSSIM results indicate that the complex phase representation described in Eq. (3.17) is

highly sensitive to image noise, which is undesirable for providing robust feature repre-

sentations with which to quantify structural dissimilarities between images. The complex

phase representations of the BMR and BCT images under the tested noise scenarios are

shown in Fig. 3.14 and Fig. 3.15. The complex phase representations are highly contami-

nated by noise under all noise scenarios. Furthermore, increasing structural degradation is

exhibited in the complex phase representations as the level of noise increases. Therefore,
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Figure 3.11: Test images used for noise sensitivity tests.

improving the robustness of the complex phase representation to image noise is necessary.

In an attempt to address this issue, Kovesi [65] proposed the use of a hard thresholding

scheme to suppress noise characteristics in the constructed representation, where all values

below the noise threshold are set to zero. While this hard thresholding approach decreases

the sensitivity of R(x) to noise, there are two main limitations to this approach. First, it is

difficult to establish a hard noise threshold for noise suppression without losing important

structural information in the constructed representation. Second, since all values below the

hard noise threshold are set to zero, this results in a discontinuous feature representation,

which is often undesirable. To address all of the aforementioned limitations associated with

the weighting function proposed by Kovesi [65], the integration of a bilateral soft thresh-

olding scheme that reduces the effect of noise in the complex phase representation while

still providing a continuous representation for similarity comparison purposes is proposed.

The bilateral soft thresholding scheme can be described as follows. Let the summation
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Figure 3.12: Plots of the PSNR for the tested images (Fig. 3.11) under different noise

scenarios. The PSNR is noticeably low under all noise scenarios for all test images.

of complex phase deviations at point x be denoted by ϑ(x),

ϑ(x) =

β
∑

q=1

α
∑

s=1

As,θq(x)Λ(x). (3.18)

Two general observations can be made with regards to image noise with respect to complex

phase and amplitude relationships. First, in uniform regions within the image where there

is no structural characteristics, the complex phase deviations across all scales from the

amplitude-weighted mean phase should be zero. Therefore, non-zero summations of com-

plex phase deviations in these uniform regions are entirely due to the influence of noise and

should be suppressed accordingly. Second, the distribution of complex amplitude across

multiple scales is generally narrow and skewed towards high frequencies, whereas for strong

structural characteristics the complex amplitudes are generally high and distributed evenly

across scales [71]. Therefore, soft thresholding can be performed by weighting the sum-

mation of complex phase deviations based on the non-zero summations in uniform regions

as well as the distribution of complex amplitude across scales. The bilateral weighting

function W can therefore be expressed as a product of a weighting function Wη(x) related
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Figure 3.13: Plots of the MSSIM for the tested images (Fig. 3.11) under different noise sce-

narios. The MSSIM is very low for all noise scenarios as well. This means that the complex

phase representation acquired under the noise scenarios provides a poor characterization

of the structural information from the original image.

to non-zero summations in uniform regions and a weighting function Wτ (x) related to the

distribution of amplitude across scales,

W (x, y) = Wη(x, y)Wτ (x, y), (3.19)

where Wη(x, y) is governed by the median summation of phase deviations ϑ̄,

Wη(x) =
1

1 + exp
[

ζ(ϑ̄− ϑ(x))
] , (3.20)

where ζ is the Wη decay factor, and Wτ (x, y) is governed by an estimate of how evenly

distributed complex amplitude is across scales [65],
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Figure 3.14: The complex phase representations (Eq. (3.17)) of the BMR test image

(Fig. 3.11) under the tested noise scenarios. The top row shows the test image under

the tested noise scenarios, while the bottom row shows the corresponding complex phase

representations. The complex phase representations of BMR are highly contaminated by

noise under all noise scenarios. Furthermore, increasing structural degradation is exhibited

in the complex phase representations as the level of noise increases.

Wτ (x, y) =
1

1 + exp



ǫτc− ǫτ +
ǫτAmax,θ(x,y)

α
∑

s=1
As,θ(x,y)





. (3.21)

where c is the frequency where Wτ = 0.5 and ǫτ is the Wτ decay factor. Based on testing,

setting c = 0.4 and ǫ = ζ = 10 was found to be effective and is used for all tests.

Eq. (3.20) and Eq. (3.21) show that the penalty increases as the summation of complex

phase deviations decreases to the range characterizing the uniform regions, as well as when

the distribution of complex amplitude narrows respectively.

Using the bilateral soft thresholding scheme described in Eq. (3.19), the final complex

phase representation can be expressed as,

R(x) =

β
∑

q=1

α
∑

s=1
Wθq (x)As,θq (x)Λ(x)

β
∑

q=1

α
∑

s=1
As,θq (x)

. (3.22)

To study the effects of noise in the final complex phase representation with soft thresh-
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Figure 3.15: The complex phase representations of the BCT test image (Fig. 3.11) under

the tested noise scenarios. The top row shows the test image under the tested noise

scenarios, while the bottom row shows the corresponding complex phase representations.

The complex phase representations of BCT are highly contaminated by noise under all

noise scenarios. Furthermore, increasing structural degradation is exhibited in the complex

phase representations as the level of noise increases.

olding described in Eq. (3.22), the same additive Gaussian noise test scenarios used to test

the representation without soft thresholding described in Eq. (3.17) were applied to the

new representation and the PSNR and MSSIM [70] were measured between the complex

phase representations with noise and without noise.

The PSNR and MSSIM results for the tested images are shown in Fig. 4.8 and Fig. 4.9

respectively. The PSNR for the new representation with soft thresholding is significantly

higher than without soft thresholding for all noise scenarios. Furthermore, the MSSIM for

the representation with soft thresholding is significantly higher than without soft thresh-

olding for all noise scenarios. What this means is that the complex phase representation

with soft thresholding provides significantly improved characterization of the structural

information from the original image than without soft thresholding. As such, the com-

plex phase representation with soft thresholding described in Eq. (3.22) is robust to image

noise, which is desirable for providing robust feature representations with which to quan-

tify structural dissimilarities between images. The complex phase representations of the

BMR and BCT images with soft thresholding under the tested noise scenarios are shown

in Fig. 4.10. The complex phase representations are largely free of noise under all noise

scenarios.
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Figure 3.16: Plots of the PSNR for tested images (Fig. 3.11) under different noise scenar-

ios with and without soft thresholding. The PSNR for the new representation with soft

thresholding is significantly higher than without soft thresholding for all noise scenarios.

Unfortunately, the complex phase representation with soft thresholding suffers from

two major limitations, as shown in Fig. 4.10. First, noticeable structural degradation is

exhibited in the complex phase representations at high levels of noise, with representations

acquired above σ = 22% largely unusable for the purpose of image registration due to

significant structural degradation. This is due to the fact that under high levels of noise

it is difficult to distinguish noise from image detail using the thresholding scheme, hence

resulting in important structural characteristics being removed as well. Second, while the

large-scale structural characteristics of the MR and CT images are similar, the MR image

contain differing fine-scale structural characteristics than the CT image due to the proper-

ties of the imaging technologies. These two limitations motivate us to explore multi-scale

approaches to producing feature representations for robust multimodal image registration

even under high levels of noise and fine-scale structural differences between images, which

we will discuss in the following chapter.
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Figure 3.17: Plots of the MSSIM for tested images (Fig. 3.11) under different noise sce-

narios with and without soft thresholding. The MSSIM for the representation with soft

thresholding is significantly higher than without soft thresholding for all noise scenarios.

What this means is that the complex phase representation with soft thresholding provides

significantly improved characterization of the structural information from the original im-

age than without soft thresholding.

3.6 Summary

In this chapter, a novel complex wavelet representation based on phase relationships that

extends upon [65] was presented. The proposed representation was designed to pro-

vide strong response to structurally significant characteristics, robust to contrast non-

uniformities, and robust to noise. Unfortunately, based on a study of noise sensitivity, it

was shown that noticeable structural degradation is exhibited in the complex phase rep-

resentations at high levels of noise. Furthermore, the representation in its current form

does not take into account fine-scale structural differences between images due to the un-

derlying imaging modality. As such, we are motivated to extend the complex wavelet
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representation in subsequent chapters to produce feature representations for robust multi-

modal image registration even under high levels of noise and fine-scale structural differences

between images.
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BMR

BCT

Figure 3.18: BMR and BCT images (Fig. 3.11) (top row of each panel) and the corre-

sponding complex phase representations with soft thresholding (bottom row of each panel)

under the tested noise scenarios. The complex phase representations of the BMR and

BCT images are largely free of noise under all noise scenarios. Unfortunately, noticeable

structural degradation is exhibited in the complex phase representations at high levels of

noise, with representations acquired above σ = 22% largely unusable for the purpose of

image registration due to significant structural degradation.

36



Chapter 4

Probabilistic Multi-Scale

Representations

This chapter describes in detail the overall design and performance analysis of the pro-

posed probabilistic complex phase representation. A introduction to scale space theory is

presented. An overview of existing scale space representations is presented to examine the

challenges and issues that need to be addressed in the design of multi-scale representations.

A probabilistic approach to multi-scale complex phase representation is described in detail.

Finally, the structural localization and noise sensitivity of the probabilistic complex phase

representation are studied.

4.1 Introduction

There are two main limitations to the complex phase representation proposed in Chapter 3.

First, while the complex phase representation is robust to noise, it suffers from significant

structural degradation in situations characterized by low signal-to-noise ratio. As such, the

resulting complex phase representation of images acquired under these high noise scenarios

are poorly suited for the purpose of image registration, where the alignment between

images is determined by comparing feature representations of the images. Second, images

acquired using different imaging technologies can contain differing structural characteristics

at various scales. For example, CT images provides an excellent characterization of large-

scale bone structures, but does not capture fine-scale tissue structures. Conversely, MR

images provide an excellent characterization of fine-scale tissue structures and a good
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characterization of large-scale bone structures. Therefore, while the large-scale structural

characteristics in MR and CT images are similar, the fine-scale structural characteristics

can differ greatly, which can potentially affect the measure of similarity between the images.

Therefore, registration inaccuracies may arise when using the complex phase representation

proposed in Chapter 3 due to such fine-scale structural differences.

One approach to addressing the two main limitations associated with the complex

phase representation is to extend it into a multi-scale representation through the use of

scale space theory. Scale space theory is a framework for handling the inherent multi-

scale nature of images by representing an image across multiple scales, with an increasing

amount of fine-scale structures removed at each successive scale. One of the motivations

for scale-space theory stems from the idea that, given no prior information about the scale

of structures in an image, the only reasonable course of action is to represent the image at

multiple pre-determined scales [72]. In scale space theory as first formalized by Witkin [73]

and Koenderink and Van Doorn [74], an image f(x) is represented as a single-parameter

family of derived images L(x; t), where t is a scaling parameter that defines the scale of

details being represented. At each scale t, all structures in the image of smaller than a

particular spatial size as governed by t are suppressed at the corresponding scale-space level.

The scale-space representation L(x; t) of f(x) at a particular scale t can be alternatively

formulated as the weighted integral over a local neighborhood ̺ around x in f(x),

L(x; t) =

∫

a∈̺

w(a, x; t)f(a) da, (4.1)

where w(a, x; t) is a weighting function that determines the contribution of a to the com-

putation of L(x) at scale t.

The use of scale-space representations allows image characteristics to be compared

across multiple scales to reduce the effects of small-scale local geometric and noise dis-

tortions on the comparison process. For example, comparisons at fine scales are highly

sensitive to local variations in position and orientation as well as noise, whereas com-

parisons at coarse scales are more robust to these local geometric and noise distortions.

However, comparisons at fine scales allow for greater discrimination capabilities that help

differentiate image characteristics that look similar at coarse scales. Therefore, a fine bal-

ance between image discrimination capabilities and robustness to local geometric and noise

distortions can be achieved by taking multiple scales into account. Furthermore, the use of

scale-space representations allows for greater robustness to fine-scale structural differences

between images acquired using different imaging modalities during the comparison process.
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4.2 Existing Scale Space Representations

Given the benefits of scale space theory for robust image representation, several scale

space representations have been proposed over the years. Scale space representations can

be generally divided into two main groups: i) linear, and ii) nonlinear.

4.2.1 Linear Scale Space Representations

In linear scale space representations, an image is decomposed into a family of derived images

based on a linear scale space operator. The most common linear scale space representation

is the Gaussian scale space representation first formalized by Witkin [73] and Koenderink

and Van Doorn [74]. Given an image f(x), the Gaussian scale space representation L(x; t)

is defined as the convolution of L(x; 0) = f(x) and a scale-dependent Gaussian weighting

function w,

w(a; t) =
n
∏

i=1

1√
2πt

exp

[

−a2i
2t

]

. (4.2)

Furthermore, several criteria for space space representations were also presented [74]:

Causality: A structure at a coarse scale must exist at a finer scale. New structures must

not be introduced going from a finer scale to a coarser scale.

Homogeneity and Isotropy: The scale space operator is required to be space and scale

invariant.

The causality criterion guarantees that fine-scale structures are removed in a monotonic

fashion as the scale increases, which is very important for clear discrimination between

structures of different scales. This causality criterion is generally considered the most im-

portant criterion of scale space theory. On the other hand, the homogeneity and isotropy

criterion was simply introduced by Koenderink and Van Doorn for the sake of analytical

simplicity [74] and is generally not considered a requirement of scale space theory. The

main advantage of Gaussian scale space representations is its computational and theoretical

simplicity. Furthermore, the properties and characteristics of linear Gaussian scale space

theory has been well-studied [75, 76], with alternative discrete Gaussian scale space repre-

sentations being proposed that provided improved computational advantages over simple

sampled Gaussian scale space representations [77].
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The Gaussian scale space representations (Eq. (4.2)) of the PD-weighted MR and CT

images used in Section 3.5 are shown in Fig. 4.1. There are two observations that can be

made that illustrate the fundamental limitation of linear scale space representations. First,

the large-scale structures at coarse scales are poorly localized when compared to their true

locations in the original image, where well-localized structures refer to sharp structures

that coincide with the true locations of the structures in the image. Second, much of the

corner information exhibited in the original images is removed at coarse scales. This makes

extracting meaningful structural information at coarse scales for comparison purposes dur-

ing the image registration process very challenging. The significant structural degradation

exhibited in the Gaussian scale space representations is largely due to the fact that the

Gaussian scale space operator diffuses pixel intensities in an isotropic fashion, regardless

of the underlying image content. As such, pixel intensities from different structures are

combined together, thus violating the boundary between the structures and resulting in

the poor structure localization and corner destruction. An additional limitation of the

Gaussian scale space representation, which will be illustrated in Section 4.6, is its sensi-

tivity to high levels of noise at fine scales, which is one of the issues with the complex

phase representation. This sensitivity to high levels of noise is due to the fact that the

local information redundancy upon which the Gaussian scale space operators rely on is

insufficient to provide a good scale space estimates of the original image content under

such situations. The noise sensitivity of Gaussian scale space representations will further

studied in Section 4.6.

4.2.2 Nonlinear Scale Space Representations

To address the limitations of linear scale space representations, a new class of nonlinear

scale space representations was introduced [78–82]. In nonlinear scale space representa-

tions, an image is decomposed into a family of derived images based on a nonlinear scale

space operator. Given that the limitations of the linear scale space representations stem

largely from the structure delocalizing and distorting nature of isotropic diffusion, a major-

ity of existing nonlinear scale space representations extend from the isotropic diffusion in

a non-linear fashion to better preserve meaningful structural information at coarse scales.

The generalized diffusion equation can be expressed as

∂L

∂t
= c(x; t)∇2L+∇ · (c∇L), (4.3)

where c(x; t) is the diffusion coefficient and ∇ is the gradient. In the case of isotropic
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MR

CT

Figure 4.1: Gaussian scale space representation (Eq. (4.2)) of PD-weighted MR and CT

axial brain images at different scales. The large-scale structures at coarse scales are poorly

localized when compared to their true locations in the original images.
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diffusion, c(x; t) is set to a constant.

One of the most popular nonlinear scale-space representations is that proposed by

Perona and Malik [78], where they make the claim that there was no reason why the

homogeneity and isotropy criterion introduced by Koenderink and Van Doorn [74] was a

necessary requirement of scale space theory. Furthermore, Perona and Malik reason that,

in addition to the causality criterion, two other important criteria must be considered to

obtain meaningful multi-scale space space representations of images [78]:

Immediate Localization: The structures at each scale should be sharp and coincide

with the true locations of the structures in the image.

Piecewise Smoothing: Intraregion smoothing should have preference over interregion

smoothing at all scales.

Both of these criterions indicate that structural characteristics should be well preserved at

their corresponding scales, which is not satisfied by the structure delocalizing and distorting

nature of isotropic diffusion. In an attempt to satisfy these criteria, Perona and Malik

proposed the use of a non-negative diffusion coefficient in Eq. (4.3) that is a function of

the gradient magnitude,

c(x; t) = h (‖∇L(x; t)‖) . (4.4)

In the 2D case, Perona and Malik proposed the use of the following diffusion coefficient,

c(x, y; t) = exp

[

−
(∇L(x, y; t)

κ

)2
]

, (4.5)

where κ is the decay constant. This diffusion coefficient c(x, y; t) possesses two important

behavioral characteristics that are important for satisfying the scale space criteria de-

scribed by Perona and Malik. First, the diffusion coefficient c(x, y; t) preserves structures

by limiting diffusion when the gradient ∇L(x, y; t) is large, thus satisfying the immedi-

ate localization criterion. Second, the diffusion coefficient c(x, y; t) promotes intraregion

smoothing by allowing for greater diffusion in directions of lower gradient, thus satisfy-

ing the piecewise smoothing criterion. The discrete nonlinear diffusion-based scale space

representation as described by Perona and Malik for 2D cases can be expressed as
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L(x, y; t) = L(x, y; t− 1) + λ

(

∑

i

∑

j

c(x+ i, y + j; t)∇L(x+ i, y + j; t− 1)

)

, (4.6)

L(x, y; 0) = f(x, y), (4.7)

The main advantage of nonlinear diffusion-based scale space representations such as that

presented in Eq. (4.6) is that they provide better structural preservation at different scales,

which is important for providing meaningful structural information for comparison pur-

poses during the image registration process.

The nonlinear diffusion-based scale space representations of the PD-weighted MR and

CT images used in Section 3.5 are shown in Fig. 4.2. The structures are noticeably better

preserved in the nonlinear diffusion-based scale space representations at coarse scales when

compared to the Gaussian scale space representations. Unfortunately, the structures at the

coarser scales start to become delocalized and the corner information is removed as with

the case of Gaussian scale space representations, thus violating the immediate localization

criterion at coarser scales. This structural degradation at coarser scales is largely due to

the fact that nonlinear diffusion relies entirely on local information redundancy, which is

insufficient for maintaining structural detail at the coarser scales. Furthermore, like the

Gaussian scale space representation, nonlinear diffusion-based scale space representations

are sensitive to high levels of noise at fine scales, which is one of the issues with the complex

phase representation and is also attributed to the fact that the local information redun-

dancy upon which the nonlinear diffusion-based scale space operators rely on is insufficient

to provide a good scale space estimates of the original image content under such situations.

The noise sensitivity of the nonlinear diffusion-based scale space representations will be

studied in Section 4.6.

Given the limitations of current linear and nonlinear scale space representations un-

der high noise scenarios, one is motivated to add the following criterion for scale space

representations:

Noise Robustness: The resulting scale space representation should not be influenced by

the presence of noise at all scales.

Furthermore, given that the two major limitations of nonlinear diffusion-based scale space

representations are both associated with the limitations of local information redundancy,

one is motivated to explore alternative nonlinear multi-scale representations that are able

to utilize global information redundancy from the entire image to provide better structural

preservation and localization at coarse scales and greater robustness to noise.
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CT

Figure 4.2: Nonlinear diffusion-based scale space representation (Eq. (4.6) of PD-weighted

MR and CT axial brain images at different scales. The structures are noticeably bet-

ter preserved in the nonlinear diffusion-based scale space representations at coarse scales

when compared to the Gaussian scale space representations (Fig. 4.1). Unfortunately, the

structures at the coarser scales starts to become delocalized and the corner information

is removed as with the case of Gaussian scale space representations, thus violating the

immediate localization criterion at coarser scales.
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4.3 Probabilistic Multi-Scale Representation

The underlying assumption behind scale space theory is that structural characteristics of

an image, as well as noise, are monotonically reduced by averaging an increasing number

of samples together to provide a scale space estimate of the image f(x). Based on this

assumption, scale space representations rely on information redundancy within the image

itself to reduce the visibility of image structures and noise. When taken in the context of

the generalized scale space formulation in Eq. (4.1), nonlinear scale space representations

(e.g., Eq. (4.6)) employ nonlinear weighting functions for w(a, x; t) that adapt the contri-

bution of a based on f(x). There are two main limitations of existing nonlinear scale space

representations. First, structures become delocalized and degraded at the coarser scales

since the local information redundancy is insufficient for maintaining structural detail at

the coarser scales. Second, existing nonlinear scale space representations generally perform

poorly in situations characterized by low signal-to-noise ratios since the local information

redundancy is insufficient to provide good scale space estimates of the original image con-

tent. Given that both issues associated with existing nonlinear scale space representations

are due to the limitations of local information redundancy, one is motivated to extend the

concept of nonlinear scale space representation to utilize global information redundancy

by considering the space F of all pixels within f(x) when computing the nonlinear scale

space representation L(x; t),

L(x; t) =

∫

a∈F

w(a, x; t)f(a) da. (4.8)

Unfortunately, computing L(x; t) based on Eq. (4.8) is computationally infeasible in a

deterministic manner. To address this computational issue, an alternative approach is

proposed to instead compute a probabilistic estimate of L(x; t) as described in Eq. (4.8)

using a probabilistic sampling approach. Consider a random field S representing all possible

pixels within f(x). If we were to take m random samples ξ
1
, . . . , ξ

m
from a distribution p,

the probabilistic estimate of L(x; t) can be computed as

L̂(x; t) =
m
∑

i=1

w(ξ
i
, x; t)f(ξ

i
). (4.9)

The main advantage of the proposed probabilistic approach to multi-scale representation

shown in Eq. (4.9) is that it is much more computationally efficient to compute than the
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extended nonlinear scale space representation described in Eq. (4.8), given that a relatively

small sample set is sufficient for attaining similar benefits of global information redundancy.

There are two main issues that need to be addressed in constructing the probabilistic

multi-scale representation as described in Eq. (4.9). First, the choice of distribution p

used for drawing samples from is very important for obtaining a consistent estimate of

representation L(x; t). A poorly chosen p can result in high estimation variance and incon-

sistent estimates. Second, the design of a nonlinear weighting function w(ξ
i
, x; t) that pre-

serves large-scale structural localization while suppressing noise and fine-scale structures

at coarser scales is needed. To address the issue of sampling distribution, an adaptive

rejection sampling strategy is proposed to obtain a relevant sample set for constructing

the probabilistic representation in a consistent manner, as described in Section 4.3.1. To

address the nonlinear weighting function design issue, an adaptive weighting scheme is

proposed based on the neighborhood gradient between ξ
i
and x.

4.3.1 Adaptive Rejection Sampling

As discussed in Section 4.3, one issue faced in the construction of probabilistic representa-

tions is the choice of a distribution p from which to draw random samples. A poorly chosen

distribution can result in too many irrelevant samples being generated from S that con-

tribute little useful information to the construction of L(x; t). Not only does this increase

unnecessary computational overhead, but can also lead to undesirably high estimation

variance. Therefore, a choice of p that yields the most relevant samples to the estimation

of L(x; t) is desired to reduce estimation variance and improve computational efficiency.

Unfortunately, the distribution p that provides a consistent estimate of scale space

representation L(x; t) is unknown and can vary greatly depending on the underlying image

content. However, such a distribution should satisfy certain conditions. First, since the

underlying goal of probabilistic multi-scale representation is to reduce structures and noise

in a successive manner using global information redundancy, intuitively, the samples drawn

from S based on p should have high information redundancy with x. Second, structures

with high information redundancy are typically within relatively close spatial proximity to

each other. Therefore, the samples drawn from S based on p should be more likely within

relatively close spatial proximity to x. Based on these two conditions that the distribution

p should satisfy, an adaptive rejection sampling strategy that allows samples to be drawn

from such a distribution is proposed.

The proposed adaptive rejection sampling strategy can be described as follows. To draw
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a random sample ξ from a distribution p, a sample χ is first drawn from an exponential

instrumental distribution q that adapts based on the spatial proximity and statistical

similarity between x and all other sites within f(x),

q(χ|x) =
exp

[

−
∣

∣x− χ
∣

∣

2 (
σ2(χ)− σ2(x)

)2
]

∑

χ

exp
[

−
∣

∣x− χ
∣

∣

2 (
σ2(χ)− σ2(x)

)2
] , (4.10)

where σ2(·) is the local spatial variance and | · | is the Euclidean spatial distance between x

and χ. The adaptive instrumental distribution described in Eq. (4.10) promotes the draw-

ing of samples that are within close spatial proximity and have high statistical similarity,

which are more likely to share high information redundancy with x.

While the instrumental distribution q promotes samples with higher statistical simi-

larity and close spatial proximity to x, there is no guarantee that the samples have high

information redundancy. To address this issue, the information redundancy between the

sample χ drawn from the instrumental distribution q and x is then evaluated based on the

cumulative Gaussian-weighted squared gradient Φ between the local neighborhoods ̺x and

̺χ,

Φ(̺x, ̺χ) =
∑

̺

wg(̺) ·
(

f(̺χ)− f(̺x)
)2

. (4.11)

where wg is the Gaussian weighting function. Based on Eq. (4.11), the sample χ is accepted

or rejected based on the following condition,

Φ(̺x, ̺χ) < τ. (4.12)

where τ is the rejection threshold. The rejection threshold τ should be adapted based

on the underlying image content to better preserve structures as well as suppress noise.

For images with low noise, more irrelevant samples (smaller τ) should be pruned, however

for images characterized by high levels of noise, there is a greater tolerance for sample

variation, and therefore an increased τ to preserve more samples. To accommodate for

these variations, τ is adjusted based on an estimate of noise variance,

τ =
1

2
σn

2. (4.13)
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If the condition in Eq. (4.12) holds, then the sample χ is accepted as a realization of

p. If the condition does not hold, then χ is rejected. The rejection sampling process is

repeated until an upper bound for sampling q has been reached, resulting in the final set

of m samples ξ
1
, . . . , ξ

m
for reconstructing L(x; t).

4.3.2 Adaptive Weighting Function

As discussed in Section 4.3, the second issue faced in the construction of probabilistic

multi-scale representations is the design of a nonlinear weighting function w(ξ
i
, x; t). The

nonlinear weighting function should achieve three important goals. First, the weighting

function should maintain structural localization and avoid structural degradation at coarse

scales so that the immediate localization and piecewise smoothing criteria are met. Sec-

ond, the weighting function should provide good effective noise suppression such that the

resulting scale space representation is not influenced by the presence of noise at all scales,

thus satisfying the noise robustness criterion. Third, the weighting function should remove

structural information from the image in a monotonic fashion as the scale increases. By

introducing no new structures going from a finer scale to a coarse scale, the causality cri-

terion is satisfied. As such, the nonlinear weighting function used in the construction of

the probabilistic representation needs to be designed to achieve all three goals.

Recall that to maintain structural localization and avoid structural degradation at

coarse scales while suppressing noise at fine scales, a nonnegative exponential diffusion

coefficient was introduced in the nonlinear diffusion-based scale space representations pro-

posed by Perona and Malik [78],

c(x, y; t) = exp

[

−
(∇L(x, y; t)

κ

)2
]

, (4.14)

where κ is the decay constant. This diffusion coefficient limits diffusion when the gradient

is large and promotes diffusion in directions of lower gradient, thus preserving structural

characteristics within an image. Interpreting the diffusion coefficient as a nonlinear weight-

ing function, the contribution of a sample ξ to the construction of L(x; t) is proportional

to the image gradient. Inspired by the diffusion coefficient proposed by Perona and Ma-

lik, a nonlinear weighting function w(ξ, x) based on the concept of squared neighborhood

gradient ∇̺ is introduced,
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w(ξ, x) = exp

[

−
(∇̺(ξ, x)

κ

)]

, (4.15)

where κ is the decay constant and the neighborhood squared gradient ∇̺ is defined as the

cumulative Gaussian-weighted squared gradient between the local neighborhoods ̺x and

̺χ as defined in Eq. (4.11). Finally, to accommodate for monotonic structural reduction

as the scale increases, we replace the decay constant κ with a diffusion function κ(t) based

on the scaling parameter t,

κ(t) = ηt. (4.16)

where η is the diffusion multiplier constant. Based on κ(t), the final nonlinear weighting

function w(ξ
i
, x; t) can be expressed as

w(ξ, x; t) = exp

[

−
(∇̺(ξ, x)

ηt

)]

. (4.17)

4.4 Probabilistic Complex Phase Representation

Based on the m samples ξ
1
, . . . , ξ

m
drawn using the adaptive rejection sampling scheme

introduced in Section 4.3.1 and the nonlinear weighting function w(ξ
i
, x; t) introduced in

Section 4.3.2, the probabilistic representation L(x; t) of an image f(x) can be computed as

L̂(x; t) =
m
∑

i=1

w(ξ
i
, x; t)f(ξ

i
). (4.18)

The probabilistic representations of the PD-weighted MR and CT images used in Sec-

tion 3.5 are shown in Fig. 4.3, with the upper bound for sampling p set to a maximum of

100 iterations. The structures are significantly better preserved and localized in the prob-

abilistic multi-scale representations at coarse scales when compared to the Gaussian and

nonlinear diffusion-based scale space representations, thus better satisfying the immediate

localization criterion at coarser scales. This is most noticeable in the CT image, where the

large scale bone structures are well preserved and localized at all scales. This improved

structural preservation and localization at coarser scales is largely due to the fact that the

probabilistic multi-scale representation relies on the global information within an image,
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MR

CT

Figure 4.3: Probabilistic representation (Eq. (4.18)) of PD-weighted MR and CT axial

brain images at different scales. The structures are significantly better preserved and lo-

calized in the probabilistic representations at coarse scales when compared to the Gaussian

(Fig. 4.1) and nonlinear diffusion-based (Fig. 4.2) scale space representations.
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Figure 4.4: Plots of the structural delocalization ǫν of the complex phase representations

for the tested images (Fig. 3.11) at different scales. The structural delocalization of the

complex phase representations constructed using linear Gaussian scale space and nonlinear

diffusion-based scale space increases significantly as scale increase. On the other hand,

the structural delocalization of the probabilistic complex phase representations remains

relatively low and constant at all scales for all test cases.
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which provides greater information redundancy to better maintain structural detail at the

coarser scales.

Given that the underlying goal is to extend the complex phase representation proposed

in Chapter 3 into a multi-scale representation through the use of the proposed proba-

bilistic theory, the final probabilistic complex phase representation can be constructed by

computing the complex phase representation R(x) (Eq. (3.22)) of L(x; t) at each scale t,

R(x; t) =

β
∑

q=1

α
∑

s=1
Wθq (x;t)As,θq (x;t)

(

exp

[

cos(φs,θq (x;t)−φ̄θq (x;t))−

∣

∣

∣

∣

sin

(

φs,θq
(x;t)−φ̄θq

(x;t)

2

)
∣

∣

∣

∣

]

−
3
2

)

β
∑

q=1

α
∑

s=1
As,θq (x;t)

, (4.19)

where As,θ(x; t) and φs,θ(x; t) is computed for L(x; t) at each scale t according to Eq. (3.4)

and Eq. (3.5) respectively,

As,θ(x; t) =

√

(

L(x; t) ∗ Je
s,θ(x)

)2
+

(

L(x; t) ∗ Jo
s,θ(x)

)2
, (4.20)

and,

φs,θ(x; t) = tan−1

(

L(x; t) ∗ Je
s,θ(x)

L(x; t) ∗ Jo
s,θ(x)

)

. (4.21)

An algorithmic summary of the proposed probabilistic complex phase representation is

presented in Algorithm 1.

Algorithm 1 Probabilistic complex phase representation

1: for t = 1 to NUMSCALES do

2: Compute probabilistic multi-scale representation Lf and Lg (4.9) for f and g.

3: Compute complex amplitude Af , Ag (4.20) and phase φf , φg (4.21) for Lf and Lg.

4: Compute complex phase representation Rf , Rg from (Af ,φf ) and (Ag,φg) (4.19).

5: end for

By constructing the multi-scale complex phase representation based on the probabilistic

framework, structural characteristics should be better localized and preserved at coarse

scales, while attaining robustness to scenarios characterized by low signal-to-noise ratios

at fine scales. To validate claims of immediate localization, the structural localization of the

probabilistic complex phase representation will be studied in Section 4.5. Furthermore, to

validate claims of noise robustness, the noise sensitivity of the probabilistic complex phase

representation will be studied in Section 4.6.

52



Figure 4.5: The multi-scale complex phase representations of the PMR test image at differ-

ent scales constructed using Gaussian and nonlinear diffusion-based scale spaces, and the

proposed probabilistic framework. The structural characteristics in the image are signifi-

cantly better localized in the probabilistic complex phase representations at coarse scales

when compared to the Gaussian and nonlinear diffusion-based scale space representations.
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Figure 4.6: The multi-scale complex phase representations of the BMR test image at dif-

ferent scales constructed using Gaussian and nonlinear diffusion-based scale spaces, and

the proposed probabilistic framework. The fine scale tissue structures are reduced mono-

tonically while large scale structures remain localized as scale increases.
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4.5 Structural Localization

To validate that the probabilistic complex phase representation described in Eq. (4.19)

satisfies the immediate localization criterion, studying the localization of structures at dif-

ferent scales is important. This is accomplished by constructing the probabilistic complex

phase representations for a set of real medical image images acquired from the NLM Visible

Human Project described in Section 3.5. For comparison purposes, scale space complex

phase representations using linear Gaussian scale space and nonlinear diffusion-based scale

space were also constructed.

Given the constructed complex phase representations, designing a measure of structural

localization is necessary in order to perform a quantitative analysis between the different

multi-scale representations. According to the immediate localization criterion, the loca-

tions of structures at any given scale should also coincide with their locations in the original

image. Therefore, intuitively, all structural information at a particular scale that does not

exist within the original image is considered a result of structural delocalization. Motivated

by this, an effective measure of structural delocalization, ǫ, for the multi-scale represen-

tation at a particular scale t can be defined as the cumulative structural significance of

structures that do not coincide with existing structures in the original image,

ǫ (t) =
∑

x,Rυ(x;0)=0

Rυ(x; t). (4.22)

One issue with this measure of structural delocalization is that it does not take into account

the quantity of actual structural characteristics within the original image. To address this

issue, one should divide the structural delocalization measure in Eq. (4.22) by the quantity

of structures in the original image,

ǫν (t) =
ǫ (t)

∑

x

{Rυ(x; 0) > 0} . (4.23)

The structural delocalization ǫν of the complex phase representations for the tested

images at different scales t are shown in Fig. 4.4. The structural delocalization of the

complex phase representations constructed using linear Gaussian scale space and nonlin-

ear diffusion-based scale space increases significantly as scale increase. On the other hand,

the structural delocalization of the complex phase representations constructed using the

probabilistic framework remains relatively low and constant at all scales for all test cases.
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What this means is that the probabilistic complex phase representation provides good

structural localization at all scales, thus better satisfying the immediate localization cri-

terion than the linear Gaussian and nonlinear diffusion-based scale space complex phase

representations.

The multi-scale complex phase representations of the PMR, BMR, and TCT test im-

ages at different scales are shown in Fig. 4.5, Fig. 4.6, and Fig. 4.7 respectively. The

structural characteristics in the image are significantly better localized in the probabilis-

tic complex phase representations at coarse scales when compared to the Gaussian and

nonlinear diffusion-based scale space representations, thus better satisfying the immediate

localization criterion at coarser scales. This is most noticeable in the BMR test case, where

the fine scale tissue structures are reduced monotonically while large scale structures re-

main localized as scale increases. This improved structural localization at coarser scales is

largely due to the fact that the probabilistic multi-scale representation relies on the global

information within an image, which provides greater information redundancy to better

preserve the true location of structures at the coarser scales.

4.6 Noise Sensitivity

To study the effects of noise on the probabilistic complex phase representation described in

Eq. (4.19), additive Gaussian noise was applied with standard deviations of σ = {8%, 16%, 22%, 25%}
of the dynamic range to the test images used in Section 3.5. To provide a quantita-

tive assessment of the noise sensitivity of the probabilistic complex phase representation

at fine scales, the peak signal-to-noise ratio (PSNR) and the mean Structural Similarity

(MSSIM) [70] were measured between the complex phase representations at scale t = 1

with noise and without noise. For comparison purposes, the noise sensitivity tests were

also performed on multi-scale complex phase representations constructed using Gaussian

scale space and nonlinear diffusion-based scale space. The noise sensitivity analysis was

performed at scale t = 1 for two main reasons. First, the influence of noise on multi-scale

representations are most prominent at fine scales, thus making it representative of the noise

sensitivity of a multi-scale representation. Second, the structural localization at that scale

remains similar across all multi-scale representations, thus allowing for a fair comparison of

noise sensitivity between the different multi-space representations. The PSNR and MSSIM

results for the complex phase representation described in Section 3.5 is shown as a baseline

reference.

The PSNR and MSSIM results for the tested images are shown in Fig. 4.8 and Fig. 4.9
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respectively. The PSNR and MSSIM are noticeably higher for the multi-scale represen-

tations for all noise scenarios than the baseline reference complex phase representation,

thus illustrating the gain in noise robustness when scale space representations are used.

Furthermore, the PSNR and MSSIM of the probabilistic complex phase representations

is noticeably higher than the Gaussian and nonlinear diffusion-based representations. In

particular, the probabilistic complex phase representation exhibited PSNR gains of ap-

proximately 2 dB at σ = 25% in the BMR, BCT, and PCT cases and MSSIM gains

greater than 0.1 at σ = 25% in the BMR and BCT cases. What this means is that the

probabilistic complex phase representation provides an improved characterization of the

structural information from the original image under high levels of noise than the other

tested representations. The multi-scale complex phase representations of the BMR image

under the tested noise scenarios using Gaussian scale space, nonlinear diffusion-based scale

space, and probabilistic framework are shown in Fig. 4.10. While increasing structural

degradation is exhibited in all of the tested multi-scale complex phase representations as

the level of noise increases, the probabilistic complex phase representations are able to

better preserve structural detail at high noise levels when compared to the other tested

multi-scale complex phase representations. Therefore, the proposed probabilistic complex

phase representation is able to better satisfy the noise robustness criterion.

4.7 Summary

In this chapter, a novel probabilistic complex phase representation was presented. The

proposed multi-scale representation was designed to address the issues associated with

robustness to high levels of noise and fine-scale structural differences between images ex-

hibited by the complex phase representation described in Chapter 3. A study of structural

localization demonstrated that the proposed representation provides improved structural

localization at coarse scales when compared to linear and nonlinear diffusion-based scale

space complex phase representations. Furthermore, a study of noise sensitivity showed that

the proposed representation provides improved structural detail preservations at high noise

levels when compared to the other tested multi-scale complex phase representations. Given

the proposed robust feature representation, an image registration method that utilizes this

representation is needed for determining the alignment between images in an automated

manner.
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Figure 4.7: The multi-scale complex phase representations of the TCT test image at dif-

ferent scales constructed using Gaussian and nonlinear diffusion-based scale spaces, and

the proposed probabilistic framework.

58



Figure 4.8: Plots of the PSNR for the tested images (Fig. 3.11) under different noise

scenarios. The PSNR is noticeably higher for the multi-scale representations for all noise

scenarios than the baseline reference complex phase representation, thus illustrating the

gain in noise robustness when multi-scale representations are used. Furthermore, the PSNR

of the probabilistic complex phase representations is noticeably higher than the Gaussian

and nonlinear diffusion-based representations.
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Figure 4.9: Plots of the MSSIM for the tested images (Fig. 3.11) under different noise

scenarios. As with the PSNR results (Fig. 3.13), the MSSIM of the probabilistic complex

phase representations is noticeably higher than the Gaussian and nonlinear diffusion-based

representations.
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Figure 4.10: The multi-scale complex phase representations of the BMR image under the

tested noise scenarios using Gaussian scale space, nonlinear diffusion-based scale space,

and probabilistic framework.
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Chapter 5

Probabilistic Complex Phase

Representation Objective Function

This chapter describes in detail the overall design and performance analysis of the proposed

probabilistic complex phase representation (PCPR) objective function. An introduction

to statistical likelihood as an objective function in the context of comparing probabilistic

complex phase representations is presented. An outlier sensitivity analysis is presented

to examine different error distribution models estimators for use in the proposed PCPR

objective function. The convergence smoothness of the proposed PCPR objective function

is studied and examined in detail. Finally, the sensitivity of the proposed PCPR objective

function to contrast non-uniformities and noise are studied.

5.1 Introduction

Given the probabilistic complex phase representation described in Chapter 4, the next

step is to design an objective function that utilizes such representations for determining

the alignment between images. There are several factors that need to be considered in the

design of the objective function. First, the objective function should be robust to outliers

such as noise and structural artifacts that can affect registration accuracy. Second, the

objective function should ideally result in a monotonic cost function. This is important

as local optimization schemes are dependent on the monotonicity of the underlying cost

function to avoid getting trapped in local maxima. Finally, the objective function should

be computationally efficient to allow for the registration of large images or large volumes

of images within a reasonable time-frame.
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5.2 Statistical Likelihood

The multimodal registration problem can be formulated as a maximization problem,

Topt =argmaxT [Ψ (g(x), f(T (x)))] , (5.1)

where Topt is the optimal transformation that aligns f and g, and Ψ(.) is the objective

function. To incorporate the concept of probabilistic complex phase representations into

the multimodal registration problem, Eq. (5.1) can be rewritten as,

Topt =argmaxT [Ψ (Rg(x; t), Rf (T (x); t))] . (5.2)

One effective approach for solving the registration problem in Eq. (5.2) is to perform maxi-

mum likelihood estimation, where the statistical likelihood of alignment given transforma-

tion T is employed as the objective function Ψ. Let us define the dissimilarity between the

probabilistic complex phase representations at a point x and scale t as the residual error

ε(x; t) between Rg(x; t) and Rf (x; t),

ε(x; t) = Rg(x; t)−Rf (x; t). (5.3)

Let the residual error ε(x; t) be considered a random variable following a probability dis-

tribution p given T ,

ε(x; t) ∼ p(ε(x; t);T ). (5.4)

The maximum likelihood estimate of Topt can be found by maximizing the likelihood func-

tion L(T ) over T ,
ˆTopt = argmaxT L(T ), (5.5)

where the likelihood function L(T ) is defined as

L(T ) =
∏

x

p(ε(x; t);T ). (5.6)

The expression in Eq. (5.5) can equivalently be expressed as the minimization of the neg-

ative log likelihood,

ˆTopt = argminT

(

−
∑

x

log (p(ε(x; t);T ))

)

. (5.7)
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Based on Eq. (5.7), Huber [83] proposed that maximum likelihood estimation can be gener-

alized further by replacing the negative log likelihood function with an estimation function

ρ to form a generalized maximum likelihood-type estimate of T ,

ˆTopt = argminT

(

∑

x

ρ(ε(x; t);T )

)

. (5.8)

As such, the standard maximum likelihood estimation scheme described in Eq. (5.7)

is a special case of the generalized maximum likelihood-type estimation scheme where

ρ(ε(x; t);T ) = − log (p(ε(x; t);T )).

The performance of the generalized maximum likelihood-type estimation scheme de-

scribed in Eq. (5.8) depends heavily on the choice of ρ and can become highly biased

when the residual error ε does not follow the probability distribution assumed by ρ. This

situation is further complicated by the presence of outliers such as noise and structural

artifacts that do not follow the error distribution assumed by ρ. As such, the estimation

function ρ should be chosen such that the generalized maximum likelihood-type estimation

scheme performs well in situations where the residual error ε follows the assumed distri-

bution model but is not heavily influenced by situations where ε falls out of the assumed

distribution model.

5.3 Error Distribution Model Analysis

As described in Section 5.2, the choice of the estimation function ρ is important to the

overall performance of the generalized maximum likelihood-type estimation scheme, as it

influences the assumed error distribution model. In the context of registration, the estima-

tion function ρ should be chosen such that good discrimination is achieved for situations

where the residual error follows the error distribution of the mutual structural charac-

teristics between the images. Furthermore, the estimation ρ should be robust to outliers

caused by noise and structural artifacts that fall outside of the mutual structural charac-

teristics between the images. As such, a study of estimation functions in the context of

outlier influence is important in choosing ρ, as well as indirectly defining the assumed error

distribution model.

A commonly used estimation function in the literature is the quadratic estimation

function,
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ρ (ε(x; t);T ) =
ε(x; t)2

2σ2
, (5.9)

where σ is a scaling parameter. A special case of the quadratic estimation function de-

scribed in Eq. (5.9) is the least squares estimation function when σ = 1. The quadratic

estimation function is the optimal maximum likelihood estimate when the residual error ε

follows a Gaussian distribution,

−∑

x

log (p(ε(x; t);T )) =
∑

x

ρ (ε(x; t);T )

log (p(ε(x; t);T )) = −ρ (ε(x; t);T )
p(ε(x; t);T ) = exp [−ρ (ε(x; t);T )]
p(ε(x; t);T ) = exp

[

− ε(x;t)2

2σ2

]

, if ρ (ε(x; t);T ) = ε(x;t)2

2σ2 .

(5.10)

There are two main advantages to using the quadratic estimation function. First, the

quadratic estimation function provides good error discrimination for situations where the

residual error follows the error distribution. Second, the quadratic estimation function is

computationally efficient. The main problem with the quadratic estimation function is

that it is very sensitive to outliers that deviate from the assumed error distribution model.

One effective approach to studying the influence of outliers on an estimation function is

study the behavior of the first derivative of the estimation function ρ with respect to the

residual error ε [84]. The first derivative ∂ρ/∂ε of the quadratic estimation function ρ is,

∂ρ

∂ε
=

ε(x; t)

σ2
. (5.11)

A plot of ρ (Eq. (5.9)) and the associated ∂ρ/∂ε (Eq. (5.11)) for the quadratic estimation

function is shown in Fig. 5.1. The influence of outliers on the quadratic estimation function

increases linearly and without bound [84]. This makes quadratic estimation functions

behave poorly as the error distribution becomes heavy-tailed due to outliers such as noise

and structural artifacts.

To increase robustness to outliers such as noise and structural artifacts while maintain-

ing the good error discrimination of the quadratic estimation function, one approach is to

design estimation functions whose derivatives, and hence the influence of outliers, tend to

zero as ε→ ±∞. The main advantage of such redescending estimation functions [84–86] is

that they are highly robust to large outliers that do not follow the assumed error distribu-

tion model while still taking outliers that are close to the assumed error distribution model
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Figure 5.1: ρ and the associated ∂ρ/∂ε for the quadratic estimation function. The influence

of outliers on the quadratic estimation function increases linearly and without bound [84].

This makes quadratic estimation functions behave poorly as the error distribution becomes

heavy-tailed due to outliers such as noise and structural artifacts.

into account. To select an appropriate estimation function ρ for use in the generalized

maximum likelihood-type estimation scheme to estimate Topt, the influence of outliers is

analyzed for the following estimation functions:

Tukey’s Biweight [87] :

ρ(ε(x; t);T ) =

{

ε(x;t)2

σ2 − ε(x;t)4

σ4 + ε(x;t)6

3ε(x;t)6
|ε(x; t)| ≤ σ,

1
3

|ε(x; t)| > σ
(5.12)

∂ρ

∂ε
=

{

ε(x; t)
(

1− ε(x;t)2

σ2

)2

|ε(x; t)| ≤ σ,

0 |ε(x; t)| > σ
(5.13)

Hebert-Leahy [88] :

ρ(ε(x; t);T ) = log

(

1 +
ε(x; t)2

σ2

)

(5.14)

∂ρ

∂ε
=

ε(x; t)

1 + ε(x;t)2

σ2

(5.15)
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Geman-McClure [89] :

ρ(ε(x; t);T ) =
ε(x; t)2

σ2 + ε(x; t)2
(5.16)

∂ρ

∂ε
=

2ε(x; t)

σ2 + ε(x; t)2
− 2ε(x; t)3

(σ2 + ε(x; t)2)2
(5.17)

A plot of ρ and the associated ∂ρ/∂ε for the Tukey’s Biweight, Hebert-Leahy, and

Geman-McClure estimation functions are shown in Fig. 5.2. The influence of outliers on

all of the redescending estimation functions, as indicated by ∂ρ/∂ε, decreases towards zero

as ε → 0, thus indicating robustness to outliers that fall outside of the assumed error

distribution. Of the three estimation functions, the Geman-McClure estimation function

provides the best error discrimination in the areas that do fall within the assumed error

distribution model, as evident by the sharper change in ρ with respect to ε near ε = 0 when

compared to the other two estimation functions. Furthermore, based on the plots of ∂ρ/∂ε,

the Geman-McClure estimation function provides a good compromise between the hard

outlier influence threshold exhibited by the Tukey’s Biweight estimation function and the

slow decrease in outlier influence exhibited by Hebert-Leahy estimation function. In terms

of computational complexity, both the Tukey’s Biweight and Geman-McClure estimation

functions have relatively low computational complexity when compared to the Hebert-

Leahy estimation function. Based on these observations, the Geman-McClure estimation

function is chosen for ρ given its good error discrimination, good robustness to large outliers

while still taking moderate outliers into account, and low computational complexity.

Since one of the main disadvantages of the quadratic estimation function is that it

behaves poorly as the error distribution becomes heavy-tailed due to outliers such as noise

and structural artifacts, the assumed error distribution model of the Geman-McClure es-

timation function in the context of the maximum likelihood framework to see how outliers

are handled should be investigated. The error distribution p(e(x; t);T ) assumed by the

Geman-McClure estimation function can be derived as follows,

−
∑

x

log (p(ε(x; t);T )) =
∑

x

ε(x;t)2

σ2+ε(x;t)2
, if ρ ((x; t);T ) = ε(x;t)2

σ2+ε(x;t)2

log (p(ε(x; t);T )) = − ε(x;t)2

σ2+ε(x;t)2

p(ε(x; t);T ) = exp
[

− ε(x;t)2

σ2+ε(x;t)2

]

.

(5.18)
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Figure 5.2: ρ and the associated ∂ρ/∂ε for the Tukey’s Biweight [87], Herbert-Leahy [88],

and Geman-McClure [89] estimation functions.
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Figure 5.3: Error distribution assumed by the Geman-McClure estimation function as

shown in Eq. (5.18). The error distribution has a similar shape to the Gaussian distribution

in the regions near ε = 0. Therefore, it performs much like the quadratic estimation

function when the residual error follows the Gaussian distribution model. However, the

error distribution is characterized by a much heavier tail than the Gaussian distribution,

thus taking the influence of outliers such as noise and structural artifacts into account in

the error distribution model.

A plot of the error distribution p(ε(x; t);T ) assumed by the Geman-McClure estimation

function as shown in Eq. (5.18) is shown in Fig. 5.3. The error distribution has a similar

shape to the Gaussian distribution in the regions near ε = 0. Therefore, it performs

much like the quadratic estimation function when the residual error follows the Gaussian

distribution model. However, the error distribution is characterized by a much heavier

tail than the Gaussian distribution, thus taking the influence of outliers such as noise and

structural artifacts into account in the error distribution model.

Given the Geman-McClure estimation function ρ within the generalized maximum

likelihood-type estimation framework as well as taking the multi-scale nature of prob-

abilistic representations into account, the proposed probabilistic complex phase repre-

sentation (PCPR) objective function can be defined as the following likelihood function

L(T ) (Eq. (5.6)):
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Ψ(g(x), f(T (x))) = L(T ) = exp

[

−
(

γ
∑

t=1

∑

x

(Rg(x; t)−Rf (T (x; θ) ; t))2

σ2 + (Rg(x; t)−Rf (T (x; θ) ; t))2

)]

.

(5.19)

5.4 Convergence Smoothness

An important consideration in the design of an objective function is that the resulting

monotonic cost function should ideally be monotonic to allow for local optimization schemes

to smoothly converge to the global optima. As such, it is of great importance to study the

cost functions produced by the proposed PCPR objective function based on probabilistic

complex phase representations under different geometric distortions.

To study the cost function produces by the proposed PCPR objective function described

in Eq. (5.19), a set of real medical image images acquired from the NLM Visible Human

Project were translated horizontally within the ranges of [−100, 100], [−10, 10], and [40, 50]

(on a pixel basis) and, for a separate set of tests, rotated within the ranges of [−50o, 50o],
and [−10o, 10o]. The cost functions pertaining to the individual translation and rotation

tests are then computed within these ranges. An overview of the translation and rotation

tests are illustrated in Fig. 5.4 using a pair of example cost functions. A summary of the

test image pairs is given below.

1. BMC: Brain, axial, 1mm resolution, PD-weighted MR and CT.

2. PMC: Pelvis, axial, 1mm resolution, T2-weighted MR and CT.

3. TMC: Torso, coronal, 1.875mm resolution, T1-weighted MR and CT.

4. BMM: Brain, axial, 1mm resolution, T1-weighted MR and T2-weighted MR.

5. PMM: Pelvis, coronal, 1mm resolution, T1-weighted MR and PD-weighted MR.

The test images are shown in Fig. 5.5. The normalized mutual information (NMI) [27] and

generalized correlation ratio (CR) [34], both of which are considered to be state-of-the-art

objective functions, were also tested for comparison purposes. Note that the cost functions

produced by NMI and PCPR are negated such that the cost decreases as similarity between
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Figure 5.4: An overview of the translation and rotation tests are illustrated in Fig. 5.4 using

a pair of example cost functions. The y-axis indicates the cost and the x-axis indicates

the geometric distortion. The ground-truth alignment corresponds to zero translation and

zero rotation respectively. Ideally, the cost function should be smooth and reach a global

minimum at the zero point. The regions indicated by the double arrows indicate the

individual translation and rotation tests.

the images increases. NMI was implemented using smoothed histograms computed with

100 intensity bins as specified by Mellor and Brady [41], while CR was implemented as

specified by Roche et al. [34]. Trilinear interpolation was used in all experiments.

The cost functions for the translation ranges of [−100, 100], [−10, 10], and [40, 50] us-

ing NMI [27], CR [34], and the proposed PCPR objective function are shown in Fig. 5.6,

Fig. 5.7, and Fig. 5.8 respectively. The cost functions produced by all three objective

functions are largely smooth and converge to the global optima, as illustrated in Fig. 5.6.

These results demonstrate that the proposed PCPR objective function can provide mono-

tonic cost functions to allow for local optimization schemes to smoothly converge to the

global optima. The rate of change for the cost functions produced by the MI and PCPR

objective functions remain high near the global optima for all cases, while the cost function

produced by the CR objective function has a relatively low rate of change for the PMC,

TMC, and BMM cases.

Fig. 5.7 and Fig. 5.8 provide a closer local view of the cost functions produced using

the three objective functions. The cost functions produced by all three objective functions

remain smooth and monotonic on the local scale, Fig. 5.8. A more telling story is told

in Fig. 5.7, which shows the cost function near the global optima. The global optima
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Figure 5.5: Test images used for convergence smoothness tests.

of the CR and PCPR objective functions coincide with the true alignment between the

images for all cases. However, the global optima of the MI objective function does not

correspond with the true alignment between the images for the BMC and PMC cases,

which is undesirable for the purpose of image registration. These results demonstrate the

effectiveness of the proposed PCPR objective function in determining the true alignment

between images acquired using different imaging modalities.

The cost functions for the rotation ranges of [−50o, 50o] and [−10o, 10o] using NMI [27],

CR [34], and the proposed PCPR objective function are shown in Fig. 5.9 and Fig. 5.10

respectively. The cost functions produced by the NMI and PCPR objective functions are

largely smooth and converge to the global optima for all test cases, as shown in Fig. 5.9.

Unfortunately, the cost functions produced by the CR objective function exhibit noticeable

local optima in the TMC, BMM, and PMM cases. This indicates that the CR objective

function can lead to local optimization schemes not converging to the global optima and is

due to the fact that the functional mapping between the images used by the CR objective

function can vary greatly as we converge to the global optima. Furthermore, as shown in

Fig. 5.10, the global optima of the cost function produced by the CR objective function does

not coincide with the true alignment for the BMC, PMC, and BMM cases. Fortunately,

both the NMI and PCPR objective functions produced global optima that coincide with

the true alignment of the images for all cases. These results demonstrate the effectiveness of

the proposed PCPR objective function in determining the true alignment between images

acquired using different imaging modalities.
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Figure 5.6: Cost functions for the range of -100 to 100 for the tested images using NMI [27],

CR [34], and the proposed PCPR objective function. The cost functions produced by all

three objective functions are largely smooth and converge to the global optima.
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Figure 5.7: Cost functions for the range of -10 to 10 for the tested images using NMI [27],

CR [34], and the proposed PCPR objective function. The global optima of the CR and

PCPR objective functions coincide with the true alignment between the images for all

cases. However, the global optima of the MI objective function does not correspond with

the true alignment between the images for the BMC and PMC cases, which is undesirable

for the purpose of image registration.
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Figure 5.8: Cost functions for the range of 40 to 50 for the tested images using NMI [27],

CR [34], and the proposed PCPR objective function. The cost functions produced by all

three objective functions remain smooth and monotonic on the local scale.
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Figure 5.9: Cost functions for the range of −50o to 50o for the tested images using NMI [27],

CR [34], and the proposed PCPR objective function. The cost functions produced by the

NMI and PCPR objective functions are largely smooth and converge to the global optima

for all test cases. Unfortunately, the cost functions produced by the CR objective function

exhibit noticeable local optima in the TMC, BMM, and PMM cases.
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Figure 5.10: Cost functions for the range of −10o to −10o for the tested images using

NMI [27], CR [34], and the proposed PCPR objective function. The global optima of

the cost function produced by the CR objective function does not coincide with the true

alignment for the BMC, PMC, and BMM cases. Fortunately, both the NMI and PCPR

objective functions produced global optima that coincide with the true alignment of the

images for all cases.
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Figure 5.11: Gradient mask used in contrast non-uniformities test.

5.5 Non-uniformity Sensitivity

Another important consideration in the design of an objective function is robustness to

contrast non-uniformities that can affect registration accuracy. To provide robust reg-

istration in the presence of contrast non-uniformities, the underlying objective function

should be ideally remain smooth and monotonically decrease towards the global optima

even under the influence of contrast uniformities. As such, it is important to study the cost

functions produced by the proposed probabilistic complex phase representation (PCPR)

objective function based on probabilistic complex phase representations under contrast

non-uniformities.

To study the cost function produced by the proposed PCPR objective function de-

scribed in Eq. (5.19) under different contrast non-uniformities, the set of tests conducted

in Section 5.6 were performed after a gradient mask was applied to the images to induce

contrast non-uniformities. The gradient mask used is shown in Fig. 5.11. The gradient

mask is first applied to the first image in each test set and then flipped horizontally be-

fore being applied to the second image. The PMM test images after inducing contrast

non-uniformities using the gradient mask is shown in Fig. 5.12.

The cost functions for the translation ranges of [−100, 100], [−10, 10], and [40, 50] after

contrast non-uniformities using NMI [27], CR [34], and the proposed PCPR objective

function are shown in Fig. 5.13, Fig. 5.14, and Fig. 5.15 respectively. From Fig. 5.13, the

cost functions produced by NMI is largely smooth and converge to the global optima in all

but the PMM test case, where a local optimum is noticeable in the region corresponding

to right translations. Similarly, the cost functions produced by PCPR is largely smooth

and converge to the global optima in all but the PMM test case, where a local optimum is
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Figure 5.12: The PMM test images after inducing contrast non-uniformities using the

gradient mask.

noticeable in the region corresponding to right translations, although the local optima is

noticeably less steep than that produced by NMI. Furthermore, a large and steep optimal

optima is seen in the cost functions produced by CR cost function for the TMC case, and

the global optima is located far from the true alignment in the PMM case. This indicates

that the CR objective function performs poorly when compared to NMI and PCPR in

handling contrast non-uniformities and is due to the fact that the CR objective function

relies on a functional intensity relationship between the images being registered, which

may not exist due to the presence of contrast non-uniformities.

Fig. 5.14 and Fig. 5.15 provide a closer local view of the cost functions produced using

the three objective functions under contrast non-uniformities. From Fig. 5.14, the global

optima produced by NMI and PCPR coincide with the true alignment of the images.

Unfortunately, from Fig. 5.15, the local optima exist in the cost function produced by NMI

and PCPR for the PMM case, indicating that while both methods are robust to contrast

non-uniformities, they are by no means perfect in terms of convergence smoothness under

such situations.

The cost functions for the rotation ranges of [−50o, 50o] and [−10o, 10o] after contrast
non-uniformities using NMI [27], CR [34], and the proposed PCPR objective function are

shown in Fig. 5.16 and Fig. 5.17 respectively. The cost functions produced by the NMI

and PCPR objective functions are largely smooth and converge to the global optima for all

but the PMM test case, where there is a local optima at the region corresponding to right

rotation. Unfortunately, the cost functions produced by the CR objective function exhibit

noticeable local optima in the TMC, BMM, and PMM cases. Furthermore, as shown in
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Figure 5.13: Cost functions for the range of -100 to 100 for the tested images after contrast

non-uniformities using NMI [27], CR [34], and the proposed PCPR objective function. The

cost functions produced by NMI and PCPR are largely smooth and converge to the global

optima in all but the PMM test case, where a local optimum is noticeable in the region

corresponding to right translations. Furthermore, a large and steep optimal optima is seen

in the cost functions produced by CR cost function for the TMC case, and the global

optima is located far from the true alignment in the PMM case.
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Figure 5.14: Cost functions for the range of -10 to 10 for the tested images after contrast

non-uniformities using NMI [27], CR [34], and the proposed PCPR objective function. The

global optima produced by NMI and PCPR coincide with the true alignment of the images.
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Figure 5.15: Cost functions for the range of 40 to 50 for the tested images after contrast

non-uniformities using NMI [27], CR [34], and the proposed PCPR objective function.

Unfortunately, the local optima exist in the cost function produced by NMI and PCPR for

the PMM case.
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Fig. 5.17, the global optima of the cost function produced by the CR objective function does

not coincide with the true alignment for the BMC, PMC, and BMM cases. Fortunately,

both the NMI and PCPR objective functions produced global optima that coincide with

the true alignment of the images for all cases. These results demonstrate the effectiveness of

the proposed PCPR objective function in determining the true alignment between images

acquired using different imaging modalities under contrast non-uniformities.

5.6 Noise sensitivity

Another important consideration in the design of an objective function is robustness to

noise artifacts that can affect registration accuracy. To provide robust registration in the

presence of noise, the underlying objective function should be ideally remain smooth and

monotonically decrease towards the global optima even under the influence of high noise

levels. As such, it is of great importance to study the cost functions produced by the

proposed probabilistic complex phase representation (PCPR) objective function based on

probabilistic complex phase representations under different noise levels.

To study the cost function produced by the proposed PCPR objective function de-

scribed in Eq. (5.19) under different noise levels, the set of tests conducted in Section 5.6

were performed under different additive Gaussian noise scenarios with standard deviations

of σ = {8%, 16%, 22%}.
The cost functions for the translation ranges of [−100, 100], [−10, 10], and [40, 50] for

σ = 8% are shown in Fig. 5.18, Fig. 5.19, and Fig. 5.20 respectively. From Fig. 5.18, the

cost function produced by the NMI objective function begins to exhibit noticeable local

optima in all cases, with the BMM case exhibiting global optima far away from the true

alignment of the images. Furthermore, the presence of local optima in the cost functions

produced using the NMI objective function is seen in Fig. 5.20. This is due to the fact

that the joint and marginal intensity distributions computed in the presence of noise is not

representative of the statistical characteristics of the underlying image content. Since the

computation of NMI relies on reliable joint and marginal intensity distributions, the use of

the NMI objective function is highly sensitive to the presence of noise. The cost functions

produced by the CR and PCPR objective functions remain smooth and monotonically

decreasing towards the global optima in most cases, with the exception of noticeable local

optima in the TMC and BMM cases for the CR objective function seen in Fig. 5.18.

Fig. 5.19 shows the cost function near the global optima for σ = 8%. The global optima

of the CR and PCPR objective functions coincide with the true alignment between the

83



Figure 5.16: Cost functions for the range of −50o to 50o for the tested images after contrast

non-uniformities using NMI [27], CR [34], and the proposed PCPR objective function.

The cost functions produced by NMI and PCPR are largely smooth and converge to the

global optima for all but the PMM test case, where there is a local optima at the region

corresponding to right rotation. Unfortunately, the cost functions produced by CR exhibit

noticeable local optima in the TMC, BMM, and PMM cases.
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Figure 5.17: Cost functions for the range of −10o to −10o for the tested images after

contrast non-uniformities using NMI [27], CR [34], and the proposed PCPR objective

function. The global optima of the cost function produced by CR does not coincide with

the true alignment for the BMC, PMC, and BMM cases. Fortunately, both NMI and

PCPR produced global optima that coincide with the true alignment of the images for all

cases.
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images for all cases, with the exception of the PMC case for CR, showing their robustness

to noise. However, the global optima of the cost functions produced by the NMI objective

function no longer coincide with the true alignment of the images for the BMC, PMC, and

TMC cases.

The cost functions for the translation ranges of [−100, 100], [−10, 10], and [40, 50] for

σ = 16% are shown in Fig. 5.21, Fig. 5.22, and Fig. 5.23 respectively. From Fig. 5.21,

the cost functions produced by the NMI objective function exhibit a strange phenomena,

where the cost function begins to indicate increasing dissimilarity between the images as

they move into alignment. This is due to the fact that the statistical characteristics of

noise has corrupted the statistical characteristics of the underlying image content to a

point where the alignment of the images actually results in reduced mutual information.

Furthermore, the cost functions produced by the NMI objective function exhibit noticeable

local optima both at the global scale and at the local scale seen in Fig. 5.22 and Fig. 5.23.

As with the case of σ = 8%, the cost functions produced by the CR and PCPR objective

functions are largely smooth and monotonically decreasing towards the global optima, with

the exception of noticeable local optima in the BMM case for the CR objective function

seen in Fig. 5.21 on the global scale and Fig. 5.22 on the local scale near the true alignment.

These results demonstrate that the proposed PCPR objective function may be more robust

to high levels of noise than the CR and NMI objective functions.

The cost functions for the translation ranges of [−100, 100], [−10, 10], and [40, 50] for

σ = 22% are shown in Fig. 5.24, Fig. 5.25, and Fig. 5.26 respectively. NMI performs very

poorly under this high noise scenario, exhibiting noticeable local optima and increasing

dissimilarity as the images come into alignment. The cost functions produced by CR now

exhibit local optima near the true alignment for the BMC case, in addition to the local

optima present in the BMM case. As with the previous noise levels, the cost function

produced by PCPR remain largely smooth and converge to the true alignment of the

images. These results further reinforce the claim of noise robustness of PCPR in the

context of multimodal image registration.

5.7 Summary

In this chapter, an objective function based on probabilistic complex phase representations

was presented. The proposed objective function was designed to address the issues asso-

ciated with robustness to outliers such as noise and modality-related artifacts. A study of

convergence smoothness demonstrated that the proposed objective function produced cost
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Figure 5.18: Cost functions for the range of -100 to 100 for σ = 8% for the tested images

using NMI [27], CR [34], and the proposed PCPR objective function. The cost function

produced by NMI begins to exhibit noticeable local optima in all cases, with the BMM case

exhibiting global optima far away from the true alignment of the images. The cost functions

produced by CR and PCPR remain smooth and monotonically decreasing towards the

global optima in most cases, with the exception of noticeable local optima in the TMC

and BMM cases for the CR objective function.
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Figure 5.19: Cost functions for the range of -10 to 10 for σ = 8% for the tested images

using NMI [27], CR [34], and the proposed PCPR objective function. The global optima of

CR and PCPR coincide with the true alignment between the images for all cases, with the

exception of the PMC case for CR, showing their robustness to noise. However, the global

optima of the cost functions produced by NMI no longer coincide with the true alignment

of the images for the BMC, PMC, and TMC cases.
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Figure 5.20: Cost functions for the range of 40 to 50 for σ = 8% for the tested images using

NMI [27], CR [34], and the proposed PCPR objective function. Local optima is present in

the cost functions produced using the NMI objective function.
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Figure 5.21: Cost functions for the range of -100 to 100 for σ = 16% for the tested images

using NMI [27], CR [34], and the proposed PCPR objective function. The cost functions

produced by NMI exhibit a strange phenomena, where the cost function begins to indicate

increasing dissimilarity between the images as they move into alignment. The cost functions

produced by CR and PCPRare largely smooth and monotonically decreasing towards the

global optima, with the exception of noticeable local optima in the BMM case for the CR

objective function.
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Figure 5.22: Cost functions for the range of -10 to 10 for σ = 16% for the tested images

using NMI [27], CR [34], and the proposed PCPR objective function.
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Figure 5.23: Cost functions for the range of 40 to 50 for σ = 16% for the tested images

using NMI [27], CR [34], and the proposed PCPR objective function.
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Figure 5.24: Cost functions for the range of -100 to 100 for σ = 22% for the tested images

using NMI [27], CR [34], and the proposed PCPR objective function. NMI performs very

poorly under this high noise scenario, exhibiting noticeable local optima and increasing

dissimilarity as the images come into alignment. The cost functions produced by CR now

exhibit local optima near the true alignment for the BMC case. As with the previous noise

levels, the cost function produced by PCPR remain largely smooth and converge to the

true alignment of the images.
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Figure 5.25: Cost functions for the range of -10 to 10 for σ = 22% for the tested images

using NMI [27], CR [34], and the proposed PCPR objective function. NMI performs very

poorly under this high noise scenario, exhibiting noticeable local optima and increasing

dissimilarity as the images come into alignment. The cost functions produced by CR now

exhibit local optima near the true alignment for the BMC case, in addition to the local

optima present in the BMM case. As with the previous noise levels, the cost function

produced by PCPR remain largely smooth and converge to the true alignment of the

images. 94



Figure 5.26: Cost functions for the range of 40 to 50 for σ = 22% for the tested images

using NMI [27], CR [34], and the proposed PCPR objective function.

95



functions that are largely smooth with global optima that corresponds with the ground-

truth alignment between the tested images under contrast non-uniformities and high levels

of noise. Given the proposed objective function, the next step is to study the performance

of the proposed objective function for multimodal image registration under different sce-

narios.
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Chapter 6

Registration Results

Given the PCPR objective function proposed in Chapter 5, the next step is to illustrate

the registration performance of the proposed PCPR objective function for multimodal im-

age registration under different scenarios. This chapter provides a performance analysis of

the proposed objective function under different scenarios. First, the registration accuracy

using the PCPR objective function was evaluated under different 2D registration scenar-

ios to assess performance more comprehensively under controlled situations. Second, the

registration accuracy using the PCPR objective function was evaluated under different

volumetric registration scenarios to better assess performance under complex scenarios.

6.1 2D Registration

To facilitate for a more comprehensive performance analysis, different 2D registration sce-

narios were performed using the test image pairs used in Section 5.6. First, registration

accuracy using the PCPR objective function is evaluated under ideal conditions. Sec-

ond, registration accuracy using the PCPR objective function is evaluated under scenar-

ios characterized by contrast non-uniformities to evaluate its robustness to contrast non-

uniformities. Finally, registration accuracy is evaluated under different noise contaminated

scenarios to evaluate its robustness to noise.
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6.1.1 Registration under Ideal Conditions

To study the registration accuracy under ideal conditions (e.g., no noise or contrast non-

uniformities), the test image pairs used in Section 5.6 were distorted and subsequently

registered using the proposed PCPR objective function described in Eq. (5.19). For com-

parison purposes, the NMI [27] and CR [34] objective functions were also tested. A simple

gradient descent optimization scheme is utilized to determine the transformation that aligns

the images together based on these objective functions to allow for a fair comparison be-

tween the tested methods. Each of the test image pairs were subjected to the following

tests:

1. horizontal translations of -80 and 80 pixels, and

2. rotations of -40 and 40 degrees.

This creates a total of 20 test cases. Registration accuracy for all objective functions are

evaluated quantitatively based on the translation registration error and the rotation regis-

tration error for the translation and rotation distortion cases respectively. The translation

registration error is defined as the difference between the alignment translation determined

using the objective function and the ground-truth alignment on a pixel basis. The rotation

registration error is defined as the difference between the alignment rotation determined

using the objective function and the ground-truth alignment on a degree basis.

Histograms of the translation and rotation registration errors for all six test image sets

are shown in Fig. 6.1 and Fig. 6.2 respectively. In Fig. 6.1, all three objective functions

provide low translation registration errors with relatively low error variance. However,

the PCPR objective function provides the lowest mean translation registration error when

compared to the NMI and CR objective functions. In Fig. 6.2, both the NMI and PCPR

objective functions provide zero rotation registration errors in all test cases. Unfortunately,

the CR objective function showed high rotation registration errors as well as a high error

variance. This indicates that the optimization method becomes stuck in local optima in

the CR objective function and is due to the fact that the functional mapping between the

images used by the CR objective function can vary greatly as we converge to the global

optima.

The registration results for the BMM case distorted by a horizontal translation of 80

and the PMM case distorted by a clockwise rotation of 40o are shown in Fig. 6.3 and

Fig. 6.4 respectively. By visual inspection, all three objective functions allowed for good
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Figure 6.1: Histogram of registration error for horizontal translations of -80 and 80 for all

test sets.

Figure 6.2: Histogram of registration error for rotations of 40o and 40o for all test sets.
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Figure 6.3: Registration results for the BMC case distorted by a horizontal translation of

80.

Figure 6.4: Registration results for the PMM case distorted by a clockwise rotation of 40o.

registration accuracy for the BMM case, with the exception of minor misalignment in the

results produced by the NMI objective function. In the PMM case, both the NMI and

PCPR objective functions provided good registration accuracy while the results produced

by the CR objective function remains noticeably misaligned. These results show that in

general both the NMI and PCPR objective functions perform well under ideal scenarios,

while the CR objective function performs poorly in the rotation distortion scenarios.

6.1.2 Registration under Non-uniformity

To study the registration accuracy under contrast non-uniformities, the test image pairs

with contrast non-uniformities used in Section 5.5 were distorted and subsequently regis-

tered using the NMI, CR, and PCPR objective functions. Each of the test image pairs were

subjected to the same distortions as that used in Section 6.1.1 for a total of 20 test cases.

Registration accuracy using all objective functions are evaluated quantitatively based on

the translation registration error and the rotation registration error for the translation and

rotation distortion cases respectively.
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Figure 6.5: Histogram of registration error under contrast uniformities for horizontal trans-

lations of -80 and 80 for all test sets.

Histograms of the translation and rotation registration errors for all six test image sets

are shown in Fig. 6.5 and Fig. 6.6 respectively. In Fig. 6.5, the proposed method provides

the lowest mean translation registration error and error variance when compared to the

NMI and CR objective functions. In Fig. 6.6, the NMI and PCPR objective functions

provide zero translation registration error for all of the test cases. Unfortunately, the CR

objective function showed the highest translation and rotation registration errors as well

as a high error variance. This indicates that the optimization scheme becomes stuck in

local optima in the CR objective function and is due to the fact that the local contrast

non-uniformities result in poor functional mappings between the images used by the CR

objective function.

The registration results for the BMM case distorted by a horizontal translation of

-80 and the BMC case distorted by a counterclockwise rotation of 40o under contrast

uniformities are shown in Fig. 6.7 and Fig. 6.8 respectively. By visual inspection, the NMI

and CR objective functions both performed poorly for the BMM case, with the PCPR

objective function producing good alignment between the images. In the BMC case, both

the NMI and proposed objective functions provided good registration accuracy while the

results produced by the CR objective function remains noticeably misaligned. These results

show that the PCPR objective function provides good registration accuracy in scenarios

characterized by contrast non-uniformities.
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Figure 6.6: Histogram of registration error under contrast uniformities for rotations of 40o

and 40o for all test sets.

Figure 6.7: Registration results for the BMM case under contrast uniformities distorted

by a horizontal translation of -80.

Figure 6.8: Registration results for the BMC case under contrast uniformities distorted by

a counterclockwise rotation of 40o.
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6.1.3 Registration under Noise

To study the registration accuracy under different levels of noise, the test image pairs used

in Section 5.6 were contaminated with additive Gaussian noise with standard deviations

of σ = {8%, 16%, 22%}, distorted, and subsequently registered using the NMI, CR, and

PCPR objective functions. Each of the test image pairs were subjected to same translation

distortions as that used in Section 6.1.1 for a total of 30 test cases. Registration accuracy

for all methods are evaluated quantitatively based on the translation registration error and

the rotation registration error for the translation and rotation distortion cases respectively.

Histograms of the translation registration errors for all six test image sets for the dif-

ferent noise scenarios are shown in Fig. 6.9, Fig. 6.10, and Fig. 6.11. The PCPR objective

functions achieved the lowest mean translation registration errors and error variances un-

der all of the noise scenarios. The CR objective function achieved noticeably higher mean

translation registration errors and error variances when compared with the PCPR objec-

tive function, but is still able to achieve translation registration error within 2 pixels in

at least 60% of the cases. The NMI objective function had the highest mean translation

errors when compared with the CR and NMI objective functions, with zero cases where the

translation registration error is within 2 pixels at noise levels of σ = {16%} and σ = {22%}.
This is due to the fact that the joint and marginal intensity distributions computed in the

presence of noise is not representative of the statistical characteristics of the underlying

image content. Since the computation of NMI relies on reliable joint and marginal intensity

distributions, the NMI objective function is highly sensitive to the presence of noise.

The registration results for the PMC case distorted by a horizontal translation of -80

under additive Gaussian noise with σ = 8% is shown in Fig. 6.12. By visual inspection, the

registration results produced by the NMI objective function is noticeably misaligned, with

the CR objective function producing results with a minor misalignment and the proposed

method producing the correct alignment between the images. The registration results for

the BMM case distorted by a horizontal translation of 80 under additive Gaussian noise

with σ = 16% is shown in Fig. 6.13. Similarly, the registration results produced by the

NMI objective function is noticeably misaligned. Fortunately, the CR and PCPR objective

functions produced the correct alignment between the images. Finally, the registration re-

sults for the TMC case distorted by a horizontal translation of -80 under additive Gaussian

noise with σ = 22% is shown in Fig. 6.14. The registration results produced by the NMI

objective function is noticeably misaligned, with the CR objective function producing re-

sults with a minor misalignment and the proposed method producing the correct alignment

between the images. These results show that the PCPR objective function provides good
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Figure 6.9: Histogram of registration error for σ = 8% for horizontal translations of -80

and 80 for all test sets.

Figure 6.10: Histogram of registration error for σ = 16% for horizontal translations of -80

and 80 for all test sets.
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Figure 6.11: Histogram of registration error for σ = 22% for horizontal translations of -80

and 80 for all test sets.

Figure 6.12: Registration results for the PMC case for σ = 8% distorted by a horizontal

translation of -80.

registration accuracy in scenarios characterized by high noise levels.

6.2 Volumetric Registration

To study the performance of the proposed PCPR objective function under more complex

scenarios, volumetric registration using 9 real patient MR-CT brain volume data sets from

the Whole Brain Atlas [90] (WBA) was performed under different scenarios. The MR

volumes are 256 × 256 × 23 voxels, with a slice thickness of 5mm. The CT volumes are

downsampled to the same voxel dimensions. A summary of each test data set is given below.
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Figure 6.13: Registration results for the BMM case for σ = 16% distorted by a horizontal

translation of 80.

Figure 6.14: Registration results for the TMC case for σ = 22% distorted by a horizontal

translation of -80.
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1. Test 1: MR/PD-CT, 63 year-old male.

2. Test 2: MR/T2-CT, 63 year-old female.

3. Test 3: MR/T2-CT, 45 year-old female.

4. Test 4: MR/T2-CT, 23 year-old female.

5. Test 5: MR/PD-CT, 42 year-old female.

6. Test 6: MR/PD-CT, 75 year-old male.

7. Test 7: MR/T2-CT, 22 year-old male.

8. Test 8: MR/T2-CT, 55 year-old male.

9. Test 9: MR/T2-CT, 71 year-old female.

For testing the objective functions, the following volumetric registration algorithm was

used. Given the optimization problem for multimodal image registration described in

Eq. (5.1), a sequential quadratic programming approach [17] is then employed to solve the

problem, where the estimated transformation T̂ at iteration k can be defined as

T̂k = T̂k−1 + γk−1dk−1, (6.1)

where γ is a non-negative step size and d is the step direction calculated by solving a

quadratic subprogram involving Ψ [17]. The pseudo-code for registering two volumes f

and g is presented in Algorithm 2.

Algorithm 2 Volumetric Registration

Require: Given T0 = I, k = 0

1: repeat

2: Compute similarity Ψ(f(Tk(x)), g(x)).

3: k = k + 1.

4: Estimate T̂k (6.1).

5: until △Ψ < ǫconvergence

6: return T̂k.

For evaluation purposes, the NMI and PCPR objective functions were tested.
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6.2.1 Registration under Noise-free Conditions

The first set of tests studies the registration accuracy using NMI and PCPR under geo-

metric distortion scenarios. Each test data set was distorted using 30 randomly generated

affine transformations, based on the random perturbation of translation coefficients up to

±30mm and all other coefficients up to ±0.1, resulting in a total of 270 test cases. Since

the test image sets used were previously aligned, the gold-standard transformations are

known for all 270 test cases. Registration accuracy for all methods is evaluated quantita-

tively based on the fiducial registration error (FRE), which in our case can be defined by

the root-mean-square error of 60 fiducial points within the region of interest. The fiducial

points were chosen randomly within the regions of interest in the test images as not to bias

the tests towards any of the tested similarity measures.

The registration results for all nine test data sets, totalling 270 test cases, are summa-

rized in Table 6.1. PCPR was capable of achieving noticeably lower FRE when compared

to NMI for all test cases. One contributing factor to this difference in registration error

when compared to NMI is that the intensity relationships between the tested MR and

CT volume data sets are highly complex and nonlinear, making NMI highly non-convex

and difficult to optimize. On the other hand, the structural relationships between the

volume data sets is significantly more straightforward, making PCPR more straightfor-

ward to optimize. Sample registration results using NMI and PCPR for Test 1 shown in

Fig. 6.15. Visually, both NMI and PCPR are capable of providing accurate registration

results. These experimental results demonstrate the effectiveness of the PCPR objective

function for performing non-rigid multimodal image registration on CT and MR images.

6.2.2 Registration under Noise

An important consideration in the design of an objective function for image registration is

that the objective function should be robust to noise artifacts that can affect registration

accuracy. To study the effect of noise on the similarity measures, the set of tests conducted

in Section 6.2.1 for Test 1 were performed with the MR volumes contaminated by 5%, 10%,

15%, and 20% simulated Rician noise, resulting in a total of 120 tests.

The registration results for the Test 1 under the various noise levels, totalling 120 test

cases, are summarized in Table 6.2. The FRE achieved using PCPR remained largely

consistent at all noise levels. On the other hand, the FRE achieved using NMI rose sig-

nificantly as noise levels increased. Sample registration results using NMI and PCPR for
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Before Registration NMI PCPR

Slice 3

Slice 8

Slice 13

Slice 18

Figure 6.15: Sample registration result from Test 1 using NMI and PCPR. For visualization,

slices from the volumes are shown. Contours extracted from the CT volume are overlayed

on the MR volume to visualize the quality of registration. Visually, the MR volumes

warped based on PCPR and NMI appear well aligned with the CT volume.
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Table 6.1: Fiducial registration errors (FRE) of NMI and PCPR for the 9 data sets. A

total of 30 random distortions is tested for each data set, for a total of 270 test cases.

Test Set FRE (mm)

NMI PCPR

Test 1 3.74±0.56 2.21±0.29
Test 2 3.91±0.50 2.09±0.34
Test 3 2.36±0.63 2.31±0.43
Test 4 3.64±0.49 2.08±0.27
Test 5 3.81±0.30 2.31±0.22
Test 6 3.71±0.47 2.40±0.28
Test 7 2.90±0.53 2.57±0.20
Test 8 3.35±0.55 2.39±0.23
Test 9 3.97±0.61 2.12±0.35

20% simulated Rician noise are shown in Fig. 6.16. Visually, PCPR is capable of provid-

ing accurate registration results, while the results produced by NMI appears misaligned.

These experimental results demonstrate the robustness of PCPR to the presence of noise

artifacts.

Table 6.2: Fiducial registration errors (FRE) of NMI and PCPR for Test 1 under different

Rician noise levels for MR volume. A total of 30 random distortions is tested for each noise

level, for a total of 120 test cases.

FRE (mm)

Rican noise 5% 10% 15% 20%

NMI 4.02±0.76 6.73±1.03 9.71±1.64 10.86±2.58
PCPR 2.24±0.35 2.28±0.37 2.34±0.59 2.53±0.62
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Before Registration NMI PCPR

Slice 3

Slice 8

Slice 13

Slice 18

Figure 6.16: Sample registration result from Test 1 using NMI and PCPR under 20%

Rician noise. For visualization, corresponding slices from the volumes are shown. Contours

extracted from the CT volume are overlayed on the MR volume to visualize the quality of

registration. Visually, the MR volume warped based on PCPR appears well aligned with

the CT volume despite noise, while the results produced by NMI appears misaligned.
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Chapter 7

Conclusions

The thesis dissertation presents a robust objective function for registering images acquired

using different imaging modalities. The results of this study demonstrate the improved

registration accuracies under different imaging conditions can be gained using the pro-

posed PCPR objective function when compared to existing objective functions. This thesis

provides a foundation for future research in automatic multimodal image registration by

making several contributions.

7.1 Summary of contributions

The contributions of the dissertation include:

• introduces a novel, robust image representation based on complex phase relationships,

• introduces a novel multi-scale representation based on probability theory that pro-

vides improved structural preservation and localization at coarse scales, as well as

improved noise robustness,

• introduces the concept of probabilistic complex phase representation as the basis for

multimodal image registration,

• provides experimental results demonstrating the effectiveness of the proposed prob-

abilistic complex phase representation at providing improved structural localization

and reduced noise sensitivity when compared to existing linear and nonlinear scale

space representations,
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• proposes an objective function for performing multimodal image registration based

on a Geman-McClure error distribution model between probabilistic complex phase

representations, and

• provides experimental results demonstrating the effectiveness of the proposed objec-

tive function in achieving improved registration accuracies under non-uniformity and

noise conditions when compared to existing objective functions.

7.2 Parallel Research and Impact

While the concept of probabilistic image representations has been investigated in this

dissertation for the purpose of multimodal image registration, the impact of these concepts

span several different areas of image processing and computer vision research. In particular,

the author has applied this concept to the following areas:

Illumination and reflectance separation [91] : A probabilistic sampling approach was

introduced for learning and estimating the underlying illumination from an image,

which in turn was used to estimate the reflectance. This approach takes advantage of

both local and global contrast information to provide better separation of reflectance

and illumination by reducing the effects of strong shadows and other sharp illumina-

tion changes on the estimation process.

Image synthesis [92] : Assuming a Markov random field model, a probabilistic sampling

approach was introduced for learning the conditional posterior distribution of SAR

sea ice data on a regional basis. Based on the learned model, synthetic SAR sea-ice

data and the associated ground-truth segmentations was generated for performing

systematic and reliable objective evaluation of SAR sea-ice image segmentation meth-

ods.

Edge detection [93] : A probabilistic image model was introduced for decomposing im-

ages into multi-scale representations that are robust to noise and provide strong

structural preservation. Based on this model, an edge detection method was intro-

duced that provided strong structural extraction even under high noise scenarios.

Blind decorrelation [94] : A probabilistic sampling approach was introduced for learn-

ing the non-stationary point spread function directly from the SAR data using a
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Fisher-Tippett scatter model. Based on learned point spread function, blind decor-

relation can then be performed on the SAR data to facilitate for improved speckle

reduction.

Keypoint extraction [95] : A probabilistic multi-scale approach was introduced for the

purpose of robust keypoint extraction in high-noise environments. After decomposing

the image using a probabilistic sampling approach, a gradient second-order moment

analysis approach was employed to identify initial keypoint candidates. The final

keypoints and their characteristic scales are determined based on the local Hessian

trace extrema over all scales. By taking advantage of the structural localization and

noise robustness of the multi-scale decomposition, the keypoint extraction approach

was shown to be highly effective at finding unique keypoints under heavy noise.

Image restoration [96, 97] : A probabilistic sampling approach was introduced for

learning a probabilistic model of the image. Based on the learned probabilistic model,

a Bayesian estimation approach was employed to estimate the original image.

Similarly, the concept of complex phase representations investigated in this dissertation

has a broad impact on several different areas of image processing and computer vision

research. In particular, the author has applied this concept to the following areas:

Super-resolution [98] : The super-resolution problem was formulated as a constrained

optimization problem using third-order Markov prior model, and the novel approach

for adapting the priors based on the phase variations of the low-resolution images was

introduced for reconstructing the high-resolution images. This approach was shown

to be effective at preserving visual information in the reconstructed high-resolution

images.

Noise reduction [99] : A phase-adaptive bilateral filtering approach was introduced for

suppressing noise in images. By adapting the constraints of the bilateral kernel

based on the underlying phase information, this approach was shown to be effective

at suppressing image noise while preserving structural information.

Image fusion [100] : A phase-adaptive approach was introduced for fusing different im-

ages together into a single image. By adapting the contribution of information from

different images based on their phase characteristics, this approach can improve the

visualization of important characteristics from different images in the fused image.
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Image segmentation [101] : An active contour segmentation approach was introduced

where phase moment information extracted from the image is used as the external

energy functional. By employing phase moment information, this approach allowed

for robust segmentation under illumination variation scenarios.

7.3 Future Research

The research presented in this dissertation provides a foundation for future research in

automatic multimodal image registration. Three potential research topics that can build

upon the research presented in this dissertation are presented in the following sections.

7.3.1 Stochastic Optimization

For the purpose of this research, we have primarily focused on the design of the objective

function used to determine the alignment between two images. As such, for the optimiza-

tion process used to determine the alignment between two images, we have mainly employed

deterministic optimization approaches. While testing has shown that the cost function pro-

duced by the proposed objective function is reasonably smooth and monotonic compared

to other objective functions for 2D cases, local optima may exist for higher-dimensional

data as well as for more complex geometric distortions. Since deterministic optimization

approaches have a tendency to be trapped in such local optima, as future work, it is worth

investigating the development of stochastic optimization approaches that are more robust

to such local optima.

7.3.2 Joint Multimodal Registration

The proposed objective function is designed for registering multimodal images in a pair-wise

manner. A problem with doing pair-wise registrations to register multiple images is that

the resulting alignment is typically sub-optimal for the entire set of images since internal

consistencies are not maintained between all the images. Therefore, a better approach to

the problem of registering multiple images from different modalities may be to extend the

proposed objective function such that it can be used to register all images in a simultaneous

fashion to improve internal consistency between the images, which will be investigated in

future work.
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7.3.3 Generalized Probabilistic Framework for Signal Represen-

tation

The probabilistic image representation presented in this dissertation marks the beginning

in the development of a generalized probabilistic framework for discrete signal representa-

tion. By representing a signal not as a set of fixed values (e.g., intensity) but as a set of

discrete probability distribution functions (e.g., one probabilistic distribution function per

time instance or pixel site) estimated using probabilistic sampling approaches, statistical

techniques can be employed to facilitate for robust signal processing and computer vision

tasks such as signal restoration, signal enhancement, signal reconstruction, source sepa-

ration, feature extraction, motion tracking and analysis, image synthesis, segmentation,

registration, and classification.
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