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Abstract

This thesis examines the feasibility of assimilgtgpace borne remotely-sensed microwave data into
WATClass using the ensemble Kalman filter. WATGIl&sa meso-scale gridded hydrological model
used to track water and energy budgets of watesshgdavay of real-time remotely sensed data. By
incorporating remotely-sensed soil moisture es@sahto the model, the model’'s soil moisture
estimates can be improved, thus increasing theacgwof the entire model.

Due to the differences in scale between the remaetised data and WATClass, and the need
of ground calibration for accurate soil moisturdimation from current satellite-borne active
microwave remote sensing platforms, the spatiakbdity of soil moisture must be determined in
order to characterise the dependency between thete/-sensed estimates and the model data and
subsequently to assimilate the remotely-sensedidtiiehe model. Two sets of data — 1996-1997
Grand River watershed data and 2002-2003 Roseaar Ratershed data — are used to determine the
spatial variability. The results of this spatialadysis however are found to contain too much error
due to the small sample size. It is therefore menended that a larger set of data with more samples
both spatially and temporally be taken.

The proposed algorithm is tested with simulatech data simulation of WATClass. Using
nominal values for the estimated errors and othedeahparameters, the assimilation of remotely
sensed data is found to reduce the absolute RM iersoil moisture from 0.095 to approximately
0.071. The sensitivities of the improvement inl sobisture estimates by using the proposed

algorithm to several different parameters are eranhi
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Chapter 1

Introduction

WATClass is a hydrological model maintained by @ieil Engineering department at the University
of Waterloo (Soulis, 2000). It models the wated @nergy budgets in a watershed by making use of
real-time meteorological data. WATClass tracksftber of water in a watershed as it passes from
precipitation or snowmelt into the streams, laked avers. Soil water content is an importantestat
variable in this model as it dictates the amountaififall or snowmelt that the ground can absorb.
Currently, WATClass does not have a direct methmdvdrify that the soil moisture estimate is
accurate. By using remotely sensed soil moistata,dhe WATClass model can reduce the amount
of error in the soil moisture estimates, therebgspmably increasing the accuracy of the overall
flood prediction model.

Methods for global monitoring of soil moisture vatuin agriculture fields from satellite borne
microwave radars and radiometers are currentlygodaveloped. Satellite borne synthetic aperture
radar (SAR) systems, such as RADARSAT and Envis&AR, can provide soil moisture
measurements at a 30x30 m resolution (Descham®}).20However, surface roughness and
vegetation reduce the ability of these instrumémtaccurately determine soil moisture values. The
effect of surface roughness and vegetation in swisture estimation from passive microwave
radiometers is much lower than that of active raddowever, the spatial resolution of the microwave
radiometers is also much lower than SAR systensdlogion. Therefore, higher resolution soil
moisture maps must be interpolated from microwaetometers for use in hydrological models.

The ensemble Kalman filter (Evensen, 2003) is thep@sed algorithm to assimilate the
remotely sensed soil moisture estimates into WASSIaThe Kalman filter is an algorithm designed
to assimilate noisy observations of a state vagiatlo a noisy model of that state variable. The

Kalman filter tracks the state variable and thenested error of the state variable in the model.



When an observation is made, the estimate is updeieg the observation. The degree to which the
observation is used as a replacement of the modstimate is determined by the ratio between the
observation’s estimated error and the model's eda@therror. The ensemble Kalman filter is a form
of the Kalman filter used in non-linear models, tsias WATClass. It uses a large collection of
randomly assigned state variables to represerdrtbe distribution of the state variable.

This thesis examines the feasibility of using reshotsensed data, particularly active
microwave, to correct the soil moisture estimatethe WATClass model. The goal of this thesis is
to determine to what extent satellite borne renyoseihsed data can reduce the error in WATClass
soil moisture values. To accomplish this, the igpatariability of soil moisture is examined at
different scales associated with WATClass andrsoilsture measurements. The spatial variability is
used to determine the expected variance betweesotheoisture measurements and the model soil
moisture estimates. Scale in the measurementthandodel play a large part in the variability.ilSo
moisture is highly variable and the variation peofs dependent on the scale in which it is exathine

WATClass is simulated in MATLAB to determine theoposed algorithm’s efficiency. Using
the simulation, the sensitivity of the estimatedem soil moisture is examined as a functionhd t
errors in the inputs to the model. Specificallye troles of ensemble size, observation frequency,
observation measurement error and model errorr(arrgaturation level, rain measurement and rate
of drying) are examined.

Chapter 2 provides some background into soil mm&uole in the hydrologic cycle, its role
in WATClass, how microwave remote sensing deteciisnsoisture and how soil moisture can be
assimilated into hydrological systems. Chapteescdbes the datasets used in this thesis. Chépter
describes the methodology of the algorithm usedhap@er 5 presents the results of the thesis.

Chapter 6 presents the conclusions and recommendati



Chapter 2

Background

2.1 Soil Moisture

Soil moisture, or soil wetness, is liquid water weging the empty spaces between soil particles. In
dry soil, these spaces are filled with air. Thepartion of empty space in a volume of soil, the
porosity, is determined by the texture of the dal, how much of the soil is made up of sand,asilt
clay. The soil's water content, or the soil maistualue, for a particular soil is the ratio of wato
soil. This can be defined several different ways:

e gravimetric water content: ratio of the weight aiter to the weight of dry soil;

e volumetric water content: ratio of the volume oftarao the volume of soil; and

» degree of saturation: the ratio of the amount aewaurrently in the soil to amount of water

that would be in the soil if the soil were complgteaturated.

During heavy rain, water begins pooling on theatefof the soil. Gravity and capillary forces
pull the water into the empty spaces, completetyrating the soil. This process, by which surface
water enters the soil, is called infiltration. Theundary between the saturated soil at the sudade
non-saturated soil underneath is called the weftioigf. As long as there is still pooled watertba
surface, gravity continues to pull the wetting frdown, increasing the depth of the saturated serfa
layer of soil. This water is pulled down toware tlvater table, which is the layer of saturated &bil
the bottom of the soil column. This process idechtrainage, or ground water recharge. In the
water table, the water is either stored or flowdarground into the streams and rivers.

If the rate of precipitation exceeds the rate dftration, much of the excess water travels as
overland flow directly into streams and rivers. &Wtthe rate of precipitation drops below the rdite o

infiltration, air begins to be pulled into the saihusing the soil moisture at the surface to dsere



below saturation. While drainage will continue efiditely, the rate at which water drains from the
unsaturated zone into the groundwater will slow d@s the capillary forces counteract the force of
gravity. The soil moisture level at which the digge rate can be considered negligible is called th
field capacity.

In addition to drainage, other processes act tefave soil moisture: interflow, exfiltration
and transpiration. Interflow is the process by alhwater in the unsaturated layer of soil flows
downslope. Exfiltration is water in the surfacel &myer evaporating directly into the atmosphere.
Transpiration is the process by which plants absaater through their roots and release the water
into the atmosphere through their leaves. Evapspigation is the term that envelops all processes
by which water near the ground — surface soil mmogstsnow, lakes or rivers — enters the atmosphere.

While the upper limit of soil water content is deténed by the soil porosity, there are several
lower limits other than field capacity that candmsidered (Dingman, 2002). The absolute lowest
limit is zero water content, which is only achiekaby drying the soil in an oven. The next lower
limit of water content is hydroscopic water, thatetwhere a thin film of water surrounds each soll
particle, held there by electrostatic forces. A wadith water content below this level will begio t
draw water directly from the humidity in the aikinally, permanent wilting point (PWP), the lower
limit prescribed to many hydrological systemshis kevel of water content below which plants begin
to wilt. PWP is a function of soil type, plant spes and atmospheric conditions. Thus, when soil
water content reaches this value, transpiratiosezand soil moisture values stabilise. Therefore,
between rainfall events, the water content of aratéed soil will decrease exponentially due to
gravity until it reaches field capacity, at whichimpt it will continue losing water at a much slower

rate until it reaches PWP.



2.2 WATClass

WATClass is a distributed hydrological model thaicks the energy and water budgets at a meso-
scale, or watershed-scale, level (Soulis, 2009)r démputational purposes, WATClass divides the
watershed into grid squares that range in size fteath km to 25x25 km. In each grid square, the
state variables, such as soil temperature andremdture, are tracked for each individual land cove
type. Examples of land cover types include agricel forest, urban, water and wetlands. Remotely
sensed LANDSAT imagery and land cover data fronddsmrface schemes, such as the Canadian
Land Surface Scheme (CLASS) (Soulis, 2000) are tsedktermine the proportion of each land
cover that makes up each square. During rainf@hts, radar and rain gauges are used to estimate
the amount of rainfall in each grid square. Thafadl is then divided amongst the land cover types
in each square proportionally to the fraction of #$quare covered by each land cover type. The
runoff from each land cover type is calculated petedently from one another and the total runoff
from all land types is added to the stream netvimrkhat grid square.

The stream network is the network of surface steeand rivers that carry water between grid
squares. In WATClass, each square must be direotiypected to the stream network. A routing
algorithm is then applied to determine the amounwater received from and directed to adjacent
grid squares through the stream network. WATClasthen able to calculate water levels in the
stream network.

Soil moisture is an important state variable in WHATClass model. The moisture content of
the soil is a major factor in the infiltration rateThe infiltration rate, when coupled with the
precipitation rate, determines how much runoff escuDuring a rainfall event, water initially begin
to pool on the surface and begins to drain intosibie column. WATClass then calculates the soil
moisture values as the wetting front descends timosoil column. WATClass also calculates the

amount of water flowing into stream network fronrfage overland flow, interflow and water that
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Figure 1 — WATClass soil column (Soulis, 2000, Fi®)

has drained through the soil column into the growatdr. WATClass stores the average soil
moisture estimates at each discrete time stepreé ttlistinct vertical layers: 0-10 cm in depth,3B)-
cm in depth and 35-410 cm in depth.

Figure 1 illustrates the soil column as modeledWTClass. On a rainfall event, the soll
moisture values for the three soil layefig, 8, and6;, are tracked as well as the volume of water
passing from the surface of the soil column togtream network (overland flowdjyver; the volume
of water passing from the soil column to the stremtwork (interflow),gi; and the volume of water
passing from the soil column into the water talojg.,.. The depth of pooled watedp, is also

tracked.



The initial soil moisture content of the soif,, can be estimated by the Antecedent
Precipitation Index (API)|4(t), which is a soil moisture estimate based on tme tsince the last
rainfall (Kouwen, 2006):

1, (0)

oc

G, = (Equation 2-1)

API is calculated as
[a(t) = a O4(t) + P(1), (Equation 2-2)
where  I4(t) is the API at discrete tine
a is an optimised decay constant (value 0.985-99&itliscretised by hour), and
P(t) is the precipitation at timie
In general,a, the decay constant, varies from day to day anc inction of the potential

evapotranspiration, which itself is a function damqt type and atmospheric conditions, and soil

moisture (Teng, 1993).

2.3 Soil moisture detection

Soil moisture is measured in several different walse most direct approach to determine the water
content of a soil is to take a soil sample andutate the difference between the weight of the wet
soil sample and the weight soil sample after it $§f@ent sufficient time in a drying oven. There are
also several instruments that make use of the phlysharacteristics of moist soil, such as eleakric
conductivity or capacitance. Typically in thesstinments, probes are inserted into the soil, some
sort of signal is applied to the probes and theemwabntent is calculated as a function of somermetu
signal. For example, the ThetaProbe generatedeatrieal signal using an array of four probes
inserted into the soil (Delta Devices, 1999). Timpedance of the soil is then measured using the
array. Since the impedance of the soil is higldgehdent on the soil’'s water content, the instrumen

can then calculate the volumetric water contenttied soil. The ThetaProbe is accurate to



+0.01 ni-m°® at 0 to 40°C when the instrument is properly caliéd to the specific soil type. Soil
moisture measurements range from 0.G0mito approximately 0.5 fam?® (Delta Devices, 1999).

The problem with using probe-sensed soil moistusasurements is that soil moisture is
highly variable due to local topography, soil hetgmeity and meteorological variability in rain,
radiation and temperature (Merz, 1997). Gravirmedr probe measurements provide detailed soil
moisture measurements for a region of soil of a $gware centimetres, while hydrological models
require soil moisture estimates for areas in thgeaof square kilometres. Gathering sufficient
measurements to properly characterise a waterskedy tla probe would be extremely time-

consuming.

2.3.1 Soil moisture estimates by active microwave

The detection of soil moisture using active micregja.e. radar, has been an active area of research
for the past twenty years (Ulaby, 1986, Dobson,8)99Radar images are generated by sending a
microwave pulse from an antenna toward a scendt@rdmeasuring the strength of the signal that
returns to the antenna. For airborne and spacestsmnsors, the microwave pulse illuminates a long,
relatively narrow strip of the Earth's surface gagticular to the direction of flight. This diremti is
referred to as the range direction, whereas thectim of flight is referred to as azimuth or aleng
track direction. When the radar signal strikesElaeth's surface, part of the signal is reflectecklia
the receiver. This reflected portion of the sigisatalled the backscatter. The radar instrumant c
differentiate backscatter from different objectghe range direction by relating the time it takers
the reflected signal to be received back at therar# to the distance in the range direction. adar
forms two-dimensional images by combining the dligiftfam successive pulses as the radar travels in
the azimuth direction.

For real-aperture radar (RAR), the azimuth resotuis limited by the microwave pulse's beam
width. Beam width can be decreased by focusindésam using a larger antenna size or by lowering

the altitude of the radar, neither of which areieedble by space borne radar. Therefore, spacebor

8



imaging radars do not use RAR, but rather use syicthperture radar (SAR) (Dobson, 1998). SAR
systems simulate large antennae by illuminatingsitene with a coherent pulse and analyzing the
Doppler frequency shifts of the returned signalueo the relative velocity of the radar antenna to
the ground, objects ahead of the receiver in thmwth direction will experience an upshift in
frequency, whereas objects behind the receiver exiierience a downshift. Furthermore, several
sub-images or looks of a scene can be created iifigrang the bandwidth of the received signal.
These sub-images can be averaged to increasegtiad-gi-noise ratio of the image. The trade-off of
SAR is the added complexity of the processing efliackscatter signal.

The dielectric constant of a substance, whichridative measure of the permittivity of a substatace
an electromagnetic signal, is one of the main fadtothe level of backscatter when that substisce
illuminated by electromagnetic energy (Ulaby, 1988)e dielectric constant of water is significantly
higher than the dielectric constant of dry soilaleing soil moisture to be measured by active
microwave. Figure 2 shows the relationship betwseaih moisture and dielectric constant for five
different compositions of soils. Note that whitdlscomposition has an effect on dielectric constan

the main contributor to the variability is moistuentent.
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Figure 2 — Measured dielectric constantgs,;, for five soils at 1.4GHz.

8‘30” = Re(SSO||) and 8" soil = Im(830||) (Ulaby, 1996, Flg 9)

Backscatter levels from active microwave imagingsofl are further affected by surface
roughness, the amount and type of vegetation aoyettie soil, and soil composition. Surface
roughness is the geometry of the air-soil bounddrlge penetration depth of a radar signal in moist
soil is proportional to the wavelength of the sigaad inversely proportional to the soil's moisture
content. For moist soil, the penetration deptapgproximately equal to the wavelength of the signal
therefore, radar platforms are only capable ofaitg soil moisture in the top layer of soil (5-2M
depending on signal wavelength). For C-band SA&uments, such as ERS-1 and RADARSAT,
the penetration depth for moist soil is less thaonb (Ulaby, 1986). Due to the backscatter from
vegetation over the soil, the best results areywed when detecting soil moisture from bare soil or

light vegetation. Taller crops and forest canopievent the estimation of soil moisture underneath
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Ulaby demonstrates that the parameters that protheéiighest correlation between radar
backscatter and soil moisture is C-band signal withincidence angle of 10° (Ulaby, 1986). At
higher incidence angles, surface roughness begirsave a greater effect on backscatter. Space
borne SAR systems typically have incidence angle0d or higher. SAR can image the surface of
the Earth with lower incidence angles, but the earggolution decreases as a consequence.

While much of the research into the use of singlkisation space borne active microwave
for soil moisture detection has failed to produafficiently accurate soil moisture estimates due to
the inability to account for surface roughnessemeaesearch into the use of multi-frequency and
multi-polarisation SAR has shown much promise ([2wb4998); by comparing several different
SAR images across different frequencies and difitgpelarisations the effect of surface roughness on
the soil moisture estimate can be mitigated. Witlgle-polarisation SAR, the antenna transmits and
receives the signal using one of either a ver§ic@V) or horizontally (HH) polarised signal. Dual-
polarisation allows the antenna to transmit eithdnorizontally or vertically polarised signal and
receive both horizontally and vertically polarisgidnals (HH/HV or VV/VH), or, to transmit and
receive alternatively with vertically and horizolhtgpolarised signals (HH/VV). Quad-polarisation
allows the antenna to transmit alternatively hartab and vertical signals, and receive horizontally
and vertically polarised signals (HH/HV/VH/VV).

Multi-polarised SAR datasets have only recentlyrbegailable from orbital satellite borne
systems. SIR-C/X-SAR, a quad-polarisation and iAfidguency C-, L- and X-band SAR, was
shown to accurately estimate soil moisture witl @indlish, 2000); however, it was flown as part
of two space shuttle missions and was only operabtd mission for ten days. In 2002, Envisat
ASAR was the first multi-polarisation SAR systemb put into orbit (ESA, 2007). RADARSAT-2,
which is scheduled to launch in March 2007, willcaprovide quad-polarisation imagery in the C-

band (McNairn, 2004). Table 1 describes sevenakatispace borne SAR platforms.

11



Table 1 — Orbital SAR systems launched since 199B4ney, 1998, ESA, 2007, Ali, 2004)

SIR-C/X-SAR ERS-2 Envisat ASAR| RADARSAT-1 | RADARSAT-2
Country USA Europe Europe Canada Canada
Germany, Italy
Agency NASA/DLR/DARA ESA ESA CSA/USA CSA/USA
Spacecraft Space Shuttle ERS-2 Envisat RADARSAT-1 ADRRSAT?2
Launch Date Apr 94, Oct 94 1995 Feb 2002 Nov 95 ar RDO7
DesignLifetime 10 days 2-3 years 5 years 5 years 5 years
Band L, C, X C C C C
Frequency (GHz) 1.25,5.3,9.6 5.3 5.3 5.3 5.3
Polarisation Quad (L,C), VV (X VV Dual HH Quad
Incidence angle 15-55° 23° 15-45° <20->50° 20-4fifaf)
Repeat Cycle nil 35 days 35 days 24 days 24 days

Another technique to reduce the effect of unknowrfiage roughness and vegetation cover is

to compare the temporal variability of several iemgMoeremans, 2000, Moran, 2000).

This

technique involves examining the change in backscatoefficients over time instead of the

backscatter coefficients themselves. Since sunfaaghness and vegetation cover for a particular

field remain relatively constant over time, theiahbility in the change in backscatter coefficieists

more dependent on soil water content.

A drawback to the high spatial resolution of actimerowave imagery from orbital satellites is

the low temporal resolution. For example, once RRBAT-1/2 images a particular swath of the

Earth’s surface, the satellite will not revisit te@me swath from the same vantage point for another

twenty-four days. Both RADARSAT-1/2 and

The repeat cycle for Envisathsty-five days.
Envisat ASAR offer several beam modes within eachging mode which require the radar beam to
be redirected, allowing more frequent sampling gfaaticular area on the earth (ESA, 2007, Ali,
2004). Note that there are higher levels of naiséner resolution imaging modes, due to a lesser
number of “looks”. The number of looks is defingslthe number of independent samples taken of
the same scene from the imaging radar.

Furthermore, since both RADARSAT and Envisat follaywolar orbit, the swath width overlap
increases at increased latitude (ESA, 2007, AlR430 Therefore, larger latitudes will be able ® b

imaged more frequently. However, these latituddsbe imaged from a slightly different vantage
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point each time they are imaged within the sameatpycle. Tables of the beam modes and beam

positions for RADARSAT and ENVISAT are shown in Apulix C.

2.3.2 Soil moisture estimates by passive microwave

Passive microwave is becoming an established meathedtimating soil moisture values on a global
scale (Kerr, 2001, Njoku, 1996, Shi, 2006). Whitgive microwave uses the reflectance of a signal
produced by the device, passive microwave meastn@sbrightness temperature from the soil
surface. However, since the amount of microwaverggnemitted from the Earth is so small, the
resolution for passive microwave imagery is quite.l L-band passive microwave has been shown to
be most sensitive to soil moisture from passiveoradters (Njoku, 1996). Furthermore, due to the
longer wavelength of L-band signal compared to CXband, the microwave signal emitted from
the soil originates from deeper in the soil column.

There are two current missions to provide spacenébarear-daily global soil moisture
monitoring: NASA’s Agua mission and ESA’s Soil Mtige and Ocean Salinity (SMOS) mission.
The Aqua satellite is equipped with the JapanesgaAckd Microwave Scanning Radiometer
(AMSR) to measure soil moisture for watershed-sdatdrology purposes (Njoku, 2003). The
AMSR instrument has two sensors that are senditiv@il moisture: 6.925 GHz (C-band, 4.3 cm)
and 10.65 GHz (X-band, 2.8 cm). It provides sailisture estimates of the same location on earth
and the same vantage point from space once evexy tlays, i.e. its repeat cycle is three days. The
resolution of this sensor at these two frequenisig® km. The Aqua satellite has been operational
since 2002.

The SMOS satellite, scheduled to launch in earl@82Q@vill also provide frequent global soil
moisture estimates (Kerr, 2001). The SMOS satelitl carry the Microwave Imaging Radiometer
using the Aperture Synthesis (MIRAS), an interfeetic passive microwave radiometer. MIRAS

uses an array of smaller sensors to simulate arangtenna to estimate soil moisture from the most
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sensitive L-band with suitable resolution for mesaie hydrological purposes. The resolution of the
MIRAS imagery is <50 km and its repeat cycle i®thdays.

The effect of surface roughness in space borneomave radiometers is much less than that of
microwave radars (Njoku, 2003). However, the nathoh of passive radiometers is constrained by
the size of the antenna that can be placed onatedlite, unlike active radiometers where a large
antenna is simulated by controlling the phase ef émitted microwave signal and examining the
phase of the reflected signal. Therefore, pasgivMerowave sensors have much lower spatial
resolution than active microwave sensors.

Active research is also being conducted into coimpginhe accuracy of passive microwave
sensors and the spatial resolution of active mien@vsensors. NASA’s Hydrosphere State
(HYDROS) mission, which was scheduled to launclaia 2009 or 2010, combines an active L-band
SAR and passive L-band radiometer on the sameoptatf The resolutions of the active and passive
microwave sensors are 3 km and 40 km respecti#ljekhabi, 2004). Using a Bayesian approach,
the active and passive microwave images are comiméorm an aggregate image with a resolution
of 10 km. Although the mission was cancelled dududget cuts, the mission is still open to be

revived in the future.

2.3.3 Summary of remote sensing soil moisture estim  ates

The most accurate means to estimate soil wateenbig the gravimetric method, where the soil is
collected, weighed, dried in an oven and weighedirag Other ground based methods, such as
measurement by probes or truck-based microwaveosemdéso provide accurate estimates of soil
moisture. However, these methods are only prddicadetermining soil moisture for small areas
and are consequently unfeasible for the monitooiingoil moisture at a watershed level. Microwave
remote sensing provides a means to monitor soilstm at a watershed level. While aerial
microwave sensors provide enhanced spatial resolutrbital satellite borne microwave sensors can

provide ongoing near daily temporal resolutionaif soisture of the entire surface of the Earth.
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Space borne active microwave sensors, such as RAAARnd ERS-2 provide soil moisture
estimates at high spatial resolution (30 m). Hoevethe temporal resolution of these SAR systems is
several weeks unless the beam is redirected. dramtire, the accuracy SAR-based soil moisture
estimation is degraded by surface roughness andtatggn cover, which are difficult to estimate
from single-polarisation, single-frequency SAR. B8yamining multi-frequency, multi-polarisation
and/or multi-temporal SAR images, errors in soilishae values caused by surface roughness and
vegetation cover can be reduced.

Active research in both active and passive micr@vsgnsors is continually improving the
guality of soil moisture estimates. The newestegations of orbital satellite borne microwave
sensors aim to provide researchers, hydrologists raateorologists with near daily global soil

moisture estimates.

2.4 Soil moisture assimilation into hydrological mo dels

With the advance in soil moisture detection by spgaarne microwave sensors, the use of this data in
hydrological models has become an active areasefareh. Due to the insufficient spatial resolution
of current passive microwave radiometers and tiseffitient temporal resolution and inaccuracy
caused by surface roughness and vegetation cowstioE microwave radars, direct substitution of
the remotely-sensed soil moisture estimates ingrdiggical models is not currently feasible. A
popular technique to assimilate microwave-deriva@timeoisture estimates into models is the use of a
Kalman filter (Galantowicz, 1999, Hoeben, 2000, $3an, 2002, Reichle, 2002, Aubert, 2003) due to
its efficiency and simplicity. The Kalman is thptional Bayesian filter for estimating the stateaof
noisy linear system from a set of noisy observatiorsince hydrological equations involved with
theses models are non-linear, a non-linear forth@Kalman filter must be used.

Margulis implemented an ensemble-based non-lineamn fof the Kalman filter to assimilate

airborne passive L-band microwave soil moisturecoletions during the Southern Great Plains 1997
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field experiment into the NOAH hydrological moddgrgulis, 2002). The Electronically Scanned
Thinned Array Radiometer (ESTAR) was flown at atitwde of 7.5 km above a 10,000 kistudy
area on sixteen days during the thirty day expertmévargulis’s algorithm forms the basis for the
algorithm described in this thesis.

Sections 2.4.1 and 2.4.2 discuss the Kalman &itel the extended Kalman filter respectively.
The extended Kalman filter is a non-linear formtlo¢ Kalman filter. Section 2.4.3 discusses the
ensemble Kalman filter, which is another non-linform of the Kalman filter, and Margulis’'s use of
this algorithm for assimilation of remotely-senssall moisture measurements into a hydrological

model.

2.4.1 The Kalman filter

The Kalman filter is an algorithm used to updatmear model of some state variables with periodic
observations, with the goal of minimising the erbetween the model and the true values of those
state variables (Kalman, 1960).

In its simplest form, the Kalman filter tracks someal world state variable using a model of
that variable and the periodic observations of#gable. It estimates the state variable’s valsia
function of previous observations and an a prioadel of the variable, and also calculates the
corresponding estimated variance.

When an observation is made, the algorithm comhine®bserved value and the model value
to produce a better estimation of the state. lisiassumed that there is no error between the
observation and the true value, then the modelrigguly substitute the observation for the model’s
estimated value. In general, there is an erroocasted with the observation; thus the resultant
estimation, or a posteriori estimate, is some linmambination of the observation and the model
estimate, with the proportions dictated by the egponding estimated error variances. The a
posteriori estimate will also have an estimatedrevariance calculated from the a priori estimated

error variance and the observation estimated efoiance. In general, the Kalman filter tracks

16



several state variables and their correspondingatgd error covariances, and the observations are

some linear combination of these state variables.

If the state and observations are defined as

X, = Ax_, +Bu,_, +w,,, and (Equation 2-3)
z, = Hx, +v,, (Equation 2-4)
where x, O"is the state being modeled at discrete fime

A 1S the transition matrix betweeg, andx,

u, 0 O™Mis a control input at timk,

B.xm IS the transformation matrix betweep, andx,,

W1 ~ N(O, Q) is the process noise,

z. 0 OPis the observation at tinle

Hoxn Is the transformation matrix betwegmndx,, and
Vi.r ~ N(O, R) is the measurement noise,

and the estimates, errors and estimated error ieoeas are defined as
X, 00" as the a priori state estimate,

X, O 0" as the a posteriori state estimate,
e, =X, — X, as the a priori estimate error,
e, =X, — X, as the a posteriori estimate error,

- _ T L . .
P = E[ek e } as the a priori estimate error covariance, and

T I . .
P, = E[ekek } as the a posteriori estimate error covariance,

then the Kalman filter predict equations can becdesd as

X, = A, +Bu,_;, and (Equation 2-5)
P, = AR_ AT +Q. (Equation 2-6)

These equations are used to predict the stateimddel during the time between observations.
Therefore, they are called the predict equationtbéncontext of the Kalman filter.

When an observation is made at tikethe following equations are used to update the

estimate:
Ky =R H' (HPk_H T+ R)_lv (Equation 2-7)
X =X + K(zk - H>“<|;), and (Equation 2-8)
R =(1 -KH)R. (Equation 2-9)
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Figure 3 — Kalman filter example

The Kalman gainK,y, dictates how much of the priori estimate and howclmaf the observation
make up the a posteriori estimate. These equatimmsalled the update equations in the context of
the Kalman filter.

Figure 3 demonstrates a simple one-dimensional pbeaaf the filter. Before timé,, the state
is estimated solely by the model. The estimatear @ovariance, which in the one-dimensional case
is just the estimate error variance of the stateJso tracked. At timk,, an observation is made and
the Kalman gain is calculated based on the estimabservation error variance and the estimated
error variance of the model-predicted estimate. e Halman gain determines the ratio of the
observation and the model estimate that will maketle new estimate. The model is then

propagated forward using this new estimate.

2.4.2 The extended Kalman filter

The Kalman filter is designed to estimate the statea system controlled by linear stochastic
difference equations from a series of noisy andnmgete measurements; it is not designed to
estimate non-linear systems. The extended Kalnti@n is a modification of the Kalman filter for

non-linear stochastic difference equations (Juli®97). In essence, the extended Kalman filter
attempts to linearise the system, for the purpo$etetermining the error covariance matrices. The

linearisation is done by taking the partial deiives of the non-linear state control functions with
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respect to the state variables and the noise to foe transition matrices. While the model remains
non-linear, the estimated error distribution is led as a normal distribution, using the transition
matrices in the same way as the linear form of Khéman filter to determine the Kalman gain.

However, the error distributions of a non-lineastsyn are not normally distributed. Furthermore, the
state control equations must be in explicit fornststhat the partial derivatives can be taken. The

ensemble Kalman filter is designed to solve thesblpms.

2.4.3 The ensemble Kalman filter

Instead of parameterising the estimate error bigtion as per the extended Kalman filter, the
ensemble Kalman filter uses an ensemble of statmblas at each time step to represent the
estimated error distribution (Evensen, 2003). Haaint in the ensemble is individually propagated
through the model until an observation is made. eriThthe estimated error distribution is
approximated as a normal distribution for use ia Kalman gain equation. This differs from the
extended Kalman filter in that the ensemble Kalrfik@r maintains the estimated error distribution
throughout the propagation of the model, whereas d@ktended Kalman filter approximates the
estimated error distribution as normally distritlitbroughout the model. Therefore, the ensemble
filter provides a better representation of the esmatistics than the extended Kalman filter. The
trade-off between the ensemble Kalman filter angl ¢éixtended Kalman filter is an increase in
computation time; while the extended Kalman filtarly needs to run one set of state variables
through the model, the ensemble Kalman filter rexumany state variables to be propagated through
the model. As the system being modeled increasesmplexity, the set of state variables, callesl th
ensemble, must increase in size to properly reptdise error distribution.

Another advantage of the ensemble Kalman filteh# the model can be treated as a “black
box”, with only its input controlled and outputsae®ined. No access to the underlying equations of

the model is needed.
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In Margulis's soil moisture assimilation algoriththe state variable estimated by the Kalman
filter is soil moisture (Margulis, 2002). The sailoisture values are assumed to be spatially
independent; therefore, the state is one-dimensiomaWATCIass, soil moisture is also spatially
independent, in that the soil moisture in one griglare does not affect the soil moisture of a
neighboring grid square; interaction between ggudases is reserved to water in the stream network.
Therefore, the soil moisture of an individual gsiguiare can be examined without examining the grid
squares around it; altering the soil moisture pagicular grid square cannot affect the soil moist
of another grid square in WATClass. Note thatitiputs to the WATClass model, such as rainfall
and temperature, are spatially correlated due to ldw spatial variability of meteorological
conditions. Thus, it is possible that runningthé grid squares concurrently might increase acgura

To assimilate soil moisture estimates into the blatjical model, the ensemble Kalman filter
createsn individual replications of the model, i.e. an embée of state variables. In each replicate,
the uncertain inputs are randomly assigned frormabdistributions such that collectively, the skt o
inputs approximate the estimate error distributiéimr example, the Margulis implementation of the
ensemble Kalman filter on their hydrological modmhdomised initial soil moisture measurements,
hydraulic conductivity of the soil, upper and lowanits to soil moisture (porosity and permanent
wilting point) and precipitation levels (Marguli2002).

In this implementation, the model state is assutoede a function of the previous state, the
time-independent parameters, such as soil-typestaggn type, topography, etc., and time-dependent
parameters, such as atmospheric conditions angjtation levels,

(1) = F(6t-2),b,(t),.b, ). a,,...a,) (Equation 2-10)

where 4(t s the soil moisture at time

ba(t)...bp(t) is the set op time dependent parameters
aa(t)...aq(t) is the set ofj time independent parameters
f(...) is the equation that governs the soil moisture
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However, neither the initial soil moisture valuernihe parameters are known exactly.
Therefore, the initial soil moisture values andreat the parameter values are represented by an
ensemble of sample points, or replicates, drawm feonormal distribution with mean equal to the
estimated value of the parameter and a variancal eguhe estimated error of the parameter. 1t is
assumed that the error variances are known faf #fle inputs. Therefore,

0(0) is an ensemble &fsoil moisture estimates at time 0,
6,(0) drawn from Nggo,0%0) is the | replicate ind(0)
oo 1S the estimated initial soil moisture value
o is the estimated error in the initial soil moigtwalue
bi(t) is the ensemble d&ftime dependent parameters fpr
by(t) drawn from N(wi(t),0%) is the |" replicate inbi(t)
wi(t) is the estimated value of paramdieat timet
oy is the estimated error in parameber
a; is the ensemble &ftime dependent parameters épr
a; drawn from N,(la,O'Zbi) is the ]h replicate ing;
L4 IS the estimated value of parameter
o, is the estimated error in parametger

kis the number of replicates in the ensemble.
Each replicate is propagated forward in time wmihg,
g(t)=f(g-1,b,(t),...0, )., ..., (Equation 2-11)
until a observation is made.

The a priori estimate error covariance is estimatethe sample covariance of the ensemble,
e e
1 N N .
Cult)=- ( O-2ON O-4O) (Equation 2-12)

whereu,(t) is the sample mean of the soil moisture valudireagt.

The Kalman gain, the a posteriori soil moisturdneste and the a posteriori estimate error
covariance is then calculated using Equations B-2-B. The a posteriori estimate and error
covariance are used to create the replicates irrtkemble for the model until the next observaition
made.
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Chapter 3

Data

There are two sources for the data used in thisigheThe first set of data was collected by the
hydrology lab at the University of Waterloo. Theataset consists of ground soil moisture
measurements and RADARSAT-1 imagery of the GrangRiatershed of southern Ontario during
1996 and 1997 (Seglenieks, 1998).

The second set of data was collected by the Cam&Batre of Remote Sensing. This dataset
consists of ground soil moisture measurements niadbe Roseau River watershed in southern
Manitoba between September 2002 and June 2003.Rdbeau dataset is part of the dataset used in

the Deschamps study (Deschamps, 2004).

3.1 Grand River watershed data

The Grand River watershed data is composed of sssemasture fields selected in the Grand River
watershed in Ontario. Ten soil samples (depthscirsand 5-10 cm) were taken from each field on
thirteen days during 1996 and 1997, and the graviensoil moisture values were calculated. The
grass height and soil composition were also medsus®il composition was used to determine field
capacity. Field capacities ranged from 16.6% t@l@&2for the fields. Field capacity, as previously
stated, refers to the water content a soil can tai@iragainst the force of gravity. Therefore, this
variation indicates that the fields will drain atferent rates. Table 2 describes the field |awadiand

field capacities. Figure 4 shows the placemertheffields. Note that the Grand River watershed’s
dimensions are approximately 200x200 km. Therefibre fields chosen cover only a small part of

the watershed.
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Table 2 — Grand River watershed field data
The X’ symbols in the table denote fields that @anable to be sampled on a given date.

g oS ©|8 5 N~~~
s o 2| £l2|23 2222522222
= = g la(lo|=|[RI8|c|S|IZ[3|3[3| 3|2
A IR HEEHEEEEEEEEE:
L | DOW | DZ | LO |o|d|N|[N|[d|fofda[~[d|lN][m]|a]|®
W1 | 531 4864 | 0.283]L
W2 530 4867| 0.272p
W3 | 538 4863| 0.303]L
W4 | 538 4854 | 0.307p X
W5 | 537 4852| 0.3054
W6 | 532 4838| 0.305]L X X
El 554 4843| 0.166p x X
E2 560 4864 0.244p
E3 548 4853| 0.300p
E4 546 4852 0.324B
E5 543 4847 0.272p x
S1 558 4839| 0.206pP
S2 554 4836| 0.264p
S3 555 4832| 0.194p X
S4 555 4827| 0.259B
S5 551 4830| 0.264L X | X
S6 545 4830| 0.236
Radarsat Beam Mode S2|S1|S2|S2|S2|S1|EL1ELY S2| S1|ELY S2|S2

UTM Zone 17.

RADATSAT-1 imagery is also provided for the aregince the repeat cycle for RADARSAT-
1 is twenty-four days, different beam modes arel teeémage the fields more frequently. The beam
modes for RADARSAT are shown in Table 2. S1 anda®? both the standard beam modes;
however the images are taken from different pooristhe RADARSAT orbit path, i.e. different
vantage points. The incidence angles for the digidaged in S1 range from 20.1-22.7°. The
incidence angles for the fields imaged in S2 raingm 25.1-27.8°. The extended — low incidence
angle beam mode is also used. The incidence afugléise fields imaged in extended low incidence

beam mode (EL1) range from 12.7-16.1°.
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Figure 4 — Site placement in Grand River watersheSeglenieks, 1998, Fig. 1)

When a linear regression is performed with two petelent variables (backscatter value and
incident angle) and one dependent variable (voltimetter content), there is little correlation fwl
(R? = 0.207, standard error = 0.0817) (Seglenieks, 1998sing the resultant equation from the
regression, soil moisture estimates are calculfited the remotely-sensed data. Figure 5 shows the
ground sampled soil moisture measurements (megsueesus these calculated estimates. When a
field dependent constant is added to the regressjaations,

6 =a+ a;, +bbackscatte+ cincidenceangle, (Equation 3-1)

where 0 is the volumetric water content,

a, b, c are constants, and
aseiq IS a field dependent constant,

the correlation increased{R 0.702, standard error = 0.0499) (Figure 6). Pwssible reason for the
increased correlation is the local incidence anghéch was not taken into account in the regression
Finally, when volumetric water content values averaged across all fields for each day and the
same regression is performed, the correlation asee further (R= 0.941, standard error = 0.0255)

(Figure 7). However, the spatial information istlavhen averaging is performed.
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The WATClass data is also included in the datagéte WATClass study period runs from
January 1, 1996 to December 31, 1997 and coversrifire Grand River watershed. Meteorological
data is included for each of the 226 10x10 km ggdares sampled every hour throughout the study
period. Using this meteorological data and laras€linformation, WATClass can estimate the soll

moisture of each grid square every half hour thnowg the study period.
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Figure 5 — Measured vs. calculated volumetric sorthoisture values for regression using all data
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with field dependent constant
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Figure 7 — Measured vs. calculated volumetric soihoisture values for regression
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3.2 Roseau River data

The Roseau River data is composed of twenty-twe fiatds sampled in the fall of 2002 and the
spring of 2003 (Deschamps, 2004). The soil moestwas measured by the ThetaProbe soil moisture
detector at three times at five locations per didgling fifteen measurements per site per date.
Furthermore, surface roughness was measured atfietttlusing the SRM-200 surface roughness
meter. Local environmental conditions were measudrem three meteorological stations situated
throughout the watershed. Figure 8 shows the imtatof the fields as well as an outline of the
Canadian portion of the Roseau River watershedvddsal Transverse Mercator (UTM) coordinates
are for zone 14. Several fields on the eastertigmoof the watershed are found in zone 15; their
corresponding UTM coordinates as if these fieldsewr zone 14 are shown. Table 3 presents the
field UTM coordinates and the days that each fiedd sampled.

Coincident SAR from both RADARSAT-1 and Envisat ABAvas collected on the dates that
the ground sampling was taken. The instrument,usedm mode and polarisation are shown in
Table 3. Linear regression was performed usingimelric soil water content as the dependent
variable and backscatter coefficient, incidencdeagd surface roughness as independent variables,
for each instrument and polarisation. The regoesBf values vary from 0.2606 for Envisat HH/VV
to 0.8032 for Envisat HH (Deschamps, 2004). Whailydaverages across basin are computéd, R

values increase to 0.993 for RADARSAT and 0.911RADARSAT and Envisat ASAR combined.
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Figure 8 — Roseau sample site and met-station logats.
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Table 3 — Roseau River dataset field data

(&)
. | Ll els|s|ele|8 8|88
z b3 £ - - Lo © — T} < N
o sE|I s |2 | 211 S 1212 > > >
i 5815218888122/ 2|2|=2
Al FOR 1 645 5433 X X X X X
Al GLE 1 638 5444 X X X X X
Al GLE 2 640 5447 X X X X
Al KIR 2 642 5444 X X X X X
Al SAB 2 626 5453 X X X X X
Al TER 1 640 5450 X X X X
A2 DYC 1| 662 5446 X X
A2 GRI 1 660 5446 X X X
A2 HIR 1 694 5442 X
A2 LOE 1 674 5442 X
A2 NED 1| 657 5442 X X X X
A2 PAL 1 649 5449 X X X
A2 REI 1 657 5445 X X X X
A2 SMO 1| 685 5446 X X
A3 ECK 1| 747 5440 X X
A3 EWA 2| 755 5439 X X
A3 GOB 2| 742 5443 X X
A3 GOT 1| 740 5437 X X
A3 MCC 2| 709 5442 X
A3 NOR 1| 718 5437
A3 TKA 1| 709 5442 X X
A3 WAN 1] 708 5449
Radarsat beam mode W W1l S4 Wi - - W1l |-
Envisat-ASAR beam mode - I1Si - I1SB 1$1 151 - S2
Polarisation HH| VV| HH| HH*| HH| HH/| HH/ | HH | HH
VWV | VWV

UTM Zone 14 — x symbols indicate where no datavélable.

*poth Radarsat and Envisat-ASAR have HH polarisati
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Chapter 4

Methodology

4.1 Objectives

The objective of this thesis is to determine thasfieility of using space borne microwave remote
sensing for assimilation into the WATClass hydrida$) model. More emphasis is put on active
microwave, since the dataset provided contains RRBAT backscatter values. However, the
theoretical use of passive microwave radiometelisalgio be examined.

Currently, the WATClass soil moisture values argidglised using the API, which is solely
determined by rainfall gauges; that is, the soilistuves values only indirectly observed. The
WATClass model continually updates the soil moistualues throughout the computation of the
model. However, WATClass does not use real-wobskeovations of the soil moisture to correct the
values in the model. While outside the scope &f thésis, the future goal of this project is tcabée
to update the WATClass soil moisture values witBesbed soil moisture values taken periodically
from satellites.

The first part of the methodology examines the iapatariability of soil moisture in the
WATClass model. The spatial correlation betweeil swisture fields of the two datasets is
examined. This spatial correlation will be usedestimate the observation error covariance matrix.
This part of the methodology is explained in Setdd.

The second part of the methodology examines thepdesh variability of soil moisture in
WATClass, as explained in Section 4.3. The Kalrfiter is implemented using a model of
WATClass. The purpose of the implementation idétermine the effectiveness of the Kalman filter

for assimilating space borne soil moisture estimate

29



The microwave remote sensing techniques of soiemetntent studied in this thesis are only
valid for liquid soil moisture; frozen soil moisturor snow covered soil, though modeled in
WATClass, is not studied. Therefore, the algorittescribed in this thesis is only applicable during
the months during which temperatures remain abmezing. In the Grand River watershed datasets
examined in this thesis, the ground remained thavetdieen the beginning of May and the end of
September. Unfortunately, soil moisture estimatgmot be estimated during the spring thaw, when
there is still snow concealing the soil surface.

Furthermore, since soil moisture can only be ed#@dhan bare soil or light vegetation fields
(i.e. agriculture crops and grasses), this methad a@nly be used to update one land class in
WATClass, namely the agriculture land class. Tiweeg this algorithm will be most applicable to

watersheds that are primarily agricultural.

4.2 Scale and spatial correlation of soil moisture

When assimilating soil moisture measurements intdwydrological system, the scale of the
measurements and the estimates must be consid€hedspatial variability of soil moisture is quite
different at different scales. When examining sadisture at the micro-scale (< 1 km), variatioms i
soil moisture are typically determined by local dgpaphy, which determines where pooling will
occur when it rains. At a slightly coarser scaleereithe average soil moisture of fields are exadjine
differences in the fields’ tillage, the amount atygpe of vegetation and the soil composition
contribute to the variability of soil water contevalue. At a larger scale where soil moisture
averages are taken over large areas such as WASI@lab square, coarse-scaled trends in soil
variation and topography, and meteorological comlit are the main contributors to the variability i
the soil moisture measurements.

Consider the spatial resolutions of the differerstams of soil moisture measurements. For soil

moisture values that are calculated gravimetricallyhe field, cylinders of earth approximately 10
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cm in diameter are taken. The resolution of sfeae active microwave is approximately 30x30 m.
Passive microwave images have resolutions of ab@xH0 km. Finally, the WATClass grid squares
modeling the Grand River watershed are 10x10 ksize. To downscale the measurements, the soil
moisture values from the finer scale can simplyatieraged to determine the average soil moisture
measurement for the coarser scale. In generaleVewthe soil moisture at the finer scale is not
available for every point at the finer scale. Fotample, to sample every point in a field
gravimetrically, the entire field would have to 8eg up and measured. This is clearly unfeasible.
Instead, ten to fifteen soil samples in the fietd taken and the average of these measurements is
used to determine the soil moisture of the fielthe number of the samples needed to correctly
quantify the average is determined by the spatabbility at the finer scale. If the soil moistuat

the scale in question does not vary much, then rfemaasurements are needed. Conversely, if the
soil moisture at the scale is high, then many nressents are needed. In either case, it is impbrtan
to know the spatial variability of the soil moistuat the scale in question.

Space borne active microwave soil moisture estisateist be downscaled for use in
WATClass. If locations of all the fields that falhder the agriculture land class in WATClass and
their soil moisture values can all be measured ftoenradar backscatter, then the simplest way to
downsample the radar image is to average the softare estimate for all radar image's pixels that
represent agriculture fields. However, samplingrgviield over the entire watershed may not be
possible. For example, if the measurement teclenigquires the backscatter coefficient to soil wate
content inversion formula to be calibrated usingugid measurements, it would be infeasible to use
every field in the entire watershed. Thereforsubset of the watershed’s fields would have to be
used to represent all the fields.

This discussion raises the question of at whatesésl remotely-sensed soil moisture
measurements most useful. It has been shown hagiven a particular model resolution, the

optimal scale for remotely-sensed soil moisturéhes scale of the model or finer (Walker, 2004).
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WATClass, however, is capable of spatially dissieg at varying resolutions; there requirement
being that each grid square in a WATClass modeémshed must be connected to a stream network,
such that the streamflow routing algorithm can fiowccorrectly (Kouwen, 1993). Therefore, it is
possible to run the WATClass model in such a way dach grid cell corresponds to a pixel in an
active microwave remotely-sensed image (~30 m). il@Vvthis method would be preferred for
exercising the assimilation algorithm (i.e. the eamble Kalman Filter) since no downsampling
algorithm is required. Whether or not the extratis acuity will favourably affect the overall meld
accuracy is unknown since no averaging betweerigpoan be performed. WATClass model data at
this resolution is not available for the purposéshes thesis; therefore, this aspect of the projec
recommended for future study.

As previously stated in Section 2.4, in the Kalmflter, the observations are noisy
measurements of the state. If the radar obsenmi timek are {zy, zx, ... Zy} and the soil
moisture value of the grid cell ig, then

Z, =Hx, +Vv,, (Equation 4-1)

For simplicity, the measurements are the soil moéstestimates derived from radar backscatter

values, such that

1
1

H=|. (Equation 4-2)
1.,

v, ~N(O,R)
g Oy a5,

R= oy, 0O, .. O, (Equation 4-3)
7 o o
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where o’ is the expected variance between the observatiand the statex, and,
Jifis the expected error covariance betwgemdx, and,z andx

That is, the remotely sensed measurements at ke dicale are simply noisy observations of the
average soil moisture value at the coarser schhe elements of the measurement covariance matrix
will be functions of the inherent measurement emothe inversion of the backscatter coefficients,
the spatial variability of the soil moisture measuents at the finer scale and the variance ofdhe s
moisture measurements at the coarser scale.

It is proposed that the variances of the measuresreor, i.e. the diagonal components of the
error covariance matrix, can be estimated by the sfithe estimated variance between of the soll
moisture measurements at the fine scale and thsesaale and the estimated measurement error.

The estimated variance of the difference betweerobservationz;, and the state, is estimated as

o?=0,=(-p )2, (Equation 4-4)

ii X,zi

where ¢?

X,zi

o’ is the variance in the state, and,

Pxzi IS the correlation coefficient betwerandz.

is the expected variance between the observaijand the state,

The correlation coefficient is a measure of therelation between two variables. The correlation
coefficient as well as the calculation of the sangbrrelation coefficient is described in Appendix
B.1. A correlation coefficient equal to 1 indicaitéhat the variation in state and the observatien a
completely correlated; that is variations in thetinegte are completely correlated with the
observation. Then the error variance of that okzem can be assumed to be entirely attributed to
the measurement error. A correlation coefficieqiad O indicates that the variables are independent
therefore, the variance in the error of that measnt will be equal to the sum of the variancehef t
state and the error in the measurement. This flarisuan approximate method to estimate the error

between the measurement and the state.
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The off-diagonal components of the measurementr ecavariance matrix indicate the
covariance of the noise in the measurement. Theesaf the covariances will also be functions of
the spatial variability of the soil moisture valuaisthe fine scale. It is proposed that the valtie
these components be the expected covariance afvtheneasurements calculated as the product of

the expected correlation coefficient between the mreasurements and the variance of the state.
O; = P40, (Equation 4-5)

When these off-diagonal components are low, thenctirrelation between the observations is low,
resulting in the observations containing more infation about the state. Therefore, the Kalman gain
equation will use more of the observations asiinfthe a posteriori estimate. If the off-diagonal
components are higher, then the observations are owrelated, resulting in less information from
the observations. Therefore, the Kalman filterl wde less of the observations in forming the a
posteriori estimate.

To determine the correlation coefficients for uselie Kalman filter, the sample correlation
coefficients between all pairs of fields in the GdaRiver watershed dataset and the sample
correlation coefficients between all pairs of felid the Roseau River watershed are calculated. An
exponential regression is used to develop a reiship between distance between fields and the
correlation coefficient. Then to calculate the amdance between two measurements, the correlation
coefficient can be calculated to substituting thetashce between the two fields as the distanceceSi
there are insufficient fields to correctly calceléhe average soil moisture for the state, i.eetitee
grid squares, covariance between the measuremdrtharobservation is taken from the correlation
coefficient equation using the average distancevéx the observation and the state, whose area is
much larger than the resolution of the radar imagbe average distance calculation is explained in
Appendix B.3.

Similarly, when upscaling a soil moisture measunetnepatial variability is also pertinent.

Regardless of the spatial variability, the finealsts estimate will simply be the coarser scale’s
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estimate. If, soil moisture values at the finealeado not vary much within the area covered by a
single pixel of the coarser scale, then the fimatess estimate will have a high degree of confaden
However, if the soil moisture values are highlyighble at the finer scale within the area covered by
the coarser scale, then estimated error of the fic&@e’s estimate will be higher.

Since no passive data is available, the correldietween WATClass model and the imagery
from passive radiometers is not established. i#f data were available, the correlation coefficient
covariance between the model and the image as aidanof the position of the WATClass grid
square inside the passive microwave pixel woulce$t@blished. Theoretically, grid squares in the
middle of the pixel would have a higher degree afelation; however, the difference in correlation
might be too low, resulting in a single correlatiomefficient or covariance between the grid square

soil moisture value and the passive microwave value

4.3 Soil moisture assimilation

For this thesis, the WATClass model is simulatedhsd error levels for all parameters and truth-
values are known and can be varied. The purpogeedfimulation is to determine how much the soll
moisture estimates can be improved by assimilatimiy moisture observations using the ensemble
Kalman filter. Only the soil moisture aspect of Walass is simulated; streamflow is not part of the
simulation. The simulation model uses a discrete tinit, i.e. a day, since soil moisture observatio
are likely to occur less frequently than daily.

While ground samples for the WATClass data werernakhese gravimetric measurements
cannot be considered to be completely represeatafithe soil moisture value for a WATClass grid
square. A WATClass soil moisture value is an ags$tvalue, whose value can only be approximated
by taking the average soil moisture value over géhére grid square. The optimal value of this

variable is the soil moisture value that produdes best outputs, e.g. heat retention and surface
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runoff, which are measurable. Therefore, a fesugd samples can not accurately estimate the soil
moisture value of the grid square.
WATClass’s model of soil moisture is approximatey API. That is, in absence of
precipitation, the soil moisture can be calculaedome fraction of the previous day’s soil mogstur
6t)=a)[6(t-1) (Equation 4-6)

where  9(t) is the soil moisture estimate for dayand
a(t)~N(1, ;%) is the drying factor of the soil on day

The drying factor varies from day to day in the @iation. The mean and variance of the drying
factor are estimated based on the Grand River sladdrdata. The API-based drying takes the place
of the drainage, interflow and evapotranspiratioacpsses. The unit for the soil moisture in the
simulation is percent saturation, wheére O represents no saturation ahé 1 represents saturated
soil.

Rainfall is produced randomly using a simple Mark@ain to determine which days rain
occurs and which days rain does not occur. Thahésprobability that it will rain today is depeard
on whether it rained yesterday. If it rained yeddg, then the probability that it will rain today
defined as

Prainrain= P&(t) = rain|x(t-1) = rain). (Equation 4-7)
Conversely, if it did not rain yesterday, then phebability that it will rain today is defined as

Pro rainrain= P&(t) = rain|x(t-1) = no rain). (Equation 4-8)
The values of these probabilities are estimatechftbe Grand River watershed WATClass data.
Generally, these probabilities vary depending antiime of year; it tends to rain more in springrtha
it does in the summer or fall.

On rainy days, the amount of rainfall for the modeldetermined randomly by selecting a
value from a gamma distribution (Selvalingam, 19Z8g, 1982). The parameters of the gamma
distribution are estimated using the Grand RiverMZhass data. The amount of rainfall value in the

model represents the increase in soil moisturecétsol with the rainfall, not the amount of raihfal
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in millimetres. This variable can be extractednirthe WATClass data and is practical for the
simulation. Rainfall data is not included in thegaket. If the rain causes the soil moisture ¢oeimse
past a threshold, the saturation level, then tliensoisture is capped at the saturation level. The
saturation level is not time dependent.

Therefore, the soil moisture during a rainfall evesn be described as:

gt)=a,(xt-1)6(t-1)+r(d),
o) = g ifeg't)<e,.. @) (Equation 4-9)
6 ®) i 00)26,,0),
where  9(t) is the soil moisture on ddy
6'(t) is the soil moisture on dayf there is no saturation level,
aq(t) ~ N(U,, 0,°) is the drying factor,

r(t) is the rain on day, and
Omax(t) is the saturation level on day

The surface runoff level in the simulation is asedno be the excess rain that is not absorbed
by the saoil,

Orunori(t) = O'(t) - O(). (Equation 4-10)

This runoff level has the same unit as rainfadl, percent saturation of soil moisture.

Error in the model is simulated as three sepanatities: the error in the drying factat, the
error in the rainfally, and the error in the saturation lev@ls. The error in the drying factor of the
simulation is related to errors in WATClass's hyiia conductivity of the soil, meteorological
conditions that affect exfiltration such as tempam@, humidity and incident solar radiation, and th
transpiration rate of the vegetation. The errothi@ saturation levels of the simulation is related
porosity due to soil composition.

In addition to the "true" values of these threeapagters, "estimated" values are produced by
selecting a value from a normal distribution witean equal to the true value and variance equal to
the error variance. These estimated parameterssaentially noisy versions of the true parameters.

The estimated error level for each of the threaupaters is also assigned a value. If the model is
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perfect, the estimated error level is equal tottbe error level; however, often the actual erevel
is unknown and must be estimated.

Observations are also simulated. The observag@m®d — the number of days between
observations — and the observation measurementlews are two of the major variables of interest
in this thesis. Observations are modeled as dwbservations of the soil moisture values of the
entire squares. That is, the radar backscattelesadre not being simulated, but rather, obsematio
of abstract true values of the entire square ademdhe observation is defined as

¥ ~ N@(), o) -

For the simulation, the observation is a single sneament of the soil moisture value.

This model, which simulates WATClass, is used as rttodel or predict component of the
ensemble Kalman filter. An ensemble of soil maistastimates is created from a random uniform
distribution to create the initial soil moisture aseirement. This ensemble is run through the model.
For each sample in the ensemble, the drying fastiyration level and rainfall level are assigned
values from a normal distribution, with the meamn aariance specified by the expected value and
expected error variances in these three paramefEne ensemble of soil moisture is recalculated
every day.

If there is an observation of a particular day nttiee process error variance is estimated by
calculating the variation in the model. The estedaprocess error variance and the estimated
observation (or measurement) error variance ard tesealculate the Kalman gain. The a posteriori
estimate as well as the a posteriori error variastlen calculated. A new ensemble of soil moestu
estimates is created by randomly selecting valua® fa normal distribution whose mean is the a

posteriori estimate of soil moisture and the ewaniance is a posteriori estimated error variance.
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Given this simulated data, the model can be rudetermine how much improvement in soil
moisture estimates can be made, given

» the frequency of soil moisture observations,

» the measurement error level in soil moisture olet@us,

e any bias in the soil moisture observations,

» the error in the estimated measurement error

» the model error level, which includes errors in fla¢uration level, drying factor and
rainfall,

« the error in the model error levels, and,

ensemble size.

This model is an abstraction of WATClass. The pagof the simplification of the underlying
equations and the change in discretisation in fionecalculations is to reduce the run-time of the
model, rendering the running of a large numberaifigsiets more practical. Furthermore, this model
affords better control over the inputs and modsbrer While the model may be heavily simplified,
the model is able to directly control the states #uror in the state, the errors in the inputs tred
errors in the observation by simulating them.

It should be noted that the model errors inhereVIATClass are not incorporated into the
model used in this thesis. That is, WATClass madel of the hydrologic cycle and will therefore
have errors caused by temporal and spatial diset&in and numerical approximations of the
differential equations. This inherent model eisodifficult to quantify; it is assumed to be negtile

for the purposes of this thesis.

4.4 Summary of proposed algorithm

Firstly, the parameters are defined.

AssignValueTo ProbRainlfRainYesterday
AssignValueTo ProbRainlfNoRainYesterday
AssignValueTo GammabDistShapeParametersForRainAmt

AssignValueTo DryMean, DryStd ‘Drying constant dist ribution
AssignValueTo ErrSat ‘Error in Saturation measureme nt
AssignValueTo ErrRain ‘Error in rainfall measuremen t

AssignValueTo ErrDry ‘Error in drying constant
AssignValueTo ObsFreq ‘Time between Observations
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AssignValueTo ObsErr ‘Error in observations

For the sake of the simulation, before runningghsemble Kalman filter, the “truth” values
of the state and input parameters, the “measuredlies of the input parameters, and, the
observations are simulated. These values are:

1. The days during which rain occurs are selectedgusiiliarkov chain.
RainyDays(1) = NoRain
For Day := 2 to NumDays
RainyDays(Day) = NoRain ‘by default
If RainyDays(Day-1) = Rained Then
RainyDays(Day) := Rained if RandUniform(0,1) > ProbRainlfRainYesterday
Else
RainyDays(Day) := Rained if RandUniform(0,1) > ProbRainlfNoRainYesterday

2. The amount of rain on each of these rainy daysnsilated by randomly assigning

values taken from a gamma distribution.

For Day := 1 to NumDays
If RainyDays(Day) = Rained Then
TrueRain(Day) := RandGamma(GammabistShapeParame tersForRainAmt)
Else
TrueRain(Day) := 0

3. The drying constant (decrease in soil moisturetdwirainage and evapotranspiration)

for each time step is determined by randomly silgca value from a Gaussian

distribution.

For Day:= 1 to NumDays
TrueDry(Day) := RandGaus(DryMean, DryStd)

4. The saturation level (time-independent) for thel gréll is randomly assigned a value
from a Gaussian distribution.
TrueSatLevel := RandGaus(1, ErrSat)
5. The initial “truth” soil moisture value is assignedvalue selected from a uniform
distribution ranging from O to 1.

TrueSoil(1) := RandUniform(0,1)

6. The “truth” soil moisture values for each time séep simulated using Equation 4-8.

For Day := 2 to NumDays
TrueSoil(Day) := TrueSoil(Day — 1) * TrueDryCons t(Day) + TrueRain(Day)
If TrueSoil(Day) > TrueSatLevel
TrueSoil(Day) := TrueSatLevel

7. Measured values of the rain and drying constargssanulated by selecting values
from Gaussian distributions with mean equal to theith” values and standard

deviations equal to the expected error in the paters.

For Day := 1 to NumDays
EstRain(Day) = RandGaus(TrueRain(Day), ErrRain)
EstDryC(Day) = RandGaus(TrueDry(Day), ErrDry)
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8. The observations are simulated by selecting valiga Gaussian distributions with
mean equal to the “truth” soil moisture values atandard deviation equal to the

expected observation error.

For Day := ObsFreq to NumDays Step ObsFreq
Obs(Day) := RandGaus(TrueSoil(Day), ErrObs)

The ensemble Kalman filter is implemented into $heulation as follows. The state variable
is soil moisture of a single grid cell.

1. The estimated errors of the input parameters ared dhservation measurements are
established. These error levels are not necegsyilal to the expected errors used in the
simulation of the input parameters. When runnimg algorithm in WATClass, these error

levels are estimated from real world data.
AssignValueTo [EstErrDecay] ‘Error in Drying decay constant error
AssignValueTo [EstErrSat] ‘Error in Saturation leve |

AssignValueTo [EstErrRain] ‘Error in Rain
AssignValueTo [EstErrObs] ‘Error in observation mea surement

2. The initial ensemble is determined by randomly &télg n points from a uniform distribution
ranging from O (dry soil) to 1 (saturation). Thetial estimated soil moisture value is set as
0.5.

For Replicate := 1 to EnsembleSize

EnsSoil(Replicate) := RandUniform(0,1)
EstSoil(1) := 0.5

3. At each time step:

a. The estimated soil moisture value is propagatedutiin the model using Equation

4.8.
EstSoil(Day) := EstSoil(Day - 1) * EstDecay(Day) + EstRain(Day)

If EstSoil(Day) > 1 then ‘Saturation
EstSoil(Day) := 1

b. The time-dependent parameters (rain, drying cohstaa saturation level) are
assigned a separate value for each point in thendsle. The values are randomly
selected from Gaussian distributions with mean ketjuthe estimated values of the

parameter and standard deviation equal to the égbecror of the parameter.

For Replicate := 1 to EnsembleSize
EnsRain(Replicate) := RandGaus(EstRain(Day), EStE rrRain)
EnsDry(Replicate) := RandGaus(EstDry(Day), EstErr Dry)
EnsSat(Replicate) := RandGaus(1, EstErrSat)

c. The each point in the ensemble is propagated thrtheymodel using Equation 4-8.

For Repl := 1 to EnsembleSize
EnsSoil(Repl) := EnsSoil(Repl) * EnsDry(Repl) + E nsRain(Repl)
If EnsSoil(Repl) > EnsSat(Repl)
EnsSoil(Repl) := EnsSat(Repl)
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d. If an observation of the state occurs at this ttegp then

iv.

The estimated a priori estimated error is foundchiculating the standard
deviation of the ensemble.

ErrSoilAPriori := StDev(EnsSaoil)

Using the model’s soil moisture estimate as thei@ipstate, the a posteriori
estimate is determined from Equations 2-7, 2-8, @d 4-3 (i.e. Kalman

update equations)

K := ErrSoilAPriori / (ErrSoilAPriori + EStErrObs)
EstSoil(Day) := EstSoil(Day) + K * (Obs(Day) — EstS oil(Day))

The a posteriori estimated error is determined fEauation 2-9.
ErrSoilAPost := (1 — K) * ErrSoilAPriori

A new ensemble is created by selecting points nahgddrom a Gaussian
distribution with mean equal to the a posteriotiireate of the state and

standard deviation equal to the a posteriori esg@charror.

For Repl := 1 to EnsembleSize
EnsSoil(Repl) = RandGaus(EstSoil(Day), ErrSoilAPo st)

42



Chapter 5
Results
This section presents the findings from the exationaof the data. Section 5.1 examines the spatial

correlation between the soil moisture estimatesstmh square in a watershed in WATClass as well

as the correlation between the soil moisture me:

pseints sampled from the fields studied in the
Grand River Watershed and the Roseau River Watgrdlatasets. These findings are used to
develop a general correlation function betweenettected soil moisture levels of two locations in a
watershed as a function of the distance betweetwibdields.

Section 5.2 presents the findings from the impletatgn of the ensemble Kalman filter into
the hydrological model. Firstly, the derivation thie parameters from the data is presented. The
effect of the ensemble Kalman filter on the errosail moisture is then examined as a function of

 Ensemble size
» Observation frequency
* Measurement error level
* Model error level
o Error in saturation level
o Errorin drying decay constant

o Error in rain measurement

5.1 Spatial variation of soil moisture content

This section examines the spatial variation ofg¢bié moisture values in the different datasets used
the thesis. Section 5.1.1 describes the spatightian of the WATClass modeled soil moisture
estimates. These soil moisture estimates aredidmnof the meteorological data and the land cover
data. Furthermore, since WATClass is gridded siiemoisture estimates are regularly spaced and

cover the entire watershed.
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Section 5.1.2 presents the spatial variation ofstiiemoisture values sampled from the fields
in the Grand River Watershed study and the Roseeer RVatershed study. These soil moisture
values are actual real-world measurements. They@gularly spaced and, in the case of the Grand

River Watershed data, only cover a small portiothefwatershed.

5.1.1 Spatial variation of soil moisture content in WATClass

The WATClass data includes meteorological dataefach grid square for each hour in the study
period (Seglenieks, 2001). The meteorological datludes

* temperature,

e humidity,

* long and short wave radiation,
* pressure,

* wind speed, and,

* precipitation.

The proportions of each land class in each gridusgare also included. However, the soil propertie
are assumed to be homogeneous for each type ofclagss across all grid squares. The only other
parameter affecting soil moisture is internal slopéie grid square, whose value is included fahea
grid square. Therefore, when the WATClass modeliis the spatial variation in soil moisture values
is almost entirely dependent on meteorological .

Figure 9 shows the variogram for the WATClass est#d soil moisture values for the Grand
River watershed for the summer months of 1996 &9¥1 The variogram is produced by finding the
difference in soil moisture value between all paifgyrid squares and then calculating the average
difference as a function of distance between fieldsFor this variogram, spatial variation is

considered to be isotropic; therefore, distancedtiion is irrelevant.
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Figure 9 — Variogram for WATClass estimated volumetic water content
of the Grand River watershed during the summer mortts of 1996 and 1997

At distances less than 120 km, the average diféerén volumetric soil moisture is linearly
dependent on distance. The cause of the lineaendigmcy is the method by which the
meteorological conditions for each grid square emeated. If the meteorological conditions are
collected only at particular points in the watedhesuch as meteorological stations, WATClass
linearly interpolates between these points to erea¢teorological condition estimates for each grid
square (Kouwen, 2006). Since the variability ofl sooisture estimates in WATClass is almost
entirely dependent on meteorological condition® #oil moisture estimates also appear linearly
interpolated. Therefore, a linear relationshipasetn average difference in soil moisture and degtan

between grid squares occurs.
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At distances greater than 120 km, the squares hedia far enough apart that the two squares
no longer lie between two meteorological statiofitierefore, the difference in soil water content is
no longer linearly related.

WATClass is capable of using ground radar as antitp determine rainfall levels for each
grid square (Kouwen, 2006). In this case, the mradmfall levels are calibrated using the rainfall
gauges located at the meteorological stations.tieGrand River watershed dataset, however, radar
rainfall does not appear to have been used. Nuwtieall other meteorological inputs to WATClass
are interpolated from the point measurements maaol® ineteorological stations. Since the soil
moisture measurements are only derived from a feeanological stations, this dataset does not
provide relevant information on the correlationvibetn soil moisture measurements at different

locations.

5.1.2 Spatial variation of soil moisture content in ground data

The soil moisture measurements from the Grand Reatershed study and the Roseau River
Watershed study represent true ground measurerardtthus provide a better representation of the
relationship between distance between fields amtelation of soil moisture estimates of the two

fields.

5.1.2.1 Grand River watershed data

The variogram computed for the Grand River watatgjreund sampled data is shown in Figure 10.
For this variogram, pairs are grouped by distanu the average difference is computed for each
group. The distance between fields assigned th aserage difference is also the average distance
between the pairs of fields in that group. Therage difference in Grand River watershed shows
little dependency on distance. This is due toléinge variability in field capacity between fieldss
shown in Table 2. A large variation in field cajppaavould cause the fields to have different soil

water content values even if the rain level is tamsover all fields.
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Figure 11 displays the correlation coefficientswasn fields in the Grand River dataset as a
function of distance. The correlation coefficieligplays a better representation of how closely the
fields correlate, since the correlation coefficientamines the relative changes in soil moisture
measurements and how synchronized these changesetween fields. That is, the correlation
coefficient describes how in tune the temporal gesanin soil moisture for one field are with thoe o
another field. The solid line is an estimate af torrelation coefficient as a function of distance
produced from a logarithmic regression of the sasigl,= 0.889 -€°%*¥). As distance between
fields increases, the correlation between fieldreleges. The y-intercept of the line is less than 1
indicating that even the soil moisture values of fields that are close to one another might not be

highly correlated with one other.

|:|15 1 1 1 1 1 1 1 1 1

0.10 .

0.05 .

Awerage difference in soil water content

|:| | 1 | | | | | | 1
a ] 10 15 20 24 30 34 40 45 a0

Distance (km)

Figure 10 — Variogram for Grand River watershed graind-sampled soil moisture content
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The small sample size for calculating the corretatoefficients — thirteen dates are used for
each correlation coefficient between fields — leaolsa high standard error for the correlation
coefficients. This plot is shown in Figure 12 sisotie standard error as a function of correlation
coefficient. The standard error is much higherlfaver correlation coefficients. Subsequenthg th
decay constant for the correlation coefficient wa#lve a higher error. The root mean square of the
residuals of the regression, which is the expeetear in the calculation of the correlation coa#iut
from the sampled correlation coefficients, is 0.14Bmbining these two errors, the expected error i
the estimated correlation coefficient between twangs given a distance is very high for the

correlation coefficient function derived from tlilataset.
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as a function of distance in the Grand River datage
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Figure 12 — Standard error for correlation of soilwater content
between fields in the Grand River dataset (N = 13)

5.1.2.2 Roseau River watershed data

Figure 13 presents the variogram for Roseau Riatas#t. The average difference in soil moisture
measurements increase linearly in distances undeknt Above 40 km, the average difference
remains constant.

Figure 14 presents the correlation coefficient dargtion of distance. The equation of the

correlation coefficient line is,, = 0.937™** . Due to the sparseness of the measurement matrix,

only part of the Roseau River dataset is useddaterthe correlation estimates; only eight fieldsnf
seven dates are used, creating only sixty-four tesrfor the regression. Given that the number of
samples in the calculation of the correlation doefht is seven, the standard error level is highhe
standard error as a function of correlation cogdfitis shown in Figure 15. The root mean squére o
the residual of the regression between distancecangtlation coefficient is 0.113. As with the
Grand River dataset, the high level of these tworsmesults in a high expected error in the edgoha
correlation coefficient between two points givedistance from the correlation coefficient function

derived from the Roseau River dataset.
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For each field on each day for Roseau River graardpling, volumetric water content was
measured at five measurement sites spaced atHeastapart. At each measurement site, three
samples were taken within a 1 m radius. Therefar®tal of fifteen measurements were taken at
each field on each day. Though the samples wetakan from the same field within 50 m of each
other, a high degree of variation is apparent i tieasurements. Table 4 displays the standard
deviation of the fifteen measurements as a fraabbthe mean of the measurements. The average
standard deviation is 26.5% of the measurement melnis is an indicator of the high spatial

variability of soil moisture within a field.
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Figure 13 — Variogram for Roseau River watershed grund-sample soil water content
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Figure 15 — Standard error for correlation of soilwater content

between fields in the Roseau River dataset (N = 7)
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Table 4 — Soil moisture estimate standard deviationormalised by mean
for Roseau River dataset

Sleg| 8 8|8 818 83|83
S I T T T - - A B~
Field name $ 8 8 8 S:' 2' 2' g g g
Al FOR 1 0.149 0.36§ 0.200 0.175
Al GLE 1 0.529 0.257, 0.179 0.203
Al GLE 2 0.521 0.359 0.197 0.224 0.450
Al KIR 2 0.313 0.189 0.092 0.191
Al SAB 2 0.314 0.244 0.084 0.167
Al TER 1 0.220 0.579 0.161 0.302 0.1p2
A2 DYC 1 | 0.161| 0.469] 0.537 0.23p 0.269 0.188 84.1
A2 GRI 1 0.497| 0.521] 0.276 0.242 0.133 0.128
A2 HIR 1 0.154| 0.512] 0.432 0.124 0.184 0.240 0.200.197 | 0.105
A2 LOE 1 0.257| 0.162] 0.260 0.409 0.211 0.316 9.100.147
A2 NED 1 0.192| 0.162 0.153 0.161 0.247
A2 PAL 1 0.175| 0.473 0.392 0.10pb 0.212 0.1p5
A2 REI 1 0.260| 0.480, 0.116 0.231 0.241
A2 SMO 1| 0.042| 0.183 0.402 0.523 0.323 0.298 03.p
A3 ECK 1 0.203| 0.202 0.224 0.172 0.139 0.201 0.190.156
A3 EWA 2| 0.231| 0.260] 0.413 0.081 0.169 0.114 0.155
A3 GOB 2| 0.248| 0.209 0.862 0.112 0.0y6 0.103 0.197
A3 GOT 1 0.224| 0.294 0.722 0.190 0.144 0.198 0.273.156
A3 MCC 2| 0.366 0.766 0.723 0.247 0.1%5 0.213 0.26@.136 | 0.209
A3 NOR 1| 0.162| 0.333 0.37f 0.485 0.171 0.149 0.212.136 | 0.236| 0.124
A3 TKA 1 0.367 | 0.275| 0.722 0.208 0.341 0.2f0 0.233 0.299
A3 WAN 1] 0.090| 0.200f 0.350 0.431L 0.326 0.299 0.388.559 | 0.271| 0.221

5.1.3 Producing soil moisture measurement estimates

Due to the high variability of the soil moisturetiesmtes, the error in the correlation coefficient
functions derived in the previous sections arehigh to be useful in the determining of the elersent
of the Kalman measurement error covariance matfrthermore, the data in the Grand River
dataset is too sparse both spatially and tempotallye assimilated into WATClass. For example,
there are only a few fields sampled in a grid sgugmpically one or two, and the variance between
the measurements of the fields is very high. Tioeee for the testing of the algorithm, simulated

data is used instead of the real world data. Trhalated data is described in Section 4.3.
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If more dates are sampled, then the expected iertbe correlation coefficients would reduce,
making the result of the regression more validyveithg the function to be used in conjunction with
the ensemble Kalman filter. To better quantify viagiance in the measurement error, the correlation
coefficients could be another parameter random&edart of the ensemble. The mean of the
correlation would be the value derived from theresged equation and the standard deviation of the
error would be the root-mean-square error of thlgraession. If there are a sufficient number of

samples used in the regression, the RMS error @stdbe a function of distance.

5.2 Ensemble Kalman filter implementation

5.2.1 Parameter selection

Parameters and variables for the simulation of W€ are described in Table 5.

The rain parameters are estimated from the GrawérRiatershed WATClass data. The
WATClass model is run for a single square wherestiiemoisture estimate is zeroed four times per
day. Therefore, any increase in the soil moisagtimate in any of the four periods per day would
indicate that the precipitation occurred duringttday. The precipitation level for each day is
determined by summing the maximum soil moistur@rede in each period. This rain estimate will
underestimate the actual value because drainageapbtranspiration will cause the soil moisture
estimates to drop during the period. For exaniplbe rate of loss of water content due to draénag
and transpiration at a given time is equal to trecipitation rate, then this rain estimation method
will determine that no precipitation had occurred’herefore, the precipitation parameters are
modified slightly to create slightly higher predation level.

These “rain” measurements are used because thimaiadhe increase in soil moisture due to
the rain on a given day, rather than the amourngre€ipitation falling on the ground. Therefore,

these values are more suitable for the simulation.
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Table 5 — Simulation parameters

Function |Parameter] Value | Explanation
Simulation parameters
Rain simulation | Prain rain 0.55 Probabilities that it will rain today given thatteér it rained and didl
Pro rainrain | 0.24 not rain yesterday
Orain 2 Shape and scale parameters for the gamma distnihutihich
Prain 6 determines the amount of rain on rainy days.
Soil moisture | 4, 0.85 Parameters for the normal distribution éoithe decay constant.
g, 0.05
6o 0-1 Initial soil moisture value at the beginningtioé simulation
Hpmax 1 Parameters for the normal distribution @4, the soil moisture
O 0.1 value at saturation
j Simulation variables
Measurements | Tops Number of days between observations
Oeobs Observation error level (% error)
Rain Owain Rain measurement error level (% error)
Soil moisture Oudecay Error level of the decay constant (% error)
Tesat Error level of the soil moisture saturation levi# érror)

The precipitation is determined for the summer rhsrinly, i.e. when WATClass determines
that there is no soil water moisture, i.e. icethia soil. In 1996, there were 170 days betweenaitte
occurrence of solid soil moisture in the spring dmel first occurrence of solid soil moisture in the
fall. In 1997, there were 138 days of this natuftese days are divided into two categories: dtays
which it rained and days in which it did not raifthe dependency of the occurrence of rain on one

day on the occurrence of rain on the next dayterdéned. A summary of the findings is as follows:

306 total "todays"

/N

107 rainy 199 non rainy

/N /N

58 rainy 49 nonrainy A8 rainy 1571 non rainy

The rain probabilities are determined from the damp
The gamma distribution parameters for the amountaif on rainy days are determined by

maximum likelihood estimation. If there ah¢ sample points{xl,...,xN} to fit to the gamma

distribution

54



a B
g(x;a,ﬁ)=x"’1’8 € _ forx>0. (Equation 5-1)
ra)

The paramaters, andg are estimated numerically (Choi, 1969).

The parameters for the API drying factor are takem ranges specified in the literature
(Dingman, 2002, Kouwen, 2006).

Since no information is known about the initiallsooisture, the initial soil moisture for the
simulation is set to be a random variable selefrimd a uniform distribution between 0 and 1. The
initial a priori estimate for soil moisture is thO$.

The mean soil moisture value at saturation is st as WATClass assumes all soils of the
same land type have the same saturation point. eflfoe in saturation is arbitrarily chosen to bg. 0.
The variability in soil moisture saturation levédshigher, as shown in the variation in field cdapac
of the Grand River dataset as evident in Table ®Rydver, the WATClass saturation level is

representative of a large area; therefore, avegdgimers the variation.

5.2.2 Simulation

For each test, the simulation is executed with maivalues used for the variables not under study.
The standard deviations, are error levels and are normalised by the viriadlue such that they are

percentage errors, not absolute errors. These svalgeshown in Table 6.

Table 6 — Nominal variable values for initial simuétion

Variable | Value
Tobs 3 days
Oeobs 10%
Oerain 5%
Jedecay 10%
Owsat 10%
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Figure 16 — Soil moisture value and estimates foraminal values

Several general comments can be made examininguipaits of the simulation using these
nominal parameter values. Figure 16 shows thedoilemoisture value, the estimated soil moisture
value if no observations are assimilated (i.e.nesties based on meteorological and land class data
only), the estimated soil moisture value with asisitad observations and the observations created by
the simulation using the nominal values for theapaters. Using the nominal parameters, the
absolute RMS error in soil moisture decreased papmately 0.071 from 0.095. Note that the soil
moisture values range from 0 for completely dryageproximately 1 for completely saturated.
Qualitatively, the soil moisture estimates madehwaibservations tracks the true soil moisture value
better than those made without observations. Hewethe soil moisture estimates without
observations do not vary much from the true soilstame value. Since all the estimated parameters

are randomly taken from probability distributiondttw means equal to the true value of the
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parameters, the errors in the soil moisture tenelven out. Quantitative results are included m th
sections that follow.

Furthermore, the absolute error for the estimategenerally lower for dry soils than wet soils.
For example, if there is no rain for long periodgime, the estimated value of the soil moisturd wi
tend to converge with the true value of the soiiswwe as the soil moisture value decreases. The
estimate without observation also tends to convesith the estimate with observation when
precipitation causes the soil moisture to reach daeiration level, since the soil moisture value
cannot exceed the saturation level. However, & $hturation level has an error, then both the
estimate with observations and the estimate witbbservations will be the same, and both will have

an error equal to the saturation level error.

5.2.3 Ensemble size

The ensemble used in the simulation should be septative of the distribution of the estimated
error. If the ensemble is adequately large, themlgtion results are repeatable even though the
ensemble points are selected at random. The efseshbuld also not be indiscriminately large
either since an increased ensemble size will leddcreased computation time.

For several ensemble sizes, the simulation is égddwenty-five times using exactly the same
parameters and variables. The only differencesvdmmt simulations are the points inside the
ensemble, which could possibly affect the estimatedel error variance. The standard deviation of
the estimated error level is calculated for eachiddhe study period. Each daily standard dewrati
is normalised by the mean of the twenty-five estedaerror levels. Then the daily standard
deviations are divided by the daily means, prodychre daily percent error of the estimated error
level. The entire test is performed twenty times #he averages of the statistics of the estimated

error for all these simulations are presented inld &.
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Table 7 — Error in soil moisture value (%saturation) as a function of several ensemble sizes

Size Avg SD | Avg SD %

2] 0.0288 62.1%
51 0.0157 26.8%
10| 0.0106 17.3%

20| 0.00730 11.7%

50| 0.00453 7.21%

100] 0.00321 5.07%

200| 0.00226 3.56%

500] 0.00143 2.24%

1000| 0.00100 1.58%

2000 0.000725 1.13%
5000] 0.000449 0.707%
10000 0.000319 0.503%

Avg SD: Average standard deviation of the expeetedr over all dates
Avg SD %: Percent error of expected error

As ensemble size increases, the error in the estth&ror decreases. However, the error level
decreases at a rate much slower than the ensemmblmsreases. An ensemble size of 1000 is used
for the remainder of the tests, as simulationswith this ensemble size had manageable run time and

the estimated error in the estimated error is 10224).

5.2.4 Observation frequency

The effect of observation frequency is also exasohineSeveral time lengths for time between
observations are chosen: 1, 2, 3, 7, 14, 24 andh85. The shortest three time periods represent th
observation frequencies for passive microwave remnsensing of soil moisture, whereas the longer
time periods represent the observation frequerfoiesctive remote sensing. The error in the soil
moisture estimates is found for five different sat®bservations for each time period in one huddre
different simulation datasets. The average erver all days and the a priori error estimate foysda
with observations for each period are shown in @a&bhlThe a priori error estimate is the estimated

error as predicted by the ensemble Kalman filtst pefore the observation is assimilated.
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Table 8 — RMS error in soil moisture value (%saturdion) as a function of time between

measurements
Period | Total error | A priori error

1 0.052 0.063

2 0.063 0.078

3 0.071 0.088

7 0.085 0.106
14 0.091 0.116
24 0.093 0.120
35 0.094 0.120
s 0.096

The error in soil moisture is approximately halvdten observations are assimilated daily than
when no observations are applied. Conversely, vdiEervations are made once every thirty-five
days, the improvement in soil moisture estimateusmy is only 2% better than if no observations
were made. The reason why only a slight increa$eund is that once the observation is assimilated
the errors inherent in the model creep back intosthil moisture estimate. The a priori error eatan
is within 10% for 14, 24 and 35 days, implying thiz improvement of the soil moisture estimate is
essentially lost approximately fourteen days atepbservation is assimilated.

It should be noted that the error levels are vaagemdent on the model error levels and the
measurement error levels. That is, if the measengrerror is decreased, the total errors would
decrease significantly for the shorter time periodfghereas, if the model errors are decreased, the
total errors for all time periods would decreassuiting in less of an improvement of shorter time

periods over longer time periods.

5.2.5 Measurement error

The observation measurement error is the errdrérconversion of the remote sensing images to the
soil moisture estimates to be applied into WATClassoutlined in Section 0. Obviously, any
increase in the accuracy of the observation willseathe soil moisture estimates from the ensemble

Kalman filter to increase. Furthermore, assimilgtsoil moisture remotely sensed soil moisture

59



estimates into the hydrological system will not gem the estimated error. Therefore, on average, th
soil moisture estimates from the ensemble Kalmiger fivill be better than the soil moisture estinsate
than if the ensemble filter had not been appliedardless of the level of error in the signal. [€&b
presents the actual error levels for several diffelobservation measurement errors run through the
simulation. The a priori and a posteriori estirdagerors are also shown. The a priori estimatererr
is the average of the soil moisture estimate eomwrthe day of the measurement prior to the
assimilation of the measurement. Hence, this vedpeesents the maximum soil moisture estimate
error in the observation period. The a posteestimate is the average of the soil moisture eséima
error on the day of the measurement immediatebyr dfte assimilation of the measurement. Hence,
this value represents the minimum soil moisturé@rege error in the observation period. The last
row presents the estimate error if no observatwasised.

The error in soil moisture estimates is also idelili if the soil moisture estimate is directly
replaced by the observation. If the observationres low, then the method of direct replacement
performs just as well as the ensemble Kalman Filtémwever, as the observation error increases, the
ensemble Kalman Filter begins to significantly @rfprm direct replacement. The ensemble Kalman
Filter is able to leverage the information from ttmedel, whereas if the soil moisture estimate is
simply replaced by the observation, all the infatioragained from the model is discarded.

The statement that the Kalman filter cannot wotbernsoil moisture estimate is valid under the
assumption that the measurement error level isratee@nd the measurement error has a zero mean,
i.e. the observation measurements are not gendraher or lower than the actual soil moisture
value.

Table 10 shows the root-mean-square (RMS) errtheBoil moisture over all the dates if the
measurement error is erroneous. In the leftmdshao, the estimated measurement error is shown as

a fraction of the actual measurement error. Twasueement error levels, 10% and 20%, are tested.
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Table 9 — Error in soil moisture value(%saturation) as a function of estimated measurement

error level
Observation | RMS error | A priori A posteriori
error est. error est. error
0.01 0.058 0.082 0.006
0.03 0.060 0.083 0.017
0.05 0.063 0.084 0.028
0.10 0.071 0.087 0.048
0.15 0.077 0.090 0.062
0.20 0.081 0.093 0.071
0.30 0.087 0.097 0.083
0.40 0.090 0.099 0.090
0.50 0.093 0.101 0.094
0.60 0.094 0.102 0.097
0.70 0.094 0.103 0.099
0 0.095

For both error in measurement error levels, thellsstaerror in soil moisture occurs when the

estimated measurement error is the actual measotezner, which is expected. For the smaller
error in measurement error levetobduons = 10%), the soil moisture estimates remained more
accurate than the estimates without observatioan evhen the measurement error levels are five
times lower or five times higher than the actuabetevel. However, the actual measurement error
level is much lower than the actual process emwell Therefore, even if the Kalman gain equation
gravitates more to the observation, since the obsien error is generally lower than the process
error, an improvement in error is made. HoweVethe actual observation measurement error level
is higher, then there is a chance that the obgervais a higher error than the process. When the
Kalman filter overly trusts the observation erriog, when the estimated measurement error level is
too low, then the average error with the obserwstican increase over the average error if no
observations are assimilated. If the estimatedsorement error level is too high, then the result i

that the Kalman filter does not trust the obseoratas much as it should, resulting in a loss of

improvement over the non-observation case; howeves, not possible for the average error to

increase above the error level if no observatioaswade.
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Table 11 displays the average error in the soilstoog estimates if there is a bias in the
observation, i.e. the observations tend to be higtrelower) on average than the state that thie sta
being observed. Bias was simulated by simply mlyitig the observation value by a multiplier,

prior to assimilating it. Therefore, the obsereatmean;.,, will become

Hz= Xido.

Table 10 — Error in soil moisture (%saturation) asa function of error in measurement error
level

Multiplier x RMS error RMS error RMS error
(5eobs = Xgmbs) (6eobs = 0.05) | (6eops = 0.10) | (6eons = 0.20)
0.200 0.063 0.075 0.105
0.250 0.063 0.074 0.101
0.333 0.063 0.073 0.096
0.500 0.063 0.072 0.088
0.707 0.063 0.070 0.084
1.000 0.062 0.069 0.082
1.414 0.063 0.070 0.083
2.000 0.065 0.073 0.085
3.000 0.068 0.078 0.089
4.000 0.072 0.082 0.091
5.000 0.076 0.085 0.092
No observations RMS error 0.095

Note:o are actually/u

Table 11 — Error in soil moisture (%saturation) asa function of bias in the observation (%of

true value)
Bias | RMS error
0.5 0.194
0.6 0.161
0.7 0.129
0.8 0.101
0.9 0.079
1.0 0.070
1.1 0.077
1.2 0.095
1.3 0.118
1.4 0.142
1.5 0.167

No obs. 0.095
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As a consequence of the multiplier, the measurereemor level of the observation will also be
multiplied by the factor. However, as shown in [Eab0, a small difference in measurement error
level will not greatly affect the simulation. Tledfect of the bias is much greater than the eftdct
errors in the estimated measurement error.  Toexeffor observations to be beneficial, it is

imperative that there be little bias in the obstove.

5.2.6 Model error

5.2.6.1 Saturation Level

In WATClass, soil properties of a particular laraler type are assumed to be constant across @ll gri
squares. However, as previously shown in the bditya of the field capacity, there is a marked
spatial variability in soil properties. Since thaturation level is constant across the agriculame
cover type in all grid squares, the model’s errariance in the saturation level will be the spatial
variance in the saturation level of the soil. Hosld be noted that the variance in the saturdéwel

is the variance between grid squares, not betwietsfor points in a field; therefore, it is podsib
that much of the micro-scale variability will event, such that the variance in the saturation lavel
the meso-scale is quite a bit smaller than théh@imicro-scale.

Table 12 — Error in soil moisture (% saturation) asa function of actual saturation level (as a
fraction of estimated saturation level)

Saturation | RMS Error
Level in soil
moisture
0.70 0.113
0.80 0.086
0.90 0.067
0.95 0.063
1.00 0.063
1.05 0.068
1.10 0.075
1.20 0.096
1.30 0.119
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Table 12 displays the error in soil moisture asurecfion of saturation level. The estimated
saturation level for the model is 1.000 and themeged saturation error level for the ensemble
Kalman filter is 0.1. Therefore, the errors inugation represented in the test are +3, +2, +15 Add
0 standard deviations away from the mean. The @nrthe soil moisture estimates improves for all

levels of the actual saturation level.

5.2.6.2 Drying decay constant

The decay constant simulates drainage and evagpiration in the WATClass simulation. The
error in soil moisture generally decreases as treg gariance in the decay constant decreases. The
correlation between the decay constant error veeiamd the error is weakened when the observation
error variance is small because the soil estimat@astly made up of the observation. When the
observation measurement error variance is higher, level of error in soil moisture is more
dependent on the decay constant error variancble 8 shows the average error in soil moisture as
a function of decay constant error variance anceiMasion measurement error variance. The last
column in the table displays the RMS error in tbéd moisture if no observations are made (or if
observations are not in any way reliable).

Table 13 — Error in soil moisture (%saturation) asa function of decay constant error variance

Oecdecay | RMS error RMS error RMS error RMS Error
Geobs = 0.05 | 6eops=0.10 | 6Gens = 0.20 Geobs = ©
0.05 0.051 0.057 0.064 0.072
0.06 0.053 0.059 0.067 0.077
0.07 0.057 0.062 0.071 0.081
0.08 0.058 0.065 0.075 0.086
0.09 0.060 0.068 0.078 0.091
0.10 0.063 0.071 0.082 0.096
0.12 0.068 0.076 0.089 0.106
0.14 0.073 0.081 0.096 0.115
0.16 0.078 0.087 0.102 0.126
0.18 0.084 0.093 0.109 0.136
0.20 0.090 0.098 0.116 0.146

Note: ¢ are o/u
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Table 14 presents, the RMS error in soil moistwa dunction of error in the estimated decay
constant error level. The decay constant estimateat is presented as fraction of the actual decay
constant error. As with the observation measurérmgor variance, the best soil moisture estimates
are produced when the estimated error variancgualdo the actual error variance. When the decay
constant error variance is underestimated, the Kalfilter overestimates the accuracy of the a prior
model and consequently underestimates the valtigeabbservation. Therefore, the improvement in
soil moisture estimates from the observationsdsdaed as the ratio of estimated decay error tevel
actual decay error lessens. However, the err@oihmoisture level will not drop below the error
level if no observations were made.

When the decay error is overestimated, the Kalnitar fwill underestimate the value of the
model and consequently underestimates the valtieeomodel. The effect of the overestimation of
the decay constant on the accuracy of the soiltom@isneasurement increases as the accuracy of the

decay constant increases.

Table 14 — Error in soil moisture (%saturation) asa function of error in decay constant error
level

Multiplier x RMS error RMS error RMS error

(a-edecay = Xa-edecay) (O'edecay: 005) (O'edecay: 01) (aedecay: 02)
0.200 0.062 0.082 0.122
0.250 0.061 0.080 0.118
0.333 0.061 0.078 0.112
0.500 0.060 0.074 0.104
0.707 0.058 0.071 0.100
1.000 0.057 0.070 0.097
1.414 0.057 0.071 0.097
2.000 0.058 0.072 0.097
3.000 0.061 0.074 0.098
4.000 0.063 0.075 0.098
5.000 0.064 0.075 0.098

No observations 0.071 0.095 0.145
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5.2.6.3 Rain

In the simulation, rain is represented by the iaseein the soil moisture value caused by rain on a
given day. Theoretically, this value is proporabto the volume of rain falling on a grid squarea
given day. The percentage error in the measurepfdahe simulated rain is assumed to be constant
with respect to the level of rain. Several diffgréevels of percentage error in the measurement of
rain are run through the simulation. The averalytSRerror in daily soil moisture and RMS error in
yearly runoff level for a hundred simulated paragnesets with five separate simulated observation
sets are shown in Table 15. For this test, thenastd error in rain measurement is assumed to be
equal to the actual error in rain measurement.

The error in rain measurement has less effect erstlil moisture estimates than the error in
the decay constant, which can be attributed tartfrequency of rainy days. That is, error in rain
measurement is only applicable on days when ranrg¢cwhich is approximately 35% of the time.

The error in estimated rain measurement errordse akamined. The results are shown in
Table 16. The rain measurement estimated errgsrésented as a fraction of the actual rain
measurement error. As with the other error vaganthe best soil moisture estimates are produced
when the estimated error variance is equal to theaberror variance. When the rain measurement
error level is low, there is little dependence ba estimated error level because the majority ef th
model error is caused by the decay constant ederthe rain measurement error increases, the error
in rain measurement error has more of an effecthensoil moisture error; however, the decay

constant still makes up the majority of the error.
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Table 15 — Error in soil moisture as a function ofrror in rain measurement

Error in rain RMS RMS
measurement| error soil | error soil
% moisture | moisture
(no obs)
0.00 0.071 0.096
0.05 0.071 0.097
0.10 0.073 0.099
0.15 0.074 0.102
0.20 0.076 0.105
0.25 0.079 0.110
0.30 0.083 0.115

Table 16 — Error in soil moisture as a function ofrror in estimated rain measurement error

Multiplier x RMS error RMS error RMS error
(@min = Xaaain) Geain = 0.05 Geain = 0.10 Geain = 0.20
0.200 0.0707 0.0718 0.0767
0.250 0.0707 0.0718 0.0767
0.333 0.0707 0.0718 0.0764
0.500 0.0707 0.0717 0.0761
0.707 0.0706 0.0716 0.0759
1.000 0.0706 0.0716 0.0759
1.414 0.0706 0.0717 0.0760
2.000 0.0706 0.0721 0.0766
3.000 0.0708 0.0728 0.0775
4.000 0.0712 0.0735 0.0781
5.000 0.0716 0.0742 0.0785
No observations 0.0956 0.0969 0.1041
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

When the Grand River watershed and Roseau Rivesrstetd ground sampled data are examined, a
spatial relationship is found in soil moisture. Axponential relationship is established between th
distance between samples and the correlation cefti between the soil moisture values of those
fields. Due to the limited number of dates samplealvever, the error in the sample correlation
coefficients is high, rendering the correlationffiogent function ineffectual.

The ensemble Kalman filter is found to reduce threrein the soil moisture estimates from
approximately 9.5% to 7.1% of percentage of satumdevel. An ensemble size of 1000 is found to
be appropriate for the WATClass model.

Soil moisture value estimate error reduces as wvhsen frequency increases. Obviously
daily measurements are ideal. The improvementtalikee observations is negligible approximately
fourteen days after the observations are assirdilakeirthermore, as observation measurement error
decreases, soil moisture estimates will decref{istere is error in the estimated measurement erro
then the accuracy of the soil moisture estimatdisreduce. However, only if the measurement error
level is high, and the measurement error is grosalyerestimated will the soil moisture estimates
with the assimilation of the observations be warffethan the soil moisture estimates without the
assimilation of the observations. Bias in the olet#ons, i.e. if the observations are consistetuty
high or too low, has more of an effect on the aacyrof the estimated soil moisture values. If the
measurements are consistently 20% higher or 20%rltivan the actual soil moisture value, then the

soil moisture estimates will be worse off thandfaobservations are made.
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Elevated error in the saturation level of the moidereases the error in the soil moisture
estimates. However, the improvement due to theerwbfions is more pronounced when the
saturation level error is higher.

Errors in the decay constant, which will be affdctsy WATClass drainage, interflow and
evapotranspiration rates also have a large efi@¢he soil moisture values. If the error in theale
constant is low then the improvement in soil maists minimal. Error in the error level of the dgc
constant does not have a great deal of an effettiesoil moisture estimates.

Error in the measurement of rain has less of amcefthan the error in decay constant.

Subsequently error in error in measurement of addn has little effect.

6.2 Recommendations

To accurately assimilate remotely sensed soil m@smeasurements into WATClass, the spatial
variability of soil moisture values must be furthetamined. While the spatial variability analysis

study presented in this thesis performed some isfdhalysis, the sample size is too small to be
produce accurate results. While the ground sampmfrmore fields on more dates is impractical, the
knowledge of the exact spatial variability at sevelifferent resolutions will be highly beneficiahs

the observation of remote sensing of soil moistbeeomes more accurate, remotely sensed soil
moisture maps can be used in place of ground sadgiéeto determine the spatial relationship. In

addition to the spatial variability, the error \arces for the parameters and input variables into
WATClass should also be determined.

The ensemble Kalman filter should also be implem@nhto WATClass proper. Simulated
data should be used as inputs initially to deteenttme efficiency of the algorithm. In addition to
determining how much soil moisture estimates impraith a more complete hydrological model, a
WATClass simulation would also be able to determime effect of the assimilation of soil moisture

on streamflow water levels. An improvement in @stimation of soil moisture content will improve
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the estimation of surface runoff levels. Subsetlyethe estimates of streamflow levels will be mor
accurate the prediction of flood occurrences wdllietter. If possible, the ensemble Kalman filter
should be exercised on the WATClass at differeatiapscales. There may be some advantage in
running WATClass with square size equal to the ttelyesensed images pixel size.

Since remotely sensing of soil moisture currentip only be performed on bare soil or light
vegetation, some study should be done to deterhmmemuch of WATClass's agriculture land class
is made up of bare soil or light vegetation fieldsurthermore, some study should be undertaken to
determine whether the soil moisture estimates loérotand types can be updated using the data from
soil estimates of the bare soil and light vegetefields.

Finally, once remotely sensed soil moisture asaiioih is properly implemented into
WATClass, the remotely sensed soil moisture es@matan be used to correct the underlying
parameters in WATClass. For example, if it is fouhat WATClass is consistently underestimating
the rate at which the soil drains after a rainélént, the hydraulic conductivity parameter forttha
grid square should be increased. With this in msull parameters can be made to vary spatially

from grid square to grid square, instead of jusyive between WATClass land types.
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Appendix A

Glossary/Acronyms

API: Antecedent Precipitation Index: an index dedvfrom rainfall measurements, which can be
compared with or used to estimate soil moisture.

C-band: a portion of the microwave electromagnetitge of frequencies ranging from 4 to 8 GHz
(3.75-7.5 cm in wavelength). C is for “compromisas, in a compromise between L- and X-
band

CLASS: Canadian Land Surface Scheme: a land sugac@meterization scheme for use in large
scale climate models developed by the Canadian gpimeric Environmental Service.

Degree of saturation: a physical property of sadi¢ating the percentage of void space in the soll
filled with water.

Envisat ASAR: ESA’s ENVIronmental SATellite Adanc8gnthetic Radar launched in March 2002.

ERS-1/2: European Remote Sensing sattelites:lissgelaunched by ESA in July 1991 and April
1995 respectively. Both satellites have SAR sensor

ESA: European Space Agency: an intergovernmengdnisation dedicated to the exploration of
space, currently with 17 member states. It is gadered in Paris, France.

Evapotranspiration: the process by which waterdsake soil into the atmosphere.

Gravimetric water content: soil moisture value dedi from the weight ratio of water to soil material

Grid square: the basic computational unit of WATSSIa

Incidence angle: the angle between the line dftdigm the radar to an element of an imaged scene,
and the vertical direction characteristic of therse

Infiltration: the process by which water enters siod.

Interflow: the lateral movement of water in thelsoi
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L-band: a portion of the microwave electromagnegicge of frequencies ranging from 1 to 2 GHz
(15-30 cm in wavelength). L is for “long” wavelehgt

Meso-scale: a scale of meteorological phenomergirrigrirom 1 to 100 km in horizontal extent. It is
synonymous with regional-scale or watershed-sealé@ydrology.

Micro-scale: a scale of meteorological phenomerss [han 1 km in horizontal extent. It is
synonymous with local-scale.

NASA: National Aeronautics and Space Administratian agency of the United States government
responsible for the public space program.

Permanent wilting point: the soil moisture valueadiich a plant wilts and can no longer recover its
turgidity.

RADARSAT-1/2: Canadian commercial Earth observasatellites imaging the Earth with a C-band
(5.3 GHz) SAR. RADARSAT-1 was launched in Novemhép5, whereas RADARSAT-2
will be launched in summer 2007.

RAR: Real-Aperture Radar: a type of imaging radar.

Repeat cycle: the period between times that theiimgadevice can view the same location on the
Earth.

SAR: Synthetic-Aperture Radar: a type of imagingara

SMOS: Soil Moisture and Ocean Salinity: a spacesimisrun by ESA to observe soil moisture over
land and salinity over oceans. The SMOS satelibatains the Microwave Imaging
Radiometer with Aperture Synthesis (MIRAS), a passnicrowave radiometer.

Soil porosity: a measure of void spaces in soil.

Stream network: the geomorphologic patterns ofanédrical connections formed by streams as they
drain the watershed. Also called drainage network.

Surface roughness: an indication of surface ilagy measured by the root-mean square (rms) of

the surface variations.
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ThetaProbe: a soil moisture monitoring device deyed by Delta-T Devices.

Transpiration: the evaporation of water into the@phere from the leaves and stems of plants.

UTM: Universal Tranverse Mercator coordinate systargrid-based method of specifying locations
on the surface of the Earth.

Volumetric water content: soil moisture value dedvrom the volume ratio of water to soil material.

Watershed: the region of land whose water draittsarspecified body of water.

Wetting front: the interface between soil that igclianged from the initial state and the saturated
zone caused by the infiltration of pooled surfacden

X-band: a portion of the microwave electromagnedicge of frequencies ranging from 8 to 12 GHz

(2.5-3.75 cm in wavelength). Named X because & sexret during WWII.
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Appendix B

Spatial Statistics

B.1 Correlation Coefficient

The correlation coefficient between the ground dadhfields indicates the extent to which the fields

soil moisture values tend to vary in unison (Dingm2002).

Given soil moisture estimateg, k=1 ... nt=1 ... T for n fields sampled ol dates. The

average soil moisturgsy, and the variance of the soil moistutg, , for a particular field are

1 T
Hyi =?Z Xy @nd
=)
N

1
0% == > (X )
k T—1IZ=1: ke~ Mt

There are a total o@pairs of fields. For each pair, sy a and k = b, the sample correlation

between the fields is

T

(Xat - ﬂxa)(xbt - luxb)
-1

_t

Fab 2 2
(T _1) 0,20

Standard error can be computer for a correlatiaeffioeent by considering the transformed

variable,W, ,

~ 1+r
W, , =05 [ﬂn{%}.

—Ixy

The standard error &, \, gy, iS

1
N-3

Owxy =
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where N is the sample size.

Therefore, the standard error fQr, gixy can be equated as a functiorr .

B.2 Variogram

A variogram is a function describing the degrespmdtial dependence of a random field of stochastic
processZ(x). It is defined as the expected squared diffexdretween the values between locations

andy

2y(x,y)=E(z(0 - 2(n)).
If the process is stationary, then the variogramlma expressed as a function of the difference
in locationsh=x-y. Therefore, the variogram can be defined as
Hx y)=yh=x-y).
Note thath is a vector.
If the process is isotropic, then the variogram barexpressed as a function of the distance
between locations. Therefore, the variogram caddfimed as
rxy)=vlx- o).
To calculate a variogram, the squared differenetaden all pairs of locations are determined
and grouped by distance between locations. Theageesquared difference of each distance is used

to estimate to the variogram value at that distaridee variogram can be downsampled by averaging

over ranges of distances.

B.3 Average distance

Average distancel,, from pointp to areaA can be defined as

_yroa
=[G’

where r is the distance from to the infinitesimal areaAd
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This distance can be computed numerically or eitlglic The numerical solution involves
breaking the area up into smaller squares, comptiti@ distance between the point and the centre of
each of these smaller areas and then averagindjdtaace to each of these small areas. The eixplici
solution involves integrating over the area of Hugiare using polar coordinate system. Then the

integral to calculate the average distance becomes
da, =jr1¢9r gn

where @ is the portion of the circle centredmand of radius that lies withinA, in
radians,
ri is the shortest distance betwgeandA, and
r, is the farthest distance betwgeandA.

The angleg, can be related to and the distances from the point to the edgeA tifrough
trigonometry. The integral is broken up into smalintegrals as different edges come into play.

Figure 17 displays the average distance away frequare side lengthalong several different axes.
Table 17 presents the average distance from a piatsquare of side lengthfrom several

locations. Note that the average distance awan tiee square approaches the distance away from

the centre of the square as the distance increases.
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Table 17 — Average distance to square of side legt

Point location Average Integral
Distance
() '[()%andr
Centre of square 0.3826L
o 4[7 ~25ect 2 |r2dr
h 4 % n
o Lf/zﬂzdf
Centre of edge of G2
square 05932L ||| 2] /Z(Cs Lj r%dr
o L 2r ar
—~ 2[, (Cs T -Sec Lj r2dr
/ j;grzdr
Corner of square 0.7652L /

j@ T _2sectt |regr
L 2 L
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Appendix C

Imaging Radar Beam Modes

Table 18 — RADARSAT-1 beam modes (Raney, 1998)

Mode Resolution Looks Swath Incidence
rxa Width angle

(m x m) (km) (degrees)
Standard 25x28 4 100 20-49
Wide (1) 48-30%x28 4 165 20-31
Wide (2) 32-35%28 4 150 31-39
Fine Resolution 11-9x9 1 45 37-48
ScanSAR (N) 50x50 2-4 305 20-40
ScanSAR (W) 100x100 4-8 510 20-49
Extended (H) 22-19%x28 4 75 50-60
Extended (L) 63-28%x28 4 170 10-23

Table 19 — RADARSAT-1 standard beam positions (RSR000)

Beam Incidence Resolution

Position Angle (°) r xa(m xm)
S1 20-27 27.9-20.5x27.0
S2 24-31 22.8-18.0x27.0
S3 30-37 27.5-23.2x27.0
S4 34-40 25.1-21.8x27.0
S5 36-42 23.6-20.7x27.0
S6 41-46 21.5-19.2x27.0
S7 45-49 19.8-18.4x27.0
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Table 20 — RADARSAT-2 beam modes (Ali, 2004)

Mode Resolution Looks Swath Width Incidence
rg x az rg X az angle
(m x m) (km) (degrees)
Selective polarisation (transmit H or V; receiveadd (or) V)
Fine 10x9 1x1 50 37-49
Standard 25x28 1x4 100 20-49
Low incidence 40%28 1x4 170 10-23
High incidence 20x28 1x4 70 50-60
Wide 25%28 1x4 150 20-45
ScanSAR narrow 50%50 2%2 300 20-46
ScanSAR wide 100x100 4x4 500 20-49
Polarimetric (transmit H and V on alternate pulsesgeive H and V on any pulse)
Fine quad 11x9 1x1 25 20-41
Standard quad 25x28 1x4 25 2041
Selective single polarisation
Ultra-fine | 3x3 | 1x1 | 20 | 30-40
Table 21 - Envisat ASAR beam modes (ESA, 1998)
Mode Spatial res | Swath width | Polarisation Equivalent Incidence
(m) (km) no. of looks angle (°)
Image 30 56-105 VV or HH >3.9 15-45
Alt. VV and HH
Polarisation 30 56-105 HH and HV >1.9 15-45
VV and VH
Wide Swath 150 405 VV or HH ~11.5 17-42
Global 1000 405 WV or HH ~7-9 17-42
Monitoring
Wave 10 5 VV or HH 1 15-45

Table 22 — Envisat ASAR image and alternating poldasation mode beam positions

(ESA, 1998)
Image Swath| Swath Width Incidence Angle
(km) Range (°)
IS1 104.8 15.0-22.9
IS2 104.8 19.2-26.7
IS3 81.5 26.0-31.4
IS4 88.1 31.0-36.3
IS5 64.2 35.8-39.4
IS6 70.1 39.1-42.8
IS7 56.5 42.5-45.2
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