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ABSTRACT

The main objective of this research was to investigate the relationship between synthetic aperture radar image
texture and operational forestry parameters. Two other related issues were also investigated: the value of speckle-
filtering before measuring the texture and which texture measure (Markov random field texture models or gray
level co-occurrence texture statistics) characterized the texture the best. It was found that: there exists a weak
relationship between synthetic aperture radar image texture and the operational forestry parameters of rainforest
on Vancouver Island, speckle-filtering before collecting texture features was not beneficial and that Markov random
field texture models and gray level co-occurrence statistics performed equally well.
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Chapter 1

Introduction and Problem Statement

How does texture, the spatial arrangement of digital numbers, from a synthetic aperture radar (SAR) image of a
forested scene relate to operational forestry parameters determined from an aerial photograph?

Texture measures are image analysis tools which can be used to segment images. Trees (in a forest) have a wide
variety of spatial arrangements determined by a number of environmental and human-made conditions. The spatial
arrangement of the trees manifests itself as texture in a SAR image and presents an opportunity to apply texture
analysis.

SAR remote sensing platforms are particularly beneficial because they can collect information from the forest
regardless of time of day or degree of cloud cover. SAR platforms may also offer a variety of imaging conditions
through variation in incidence angle, frequency, polarization and resolution which may capture different properties
of the scene.

The investigation of SAR texture is valuable to the forestry industry as well as environmental monitoring agen-
cies. These institutions must monitor this natural resource in an expedient and cost effective manner to sustain
development. They need to monitor forest depletions, regrowth, cutting, slashing and infrastructure development
(e.g. roads, buildings). Preservation requires accurate knowledge of forest stand characteristics and their geograph-
ical placement along with information on areas with active forest operations (Murtha, 1996). Operational forestry
parameters (which characterize a forest stand) help companies manage their forests. Typical parameters include
species, age, height and stocking. Current methods to collect forest information include aerial photograph interpre-
tation. Texture analysis would aid the efforts outlined above and develop remote sensing technology. This research
will investigate the relationship between SAR image texture from forest stands and operational forestry parameters:
species composition, age, height and stocking (as interpreted from an aerial photograph).

The remainder of this chapter reviews the topics of interest to this study and is organized in the following manner.
Since the imagery was formed with a SAR system it is important to review SAR image formation, statistics and image
models found in §1.1. SAR imagery is subject to a noise-like process called speckle. §1.2 will include a discussion
of some speckle reduction techniques. Next, a summary of forest imaging with SAR is presented in §1.3. The goal
of this research is to relate forestry parameters to texture, so a portion of the introduction, §1.4, is dedicated to
discussing texture models for SAR forested scenes. The next sections in the introduction present research objectives,
§1.5, and hypothesis statements, §1.6.

The data and study site are discussed in §2. At this point, a detailed methodology is included (§3). Finally, the
results are presented in §4 and conclusions and extensions are found in the last chapter.

1.1 Image Statistics and Scatterer Models

Familiarization with the SAR image statistics and scatter models is important because this knowledge can be in-
corporated into speckle filters and texture models. The following presents a one dimensional-model of SAR physics
which leads to description of two models: the composite scatterer model and multiplicative noise. The physical
relationships and mathematics of processing the raw signal received at the antenna into an image is outlined in the
appendix, §A on page 42.
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1.1.1 Modelling Image Cell Intensity and Speckle

Mathematically (following Ulaby et al. (1982); Collins (1993); Oliver (1991)), we can model the scattered microwave
field ξ as the summation of scattering phasors, where each phasor consists of an amplitude and a phase:

ξ =
N∑
j=1

aje
(iφj) (1.1)

where aj is the amplitude from scatterer j, φj is the phase, N the number of scatterers and i =
√
−1. The vector

summation of the real (ξr) and complex (ξc) components of equation (1.1) is equivalent to a 2D random walk and is
the basic process responsible for speckle-noise.

Fully developed Gaussian speckle is formed by a large number of independent scatterers per resolution cell whose
phase and amplitude are independent, identically distributed random variables. As well, the scattering volume should
be deep enough (compared to the wavelength) that the phase is a random variable with a uniform distribution between
−π and +π. With fully developed Gaussian speckle, ξr and ξc are random variables with normal distributions due
to the central limit theorem (large N). Under these conditions the envelope (|ξ| = (ξ2

r + ξ2
c )

1/2) is therefore Rayleigh
distributed

p(|ξ|) =
2|ξ|
〈|ξ|2〉 exp

(−|ξ|2
〈|ξ|2〉

)
(1.2)

The 〈·〉 symbol denotes ensemble averages (over all realizations of the scatterers). The intensity, I = |ξ|2, is expo-
nentially distributed.

p(I) = 〈I〉−1exp

(−I

〈I〉

)
(1.3)

The scattered field received at u (at the sensor) is

ξ(u) =
N∑
j=1

aje
(iφj)h(u − uj) (1.4)

where uj is the position of the jth scatterer and h is the impulse response. This is an appropriate one dimensional
modelling approach because it encompasses the relevant SAR physics (Oliver, 1991).

Using equation (1.4) the intensity becomes

I =
N∑

j,k=1

aja
∗
kei(φj−φk) × h(u − uj)h∗(u − uk) (1.5)

where ∗ denotes the complex conjugate. If one takes the ensemble average over all j and k, only the j = k terms will
contribute to the sum. The ensemble intensity is then

〈I〉 = η

N∑
j=1

σj |h(u − uj)|2 (1.6)

where η is a proportionality constant (to compensate for the gain of the antenna) and σj is the cross section of
scatterer j (ησj = aja

∗
j ). Equation (1.6) is similar to the incoherent imaging of the cross section variations. It

follows that the intensity of any image cell will vary about the ensemble intensity 〈I〉 with a negative exponential
distribution seen in equation (1.3). The variation of image cell intensity causes a wormy appearance which is known
as fully developed Gaussian speckle.

It should be noted that in equation (1.6) there exists a cross section term σj . The cross section term is dependent
on the scene characteristics. This implies that image intensity behaviour is also dependent on scene characteristics
(i.e. when the scene cross section is not uniform). Mathematically we have

p(I) =
∫ ∞

−∞
p(σ)p(I|σ)dσ (1.7)

where p(I|σ) is the conditional probability density function (pdf) of observing intensity I from an image cell with
spatially filtered cross section σ = σj × |h(u − uj)|2. This pdf is

p(I|σ) = (ησ)−1exp

(−I

ησ

)
(1.8)
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1.1.2 The Composite Scatterer Model

This widely accepted scatterer model suggests that scatterers form patches with physically similar microwave scat-
tering mechanisms (Jao, 1984). A portion of the scene for this model is thought to consist of several physically
different patches of scatterers. The radar footprint may cover one patch or pieces of several patches. In addition, the
footprint may also cover combinations of entire patches (smaller than the footprint). Thus the image cell statistics
are influenced by variation amongst the patches and by the individual image cell’s negative exponential distribution.
This scattering model provides a basis to develop a statistical model for the cross section variations found amongst
the scatterer patches. It has been found that the Gamma distribution fits these cross section fluctuations well (Oliver,
1991). The pdf of the cross section is

p(σ) =
1
σ

(
νσ

〈σ〉

)ν 1
Γ(ν)

exp

(−νσ

〈σ〉

)
(1.9)

where ν is an order parameter, ν = 1/var(σ) and Γ(·) is the Gamma function. For areas with smooth cross section
ν → ∞ and for areas with large cross section fluctuations ν → 0. Using equations (1.8) and (1.9) in (1.7) we get the
K distribution for the image intensity. The pdf of the K distribution is

p(I) =
2
〈I〉

(
I

〈I〉

)(ν−1)/2 1
Γ(ν)

Kν−1

[
2

(
I

〈I〉

)1/2
]

(1.10)

where Kν−1 is the modified Bessel function of order ν − 1. As ν → ∞ (the cross section approaches uniformity)
the K distribution approaches the negative exponential distribution in equation (1.3) which would be the theoretical
distribution for a portion of the scene with constant cross section.

1.1.3 Multiplicative Noise

The multiplicative noise model considers the image cell intensity to be a product of speckle and reflectivity, the true
cross section of the scene (Ulaby et al., 1986b; Lee, 1981). Multiplicative noise is represented as

I = R × F (1.11)

where I is the intensity, R is the reflectivity and F represents the multiplicative speckle noise. This model relies on
the assumption that the backscatter amplitude varies slowly relative to the impulse response (Lee, 1981; Sheen and
Johnston, 1992; Blacknell and Oliver, 1993). This means that the scatterer cross section changes very little when
compared to the width of the impulse response and corresponds to scatterer patches larger than the radar footprint.
In equation (1.5) the above statement allows us to take aja

∗
k outside the summation. We have then

I = aa∗
N∑

j,k=1

ei(φj−φk) × h(u − uj)h∗(u − uk) (1.12)

leaving multiplicative noise where
R = aa∗ (1.13)

and

F =
N∑

j,k=1

ei(φj−φk) × h(u − uj)h∗(u − uk) (1.14)

1.2 Speckle Reduction Techniques

At this point, it is apparent that the intensity of any image cell in a SAR image is formed by recording the backscatter
intensity which is, unfortunately, affected by the random process called speckle. Algorithms which extract information
from SAR imagery and which need the ’true’ backscatter intensity are affected by the distortion caused by speckle.
For example, a texture measure’s performance, that doesn’t account for speckle statistics, may be degraded by
speckle. Consequently, many methods to reduce speckle exist.

This section will discuss multi-looking, the original and enhanced versions of the three common adaptive filters,
the Bayesian speckle reduction approach and finally speckle reduction based on maximum a posteriori (MAP) and
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structure detection. The discussion starts with a simple spectral filter, multi-looking, and then proceeds to summarize
spatial filters. The spatial filters are introduced starting from the early adaptive filters and progressing to more
sophisticated and recent adaptive filters. The final speckle filter summarized is used in this research.

Two definitions should be noted at this point. Homogeneous areas are those which have a slowly varying cross
section and fully developed speckle. This corresponds to a patch with many independent scatterers. Heterogeneous
areas are characterized by areas which consist of structure (edges, lines and point targets) and/or texture. A
heterogeneous area contains several different patches of scatterers. Heterogeneous areas may have fully developed
speckle given a large number of independent scatters. Furthermore, the multiplicative model may not apply in these
areas due to the fluctuations in R.

1.2.1 Multi-Looking

This method averages independent realizations of each resolution cell’s reflectivity to reduce speckle. However, the
drawback to this method is a reduction in spatial resolution. See the Appendix (section A) for more details on the
relationships outlined below.

For a SAR image the slant-range and along-track (azimuth) resolutions are achieved by different physical rela-
tionships (Porcello et al., 1976). Slant-range resolution (ρr) is determined by a relationship between the speed of
light (c) and the bandwidth of the signal (W ).

ρr = c/(2W ) (1.15)

If the bandwidth increases the slant-range resolution decreases. The along-track resolution (ρx) is related to the
velocity of the platform (v) and the Doppler bandwidth (∆fD).

ρx = v/(∆fD) (1.16)

This relationship is similar to slant-range resolution - if the Doppler bandwidth increases the along-track resolution
decreases.

To generate a number of different realizations of the scene it is feasible to divide the signal and Doppler bandwidths
into several intervals. Each interval can generate an image with independent realizations of the speckle. Therefore, to
reduce speckle, average realizations of the scene are created through bandwidth division. From the above descriptions
of slant-range and along-track resolution the division of the signal and Doppler bandwidths will also cause the
resolution to decrease. The final multi-look image is speckle reduced but also suffers from a degradation in resolution.

1.2.2 Adaptive Filters

There exist three widely utilized adaptive speckle filters which attempt to reduce speckle by smoothing homogeneous
areas and retaining backscatter fluctuations in less homogeneous areas with less smoothing. These are the Lee filter
(Lee, 1981), the Frost filter (Frost et al., 1982), and Kuan filter (Kuan et al., 1987, 1985). The Lee and Kuan filters
are based on an image restoration model which gives the minimum mean-square error of the estimated reflectivity
compared with the original digital numbers. The Frost filter is derived by minimizing the expected value of the mean
square error.

The model for speckle and scene texture is assumed to be multiplicative for the Lee and Kuan filters. They
differ because Lee used a Taylor series expansion to linearize the multiplicative noise model. The consequence of this
difference only affects the parameter kij . Note that the coordinates (i, j) denote the center of a window of imagery.
The estimated reflectivity, Rij , is a function of the local spatial average, 〈Iij〉, and the intensity at (i, j), Iij .

Rij = 〈Iij〉 + kij(Iij − 〈Iij〉), 0 ≤ kij ≤ 1 (1.17)

For a locally homogeneous area, kij should be close to 0. Then the corrected intensity is equal to the spatially
averaged intensity. However, if kij is large the corrected intensity is a function of the weighted average intensity and
the weighted original intensity. In this manner the filter tends to preserve texture, edges, lines and point targets
with large kij while spatial averaging homogeneous areas with small kij .

By minimizing the expected value of the mean square error,

min E[(R − I ⊗ h)2] (1.18)

the Frost filter is formed (h is the impulse response of the SAR). This leads to an adaptive impulse response given
below

h′(i, j) = Kαe−α|(i,j)| (1.19)
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where K is a normalizing constant and α is a parameter which is related to the homogeneity of the scene. h′(i, j) rep-
resents an impulse response that is able to adaptively reduce speckle. The filter is adaptive because α is proportional
to the local scene variability, like kij is for the Lee and Kuan filters.

The commonality between the three filters, pointed out by Lopes et al. (1990b), is that they all use std(I)/〈I〉 to
adaptively filter the image. std is the standard deviation. The Lee and Kuan filters use kij which is proportional to
std(Iij)/〈Iij〉. The α parameter, from the Frost filter is also proportional to std(Iij)/〈Iij〉.

1.2.3 Enhanced Adaptive Filters

The enhanced adaptive filters developed for the Lee, Frost and Kuan filters by Lopes et al. (1990b) , are based on the
coefficient of variation CI , defined as CI = STD(I)/〈I〉. The coefficient of variation (CV) has been noted elsewhere
to be a strong function of texture (Ulaby et al., 1986a). The enhancement is possible because the Lee, Frost and
Kuan filters are also functions of CI , but were not using this variable to its full potential. There are three situations,
defined by Lopes et al. (1990b), which a speckle filter may encounter.

1. Homogeneous area. This is a good example of fully developed speckle and multiplicative noise where speckle
can easily be separated from the scene. The filter in this case should restore the scene cross section exactly like
a Box filter.

2. Heterogeneous area. In this situation it is important to preserve the heterogeneous image features such
as texture and structure while smoothing speckle. The speckle filter is only applied to the sub-scenes of the
heterogeneous area where all three criteria listed below are valid.

(a) Fully developed speckle.

(b) Multiplicative speckle model.

(c) Speckle and scene variability can be separated successfully.

3. Heterogeneous area without valid model assumptions. The speckle filter should not attempt to re-
construct these areas because at least one of the filter criteria (listed (a), (b) and (c) above) has not been
met.

For the following, define CF as the coefficient of variation of a perfectly homogeneous area, CI the coefficient of
variation of the area being examined and Cmax the coefficient of variation which would be calculated given situation
3 listed above. Based on these three definitions, a speckle filter should perform three operations:

1. Spatial averaging if CI ≤ CF .

2. Selective spatial averaging if CF > CI > Cmax.

3. Preserve existing features if CI > Cmax.

CF has been theoretically determined for homogeneous areas from intensity L-look images to be 1/
√

L (Ulaby
et al., 1986a; Lopes et al., 1990b). If determined from homogeneous portions of an image CF is distributed as a
pseudo-Gaussian function (Lopes et al., 1990b).

Cmax is not easily determined. There is no theoretical threshold for Cmax. If Cmax is chosen too large than
valuable textural information may be lost because the filter may choose to smooth the area. It may be best to
determine Cmax from a textured area to ensure that area is preserved.

By incorporating these criteria into the Lee, Frost and Kuan filters, their performance was enhanced. The
enhanced filters averaged homogeneous areas well and at the same time maintained structure and texture better
than the unenhanced versions.

1.2.4 Bayesian Speckle Filtering

Baye’s rule states that:

p(σ|I) =
p(I|σ)p(σ)

p(I)
(1.20)

where p(σ|I) is the pdf of σ, given I, p(I|σ) is the pdf of the intensity given the cross section, p(I) is the pdf of the
intensity and p(σ) is the unknown pdf of the cross section. Bayesian speckle filtering, which attempts to reconstruct
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the underlying cross section based on an a priori pdf for σ, is described as a maximum a posteriori, (MAP) filter.
The MAP estimate is determined by finding the maximum of p(σ|I). The maximum can be found using calculus as
follows in an example.

Firstly, the pdf p(I) is a normalizing constant, see equation (1.7), and can be ignored. Differentiating the right
hand side of the natural logarithm of (1.20) with respect to σ yields

∂

∂σ
ln p(I|σ) +

∂

∂σ
ln p(σ) (1.21)

The choice of distribution for p(σ) affects the filters behaviour. For example, assuming you have no knowledge of
p(σ), chose a uniform p(σ), which leads to an identity filter (Oliver, 1991). This is because the second term becomes
0 and then (1.21) becomes

− 1
σ

+
I

ησ2
(1.22)

This is equal to zero (a maximum point) when ησ = I. This is an identity filter, the estimate of the true reflectivity
is the intensity. Other choices of p(σ) include Kuan et al. (1987) assuming a Gaussian pdf and Lopes et al. (1990a)
choosing the Gamma pdf.

1.2.5 Adaptive Bayesian Speckle Filtering with Structure Detection

This approach proposed by (Lopes et al., 1990a) is adaptive and uses a Bayesian approach with the multiplicative
speckle model and a gamma distributed radar cross section (see equation (1.9)). The algorithm is illustrated in
Figure 1.1. Two thresholds are used in the algorithm: Cmax and CF . If the local CV is greater than Cmax, the
window is textured or contains structure. If the local CV is less than CF , the window is homogeneous.

Try and avoid the line or edge by choosing a smaller
window.  Start this chart over again at the top, but
with a new window.

Point scatterer detected - preserve the image cell

Gamma-gamma smoothing for textured region

Line or Edge?

Average filter for no texture

Gamma-gamma smoothing for little or no texture

no

no

Point target?

yes

yes

Texture or structure?

yes

no

Homogeneous?
Cf >= Ci

yes

no

Cmax <= Ci

Figure 1.1: This figure displays an outline of the decisions that the Gamma-Gamma MAP filter must make.

Since this algorithm explicitly uses the multiplicative model (I = R × F ) it is critical to locate heterogeneous
areas where this assumption may not be valid. If the area is heterogeneous it may contain structure or texture.
The geometrical ratio detectors are able to detect the heterogeneous areas with structure (edges, lines and points).
The local CV is able to detect heterogeneous areas with texture. Initially, a large window is used and assumed
homogeneous. It may iteratively become smaller if the window contains edges or lines, until the edge or line is
avoided by the window. However, speckle is reduced more effectively with a larger window size, so one should limit
how small the window can become. Once the window is considered homogeneous or the window cannot get any
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smaller, the reflectivity of the centre image cell is estimated with the adaptive Gamma-Gamma MAP filter. If a
point target is detected the image cell intensity is preserved.

Using the Bayesian approach to restore the image, the so called Gamma-Gamma MAP solution (one gamma for
p(σ) and one gamma for p(I|σ)) is given by

RMAP =
(α − L − 1)〈R〉 +

√
〈R〉2(α − L − 1)2 + 4αLI〈R〉

2α
(1.23)

where, R(= ση) is the local reflectivity, RMAP is the MAP estimate of the local reflectivity, I is the intensity, L is
the number of looks, α = 1+〈CF 〉2

〈CI〉2−〈CF 〉2 , CF = 1/
√

L the coefficient of variation for pure speckle and CI = σI/〈I〉 the
coefficient of variation for a window. In practice 〈R〉 is estimated by 〈I〉.

If the scene is homogeneous then R → 〈I〉. Thus α → ∞ (or CI → CF ) and our estimate RMAP → 〈R〉. This
makes sense because a good filter for a homogeneous scene is an averaging filter. Conversely when L → ∞ then
RMAP → I because a large number of looks effectively reduces the speckle.

1.3 Summary of Forest Imaging with SAR

This research wishes to relate SAR image texture to forestry characteristics. It is useful to present a brief review of
forest imaging with SAR. Studies have indicated that SAR is a tool that may be used for forest monitoring and some
tree species discrimination. Below is a summary of results from airborne and satellite research on forested scenes.

Airborne SAR studies of forests, in North America, have focused on boreal and eastern forests (Murtha, 1991).
This research reveals that multi-date SAR images demonstrate some species age-class discrimination ability and
some clear-cut logging mapping uses (Ahern et al., 1993b). Furthermore, combining SAR data with optical data is
beneficial for separation of tree species and clear-cut logging mapping (Murtha, 1996). Also, there is some potential
for species separation (red/white pine, spruce and jack pine) but logged areas and general forest types are not mapped
well by airborne SAR (Murtha, 1996).

Satellite monitoring of forest with RADARSAT SAR have some promising applications. The following informa-
tion, unless otherwise cited, was found in Ahern et al. (1993a). One promising application is reconnaissance mapping.
RADARSAT is able to image at a wide range of incidence angles and is therefore helpful in creating digital elevation
models. There is also some potential for coniferous forest species mapping since coniferous forest shows differences in
C-band backscatter. Another application of RADARSAT imagery is mapping of logged or burned areas. However,
RADARSAT will not be capable of providing timber volume information. C-band (5.3cm) radar scatters mainly
from twigs and foliage whereas forest biomass is more closely correlated with tree trunk size. A longer wavelength
SAR is needed to correlate the microwave backscatter coefficients to forest biomass and thus timber volume (Le Toan
et al., 1992). A final application for RADARSAT is environmental protection. RADARSAT data in combination
with other sensors’ data and digital elevation models should be able to contribute to a variety of forestry issues: soil
conservation, water quality, watershed protection, flood prevention, wildlife habitat and biodiversity.

1.3.1 Forest Backscatter Variability and Texture

What influences microwave (C-band) backscatter from forested scenes? It is known that SAR parameters and
scene characteristics influence microwave backscatter intensity. The relationship between neighbouring image cells’
intensities results in texture. Thus texture is influenced by phenomena that cause variation in image cell intensity.
The SAR parameters which affect intensity include frequency (Hess et al., 1990; Le Toan et al., 1992; Ahern et al.,
1995), incidence angle (Sheen and Johnston, 1992; Hess et al., 1990; Rauste, 1990; Ahern et al., 1993a; Cimino et al.,
1986), polarization (Hess et al., 1990; Le Toan et al., 1992; Ahern et al., 1995; Wu, 1987), resolution (Sheen and
Johnston, 1992; Frost et al., 1984; Woodcock et al., 1988a,b; Woodcock and Strahler, 1987) and speckle (Ulaby et al.,
1982; Oliver, 1991; Visentin, 1988). The characteristics of a forested scene which can influence radar backscatter are
the environmental factors, (Ahern et al., 1993b; Drieman, 1994), tree species (Le Toan et al., 1992), tree and stand
age (Le Toan et al., 1992), human influences (Le Toan et al., 1992) and topography (Rauste, 1990). The following
paragraphs outline the characteristics of a forested scene how they affect backscatter. The SAR parameters and
speckle which affect intensity are well known and thus further explanations are omitted.

Environmental factors drastically change the characteristics of a forest. Forests can have leaf-on or leaf-off seasons,
above or below freezing temperatures, snow or water covered ground, wet or dry snow, changing moisture levels and
changing understory. Leaf-on and leaf-off conditions change the number of scatters and the penetration depth of
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the radar beam into the canopy. Temperature, snow and water interact and consequently modify the scattering
properties of the electromagnetic radiation from the ground and tree elements. The moisture increases the dielectric
properties causing wet and dry variations. Seasonal changes can also effect the understory vegetation – growth and
dormant periods. Each of the above variations can cause texture differences by modifying backscatter intensity.

Inter-species differences will cause backscatter variability. Tree species have unique trunk-branch structures.
Generally coniferous tree species have branches extending in a radial direction while deciduous tree branches are not
as well defined. Tree species will also enhance seasonal variation because tree species are affected by seasonal changes
differently.

Tree and stand properties are a function of age. As a tree becomes older, trunks become thicker, height increases
and the spatial density of trunks decreases. Thus, older stands have a different spatial distribution of tree trunks
than stands that are relatively young. This is caused by two processes: competition and common influences (Sayn-
Wittgenstein, 1970). Trees require space to develop roots and crowns. Therefore they will dominate their immediate
area, which is the competitive component. If there are small trees in an area then most likely there will be small
trees in the surrounding area. If there are spruce trees in the area then most likely there will be spruce trees in
the immediate area. These are common influences. Note that common influences and competition are intrinsically
related to forestry parameters such as species, age, height and stocking. For example, different species need different
amounts of space to develop healthy crowns and roots.

Tree plantations have several characteristics which will affect radar backscatter. Any preferential spatial dis-
tribution of trees, such as planting in rows, will change the texture from that of a forest which has been allowed
to naturally grow. As well, there are thinning and fertilization practices. Thinning will distort the natural trunk
spacing to create an optimal growth environment. Fertilization encourages tree growth in areas which would have
not produced as well.

Logging practices will change the forest characteristics as well. Clear cutting, burning and tree planting modify
the natural phenomenon of dying, rotting, uncontrolled fires and regrowth.

The local topography changes the scattering properties of the scene. Hills can cause higher intensity backscatter
on their radar-near side and obscure forest due to shadow on the far side. Flat areas allow the variability of tree
heights to form image texture, rather than the underlying topographical affects.

Attempts to relate forest characteristics (species, age, height, biomass, clearcut, burned) to microwave backscatter
have primarily used tonal properties (Le Toan et al., 1992; Ahern et al., 1993b; Kasischke et al., 1994), local standard
deviation (Ulaby et al., 1986a; Ahern et al., 1993b; Wu, 1987), frequency distributions (Murtha, 1996) or visual
inspection (Ahern et al., 1995; Drieman, 1994) to characterize microwave backscatter. This research proposes that
texture measures will successfully extract information about forest characteristics. Some evidence supporting this
hypothesis is in the literature. Gray level co-occurrence texture features were tested on three classes of Brazilian
forest (virgin, regrowth, clearcut) for discrimination purposes with some success (Luckman et al., 1994). Seasonal
changes of Brazilian wetland were indicated by changes in texture on ERS-1 images (Kux and Henebry, 1994).

1.4 Texture Modelling

Texture is defined as the spatial variation of digital numbers within an image. For synthetic aperture radar the
variations in digital number are caused by variations in cross section and speckle. More specifically, for a forested
scene, evidence presented above, suggests that texture is related to the backscatter fluctuations caused by forest
characteristics.

1.4.1 Texture Definitions

A texture measure attempts to characterize the texture within an image. Both natural and human-influenced scenes
can have tremendous spatial variability. Consequently, the remotely sensed representation of these scenes will inherit
some of that spatial variability. Therefore, a texture measure is required to characterize many types of texture caused
by the spatial variability of the scene. The nature of the spatial variation depends on the scene. A highly structured
scene contains distinct shapes and periodic structure, like a checkerboard, and will cause highly structured texture.
At the opposite extreme the scene may be influenced by random processes, causing an unstructured, random texture.

One model of texture holds that texture is formed by basic texture forming elements called texture primitives
(Pratt et al., 1978; Haralick, 1979; Shanmugan et al., 1981). Texture primitives represent a unique spatial relationship
between the digital numbers of the image cells. Typically, a texture primitive is a connected set of image cells with
uniform digital numbers. However, this is not always the case. Texture primitives may be unconnected and have
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image cells with several different digital numbers. The shape of the primitive can be regular (square, triangle)
or irregular (blob-like). The spatial density, type and location of texture primitives throughout a neighbourhood
determines the type of texture.

Texture measures can be broken down into two categories: structural and statistical (Haralick, 1979). Structural
methods to measure texture presume ordered texture. This implies that structural texture analysis methods charac-
terize the texture based on well defined patterns of texture primitives. The statistical methods to measure texture
presume neither random nor ordered texture. They use local statistical measures on the digital numbers’ spatial
arrangement to characterize texture. The local statistical properties will vary with texture, thus enabling one to
characterize the texture (Tamura et al., 1978).

The characterization of the texture is in the form of texture features. Texture features are arrays whose elements
are related to the texture using numerical values. Each element typically is related to a specific aspect of the texture
such as directionality, distance, and correlation. The texture features can be used to cluster the data in feature-space.

1.4.2 Texture Models for Forested Scenes

Since forests exhibit a wide variety of texture (influenced by SAR parameters and forest characteristics), discrim-
ination of forest cover types may be possible based on texture measures. As noted above the appropriate texture
measure, sensitive to forest structure, is essential to this operation.

Texture found in forested images is closer to random (i.e. texture with stochastic spatial properties) than ordered.
This is verified by considering the number of scatterers and the random placement of the scatterers. Since MRF
texture models are statistical and account for random textures, they are assumed to be suitable for forested images.

Since gray level co-occurrence matrices (GLCM) are commonly applied to the interpretation of remotely sensed
imagery their results provide a excellent basis to judge the performance of other texture models. Therefore included
in the texture analysis will be GLCM features.

1.4.3 MRF Texture Models

Markov random field (MRF) texture models will be applied in this research. A random field is a 2-d lattice of points,
where each point is assigned a value based upon a probabilistic model. A MRF is a random field with Markovian
properties, i.e. a point’s value on the lattice is influenced by other neighbouring values. The specific definition
of neighbours and their how they influence other points give MRFs the freedom to model many types of textures.
MRF texture models for SAR images consider every image cell’s backscatter intensity a function of other image
cell’s intensities in its neighbourhood (Besag, 1974; Chellappa and Chatterjee, 1985). This is intuitively appealing
for forested scenes because a tree’s spatial position is influenced by its surrounding environment.

The roots of MRFs are found in Ising’s model of ferromagnetism (Kindermann and Snell, 1980). The following
description of MRFs is a simplified version of a chapter found in Kindermann and Snell (1980). First consider a 1-d
series of points ωj , j = 1...N with each point being +1 or −1.

ω = (ω1, ..., ωN ) = (+, +, +,−,−, +,−, +,−,−...) (1.24)

Each point represents a small dipole and the value at each point represents how it is aligned, its’ spin. If they are
all aligned a strong magnetic field is produced, if only some are aligned the magnetic field is weaker. The energy at
each point, i, is defined as

Ui(ωi) =
J

2

N∑
j ∀ |j−i|=1

ωiωj (1.25)

J is a constant. To each combination of the 1-d series of points, ω, let us assign an energy U(ω), or Gibbs measure.

U(ω) =
N∑
i=1

Ui(ωi) (1.26)

The Gibbs measure, measures the strength of the magnetic field given the spins at each point. Now assign probabilities
to each realization of the points with

P (ω) =
e−BU(ω)

Z
(1.27)
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5.1 4.2 3.1 4.3 5.2
4.1 2.1 1.1 2.2 4.4
3.2 1.2 c 1.2 3.2
4.4 2.2 1.1 2.1 4.1
5.2 4.3 3.1 4.2 5.1

Figure 1.2: Symmetric neighbours.

where B is a constant and Z a normalizing constant. This could also be written as

P (ω) =
1
Z

N∏
i

e−BUi(ωi) (1.28)

In words, the probability of a particular configurations of spins is calculated by using the product of all the points
energies. This model is Markovian (see Kindermann and Snell (1980) for a proof) in the sense that

P (ωj = a | all other points) = P (ωj = a | two closest points) (1.29)

In other words, the probability of a point having value, a given all points on the line is equal to the probability of
having the same value but only given the two nearest neighbours.

This model has been extended to texture analysis with several changes.

1. Extend the model from 1-d to 2-d over a lattice of points.

2. Extend from the binary case of 1 and -1 to a set of gray level values.

3. Change the Gibbs measure to something appropriate to digital images.

For for the purposes of texture analysis, let X(i, j) be a random variable which represents the value at (i, j) on
an N × M lattice L. For simplicity we shall index X with only one variable, e.g. X(n) where n = 1, 2, 3, ..., N × M .
For MRFs if point m is a neighbour of point n then P (X(n)) depends on the value X(m).

A Markov random field is a joint probability density on the set of all possible digital numbers (representing the
backscatter) of L such that p(X(n)) > 0 and

P (X(n) | X(m), m = 1, 2, ...N × M, n �= m) = P (X(n) | neighbours of n) (1.30)

For example, assuming that the conditional probability of a specific configuration of DN about point n is Gaussian
we have

P (X(n) | X(m), m is a neighbour of n, m �= n) =
(2πσ2)−1/2exp(−1/2σ(X(n) − ∑

βn,m(X(m) + X(m′)))2)
(1.31)

where σ represents the standard deviation and βn,m the parameters of the MRF. Note that this equation is similar to
equation (1.27) if we disregard the normalizing constant and instead of constant B for each pair of points there are
parameters βn,m. The summation (in the exponential) is taken over all symmetric neighbours of X(n). Symmetric
neighbours consist of a pair of image cells the same distance from the center cell, c, but at opposing angles. m′ is
defined as being symmetric to cell m. Looking at Figure 1.2, the 1.1 entries are symmetric neighbours. The number
of parameters (order of the model) depends upon how many symmetric neighbours are used in the model. In Figure
1.2, up to 5th order symmetric neighbours are depicted. For example a 3rd order symmetric MRF model centered
on image cell c, would include those cells marked 1.x, 2.x and 3.x and be characterized by six parameters (the 1.1
entries determine one parameter, the 1.2 entries the next parameter, 2.1 entries for the third parameter, etc ...).

The parameters, βn,m, are used as texture features. Large parameters represent similar image cell values between
the neighbours and the centre value. Small parameters represent different values. For instance, a textured image
with vertical stripes, will have MRF parameters which are generally large for the neighbourhoods which are in the
vertical direction. In the case of Figure 1.2, the parameters generated by the 1.1 neighbourhood would be large.

The parameters need to be estimated from the only realization of the MRF available – the image. Parameter
estimation techniques divide the image cells into independent units (each unit considered a realization) and determine
parameters from the units. A number of different techniques exist: coding (Cross and Jain, 1983; Besag, 1986, 1974),
least squares (Manjunath and Chellappa, 1991; Chellappa and Chatterjee, 1985) and maximum likelihood estimates
(Besag, 1986, 1974).
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1.4.4 Grey-Level Co-occurrence Matrix

The grey-level co-occurrence matrix (GLCM) is composed of normalized frequencies, Pij . Entry Pij is the probability
of gray tones i and j occurring at a relative distance d and angle θ within the image region under consideration (Weszka
et al., 1976; Haralick et al., 1973). The matrix is symmetric and θ is usually defined as one of { 0o, 45o, 90o, 135o }.
The gray level image is usually quantized to 2N gray levels where N is the number of bits per pixel. Therefore,
the co-occurrence matrix is of dimensions 2N × 2N . Texture statistics are defined by sums of probabilities from the
GLCM such as

entropy =
∑
i,j

Pij log Pij

dissimilarity =
∑

i,j and i 	=j

|i − j|Pij

correlation =
∑
i,j

(i − µx)(j − µy)Pij

σxσy

Other GLCM statistics have been used: run length, contrast, maximum probability, uniformity, inverse moment and
sum of squares. Each statistic represents some characteristic of the texture.

Some properties of texture can be inferred directly from the distribution of the matrix elements (Weszka et al.,
1976). For instance, if there exist homogeneous texture primitives (coarse, blob-like texture) which are large compared
with the distance one has chosen to use (i.e. primitive dimension is less than d), than digital numbers of the two
image cells will tend to be very close. This means the matrix will have a cluster of entries close to the main diagonal.
In contrast, if the texture primitives are smaller than d, fine texture, then the matrix entries will be more uniformly
spread.

Unlike MRFs , the GLCM does not make assumptions about image statistics. As well, MRFs assume that the
image cell gray levels are related and the GLCM does not. These two points allow the MRF texture model to be
more closely associated with the physical process of forest growth and the imaging instrument.

1.4.5 Incorporating Speckle In The Texture Model

This research does not follow the processes presented by Oliver (1991) and company in numerous papers (Oliver,
1993; Oliver and Lombardo, 1996; Lombardo and Oliver, 1994) to model SAR image texture. They incorporate
speckle into their SAR backscatter models and this eliminates the requirement of speckle reduction techniques. The
texture can be measured by estimating model parameters from the data. Thus, a consequence of choosing a single
model for this process is that the opportunity to apply a variety of texture measures which prefer a noise-free image
is also eliminated.

Instead of a single model, this research develops two models. The first is a speckle model and the second a texture
model. A two step process for this research has been chosen: first reduce the speckle and second perform the texture
analysis. Texture analysis will also be completed on images without any speckle reduction to help gauge the effects
of speckle reduction on the results.

1.5 Research Objectives

Three objectives exist for this thesis. The main objective is to study the relationship between image texture and
operational forest parameters. Two other objectives need to be completed before the main objective is met. One
objective is to determine a texture measure which models SAR images of forested scenes well. The other is to use a
state-of-the-art speckle reduction algorithm on forested images to separate speckle from texture.

To accomplish the main objective this thesis will attempt to demonstrate that correlation exists between oper-
ational forestry parameters determined by interpreting an aerial photograph and texture from a SAR image. This
will be accomplished by statistically analyzing texture features associated with known forestry parameters.

One task is to apply texture analysis algorithms based on suitable assumptions about the nature of the texture
caused by natural growth forest. The spatial structure of natural growth forests (not influenced by humans) lends
itself to texture measures capable of characterizing random textures. Research (see §1.4.3, page 9) indicates that
MRF texture measures may be well suited for the task.
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SAR is a partially coherent imaging system and consequently subject to speckle effects. For SAR, speckle
reduction plays an important initial role in image analysis because SAR image cell intensity is a function of two
processes: backscatter variability and speckle. Examining the underlying backscatter variation is difficult because
the speckle effects tend to obscure it like noise. After performing speckle reduction on the data, the backscatter
variation (texture) should dominate the image enabling one to more precisely measure the texture. Another method
is to incorporate speckle into the texture measure thus alleviating the need for speckle filters. This approach is not
used as discussed in §1.4.5. Thus, an important aspect of this thesis is to utilize a speckle reduction algorithm to
filter the image before applying the texture measures.

In the next section, these three objectives are extended to hypotheses.

1.6 Hypothesis Statements

Three hypotheses will be tested. The first hypothesis concerns the relationship of forestry parameters to SAR image
texture. The second hypothesis gauges the benefits of applying of speckle reduction before texture analysis. The last
hypothesis compares the performance of the MRF texture model to the GLCM statistics.

Hypothesis 1 Operational forest characteristics such as species, age, height, and stocking, determined through
aerial photograph interpretation, are thought to cause a distinctive spatial arrangement of trees which manifests itself
as texture in SAR imagery.

This hypothesis implies that textural features caused by the spatial arrangement of forest cover types are present
in SAR images. This statement is supported by evidence which suggests trees influence microwave backscatter, found
in §1.3.1. If one tree influences backscatter then a stand of trees will influence backscatter fluctuation or texture.

This hypothesis will be tested on the forest stands in the RADARSAT image using three tools (to be described
in the methodology, §3): multivariate analysis of variance, the Fisher criterion and classification. Each tool is able
to determine how well each operational forestry parameter is related to texture.

Hypothesis 2 Speckle reduction will improve the relationship of the texture features to operational forestry
parameters.

The Gamma-Gamma MAP filter will be used in a manner which attempts to preserve texture while reducing the
speckle. If successful the uncertainty of the texture features will be reduced which strengthens the relationship of the
texture features to the forestry parameters. This can be tested by comparing results from the multivariate analysis
of variance, Fisher criterion and classification from raw and speckle-filtered images.

Hypothesis 3 Markov random field texture features will capture more textural information (related to the oper-
ational forestry parameters) than GLCM texture features.

MRF texture models should be more appropriate for SAR images of forest because the MRF model is easily
associated with the natural processes occurring in a forest. This hypothesis can be tested by comparing the results
of the multivariate analysis of variance, Fisher criterion and classification. Those texture features best suited to
characterize SAR forest texture will have the best results.
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Chapter 2

Data and Study Site

The RADARSAT SAR image obtained for this study is a scene from Vancouver Island of forest stands. RADARSAT
is a Canadian earth observation satellite equipped with a SAR. RADARSAT limits our study to a single frequency
(C-band), single polarization (HH). The scene was imaged on December 6, 1996 with beam type F2 (single look)
during a rainstorm. The pixel spacing is 3.125 m and the scene is centered at about 50.6 degrees latitude and -127.4
degrees longitude. The nominal resolution is 6m in range and 8.9m in azimuth. The forest stands are located along
the east coast of Vancouver Island between Port Hardy and Port McNeill (see figure 2.1). The land is licensed to
Western Forest Products Ltd. (WFP).

RADARSAT IMAGE

Figure 2.1: Study site with the RADARSAT scene outlined.

To serve as ground truth, a Geographical Information System (GIS) with labelled polygons which detail opera-
tional forest parameters was provided by WFP. The GIS labels were formed by aerial photograph interpreters. Each
polygon represents the boundary of a forest stand that has at least one unique characteristic which distinguishes it
from the neighbouring polygons. Polygon area, perimeter, year established, species composition, age, height, basal
area, stocking, UTM coordinates and other information are stored as attribute data for each polygon. This study
uses species composition, age, height and stocking data. Figure 2.2 displays the raw RADARSAT image showing
three GIS coverages F64, F63 and F54 used in this research. A small sample of polygons (taken from coverage F64)
overlaying the image can be seen in Figure 2.3.

The forest stands (outlined by polygons) consist of many different species: Cottonwood, Balsam, Western Red
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Cedar, Yellow Cedar, Alder, Douglas Fir, Hemlock, Lodgepole Pine, White Pine and Spruce. The majority of the
forest stands are composed of multiple species. The most frequent occurring species are Western red cedar and
Western hemlock. The age of the trees ranged from 0 to 250+ years. Each stand was categorized into a stocking
(trunk density) class: dense, normal and open. Normal stocking is most common for these stands. Finally, height
was also determined and ranged from 1m to 80m. The codes and classes used by the GIS are listed in Appendix B
starting on page 44.

The entire RADARSAT image covers two climatic zones: coastal western hemlock and sub-alpine mountain
hemlock (Murtha, 1996). The annual precipitation is more than 350cm. The dominant species are Western hemlock,
Western red cedar, Sitka spruce and Amabilis fir. The old growth forests have structural characteristics: snags, dead
tops, conifers with dome-shaped crowns and spire-shaped crowns of maturing trees (Murtha, 1996).
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F63
F64

Figure 2.2: The raw RADARSAT image with three GIS coverages outlined.
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Figure 2.3: A portion of the RADARSAT image (coverage F63) with polygons overlayed.
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Chapter 3

Methodology

This section discusses the steps necessary to collect evidence which supports the hypotheses describe in §1.6. The first
step prepares the data for analysis and the second presents the details of the implementation of the Gamma-Gamma
MAP filter for speckle reduction. The implementation of the MRF and GLCM texture measures are given thirdly.
Finally, the experimental design is discussed by presenting the tools used to test the hypotheses.

3.1 Data Preparation

The focus of this section is to describe the data preprocessing necessary to analyze the relationship between texture
features and forestry parameters. This required a number of steps which transfered the data between three pieces
of software: ARC/INFO, PCI and the texture feature extraction code written by the author. The polygon and
associated attribute data was initially received in ARC ’e00’ format. The preprocessing steps taken are outlined
below.

A coverage is a set of polygons and polygon attribute information. For this dataset the polygons delineate distinct
forest types based on forestry parameters such as height, species, stocking and age. Six coverages were received in
ARC’s ’e00’ format and ARC imported them along with their INFO databases. Three attribute fields were added to
each coverage which listed species by number instead of letter to enable compatibility between the INFO database
and the authors code. The coverages were then exported back to ’e00’ format.

The coverages and attribute information were imported by PCI in the ’e00’ format to ’pix’ vector data. Since
the coverages only overlap portions of the full RADARSAT image, the image was subdivided into sub-images which
corresponded to the ARC coverages. Unfortunately, of the six coverages available, only three were used because the
others did not overlap the image at all or were located over areas with large incidence angle effects (i.e. layover).
The RADARSAT sub-images were geocoded using the polygon UTM coordinates and ground control points from
lakes and rivers. Figure 3.1 shows a portion of the RADARSAT image that was geocoded.

PCI is able to create mask images with a function called GRDPOL. This function uses the GIS polygons and their
attributes to create a mask image. The DNs in a mask image represent properties of the image cells. For instance, an
age mask image would consist of image cells with values 1 to 8 which represent 8 different height classes. Three mask
files were created for species composition. The first mask file for species delineated the polygons’ dominant species.
The second and third mask files for species delineated the less dominant species. Mask files were also created for age,
height and stocking. These files were important when testing the hypotheses, because it was necessary to combine
all forest stands with similar characteristics into a virtual forest (see §3.3 below for the definition of a virtual forest).

3.2 Speckle Filtering

Since SAR images are subject to speckle effects, support for hypothesis 2 was gathered from three versions of an
image. The first was the raw image and the second and third images are speckle-filtered in different manners. The
Gamma-Gamma MAP speckle filter with structure detection was chosen to filter the second and third images before
they were geocoded. Since the only portions of the microwave radar image examined in this research are made of
forest stands, it was not necessary to avoid edges or lines which are usually related to human constructs. However,
point target detection was retained to preserve the bright backscatter caused by defoliated tree tops (Murtha, 1997).
Figure 3.2 shows an example of a forest stand with dead trees, while Figure 3.3 shows a vastly different type of
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Figure 3.1: The F64 coverage portion of the RADARSAT image that has been aggressively speckle-filtered and
registered.

18



Figure 3.2: A canopy profile of old growth Cedar and Hemlock stand.

Figure 3.3: A canopy profile of old growth Hemlock and Balsam stand.

canopy. Figure 3.4 outlines this implementation of the Gamma-Gamma MAP filter (this figure is similar to Figure
1.1 but without the branches necessary for edge or line detection).

The local coefficient of variation is used in the Gamma-Gamma MAP speckle filter to determine if more or less
smoothing of the image is required. The theoretical value of CF for a one look intensity image is 1. The RADARSAT
image is an amplitude image, but by squaring the DN it was transformed to an intensity image for speckle-filtering
purposes. However, the mean of our data’s CI is about 0.92, less than CF . Since it is impossible for our image to be
close to pure speckle some of the homogeneous targets were examined (because they should be close to pure speckle).
The lakes and ocean gave CV values of about 0.9. Since the weather was stormy on the day the scene was imaged
the water must have been rough giving the assumed homogeneous targets (water) heterogeneous features. Therefore,
there is no absolute way to determine the level of speckle in the image. A conservative speckle filter was used to
create the second image by setting CF = average(CI)− 2 ∗ std(CI) and Cmax = average(CI). An aggressive speckle
filter was used to create the third image by setting CF = average(CI) and Cmax = average(CI) + 2 ∗ std(CI). See
Figure 3.5 for a pictorial placement of CF and Cmax on the CI histogram. Choosing to offset CF and Cmax in this
manner improved experimental repeatability when using other datasets. The window size of these filters was 7 × 7.
A larger window is generally better reducing speckle, but because the Gamma-Gamma MAP filter was also expected
to preserve texture, a smaller than usual window size was used.

The threshold for point target detection was set to 0.15. This threshold is compared to the inverse ratio of the
average of those image cells’ DNs which may represent a point target divided by the average of the surrounding
image cells’ DNs.

average of surrounding image cells
average of point target image cells

(3.1)

See Figure 3.6, where “p” represents a cell which may be part of the microwave response to a point scatterer. If
the ratio is less than 0.15, then a point target has been detected. The threshold was chosen by firstly generating a
binary image of a portion of the scene where 1 meant a point target was detected and 0 meant no point targets were
detected. The threshold was varied until most of the point targets, visual to the author, were detected.
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Point scatterer detected - preserve the image cell

Average filter for no texture

Ci >= Cf

Gamma-gamma smoothing for little or no texturePoint target?

Ci <= Cmax
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no
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Gamma-gamma smoothing for textured region

Figure 3.4: Gamma-gamma filter with point target detection.

avg +1 std-1 std

Cmax conservative

Cf Cmaxaggressive

Cf

Figure 3.5: The conservative and aggressive settings for CF and Cmax shown on the CI histogram.

3.3 SAR Image Texture Estimation

The texture features (MRF and GLCM) were calculated from within windows, within the polygons. The texture
feature collection was done with software coded by the author. This software used a window centered on every fifth
image cell to collect the texture features. Using every fifth image cell reduced the computational expense and memory
requirements. Furthermore, image cells located on boundaries (more than one type of forest stand in their windows)
were ignored. Using the mask files, the texture features from the windows could easily be assigned to virtual forests.

A virtual forest is a set of texture features from windows for which all but one forestry parameters are identical.
A virtual forest stand is a set of windows with identical forestry characteristics. The virtual forest stands make up
a virtual forest. For example, suppose all texture features from windows with identical age, species and height were
gathered and assigned to a virtual forest. In this particular virtual forest, every stand is identical in age, species and
height, but not stocking. Stocking is permitted vary. Now, to test if texture is a function of stocking, one simply has
to examine how texture changes as stocking changes within this virtual forest. The virtual forest concept is simply
a construct to help organize the forest data into testable subsets. The definition of a real forest is included at this
point. A real forest is a set of texture features from windows in which all forestry parameters may be different. Using
the above example, one would still test how texture changes with stocking, but there is no guarantee that age, height
and species will be identical.

MRF texture features characterize the texture better when larger window dimensions, like 32 or 64 (Chellappa
and Chatterjee, 1985) are used. Unfortunately window sizes of 32 or 64 would greatly reduce the number of samples
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Figure 3.6: Those cells marked ’p’ are cells which may represent a point target, the other cells are surrounding cells.

and, thus, also reduce the number forestry parameter combinations available for study. The larger windows would be
more likely to overlap polygon boundaries and, then, subsequently be ignored. A window size of 15x15 was settled
upon to comprise between the MRF performance and number of samples.

Three decisions needed to be made concerning the types of MRF and GLCM models. The first is the MRF
texture model and second the type of distribution and model order had to be determined. Thirdly, for GLCM, the
offset (distance and direction) and feature set needed some consideration.

3.3.1 MRF Probability Modelling

A conditional Gaussian MRF is chosen to model the SAR texture of forest stands. This assumes that the distri-
bution of all image cells within a window (given its’ neighbouring cells) are Gaussian. The actual image DNs are
distributed in an asymmetric manner with the major asymmetry being a longer tail, see Figure 3.7. Other image cell
distributions are intractable for MRF modelling and have not been investigated. Other researchers have used the
normal assumption when modelling the spatial distribution of trees as mentioned in Besag (1974). One hypothesis
of this study predicts that the spatial distribution of the trees will manifest itself as texture, supporting the use of
Gaussian MRF. This is the most widely used distribution for MRF models and has been used successfully on many
non-normal images. It is assumed that a conditional Gaussian distribution will suffice, but it is a weakness in the
theory and the validity of this assumption remains to be tested.
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Figure 3.7: The histograms of sample image DNs from within 15x15 windows.

When p(X(c)|neighbours of c), c being the centre cell of a window, is Gaussian a difference equation can be used
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to represent the Markov process (Woods, 1972). The symmetric difference equation is

X(c) =
∑
r

βc,r[X(c + r) + X(c − r)] + ec (3.2)

where ec is zero mean Gaussian distributed noise, r = (δx, δy) is an offset from the central image cell c and βc,r is a
parameter which relates the centre cell to a particular set of symmetric neighbours with offset r. The summation is
over all valid values for r, which are determined by the order of the model. For a 2nd order model, the summation
would be over two values of r, namely r = {(1, 0), (0, 1)}. The X(c− r) term is the symmetric neighbour of X(c + r)
with −r = {(−1, 0), (0,−1)} (see §1.4.3, page 9, for an explanation of order and symmetric neighbours).

3.3.2 MRF Parameter Estimation

The parameters for this study (which become the texture features) are estimated using a least squares approach
which is consistent and efficient (Kashyap and Chellappa, 1983; Manjunath and Chellappa, 1991). For the least
squares approach, let β be a column vector composed of βc,r (one element for each r). Let

Qc =




X(c + r1) + X(c − r1)
X(c + r2) + X(c − r2)
X(c + r3) + X(c − r3)

...


 (3.3)

where ri, i = 1, 2, 3, ... are offsets and the number parameters determines the length Qc. If one is working with a 2nd
order model, two parameters, then {r1, r2} = {(1, 0), (0, 1)}, {−r1,−r2} = {(−1, 0), (0,−1)} and

Qc =
[

X(c + r1) + X(c − r1)
X(c + r2) + X(c − r2)

]
(3.4)

In matrix notation, Equation (3.2), can be written

X(c) = βtQc + ec (3.5)

c

c

L
( which is 15 x 15 )

generates the Nth Qc

generates the first Qc

Figure 3.8: Each cell c, in a window L generates a Qc

Then, to determine the model parameters (βc,r), calculate β with the following equation (which is the least
squares estimate of β).

β =

[∑
c ε L

QcQt
c

]−1 [∑
c ε L

QcX(c)

]
(3.6)

The window is represented by L and the summation is over all the cells within L. For this study, L is a 15 × 15
window and c is any image cell within L. In summation, for every image cell (in the window of texture) a Qc is
determined. Then for every window the parameter vector β is estimated with Equation (3.6) (see Figure 3.8).
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3.3.3 MRF Model Order

When generating texture using MRFs it is apparent that the choice of neighbours and parameter values influence the
type of texture created (Chellappa, 1985). For the inverse problem of determining the parameters from the texture
the choice of neighbours also plays a crucial role. To help determine the most appropriate order a test statistic is
available (Kashyap and Chellappa, 1983; Chellappa, 1985).

The test statistic is able to determine the order which best measures the texture. The test statistic is generated
from standard Bayesian theory (Kashyap and Chellappa, 1983) which maximizes P (ηn|β). Let η1, η2, ...ηk be the
order of different models and m1, m2, ...mk be the number of symmetric members. In Figure 1.2, all cells labeled 1.x
(where x is 1 or 2), belong to neighbourhood η1, all cells labeled 1.x or 2.x belong to neighbourhood η2, and, so on,
such that all cells labeled {i.x|i <= j} belong to neighbourhood ηj . For example, neighbourhood η2 contains m2 = 4
symmetric members. Let L be N × M lattice of points and c is any point on the lattice, c = (c1, c2). For any order,
say ηn, let r = (r1, r2) represent the coordinates of a symmetric member. The test statistic for neighbourhood ηn is
then

Tn = −2
∑
cεL

log(1 − βt
nφnc) + MN log(νn) + mn log(MN) (3.7)

where:
βn is the column vector of MRF member parameters (or the texture feature vector, as above) for model order n.
φnc is a row vector where each element is determined from cos{2π ∗ ((c1/M, c2/N) · (r1/M, r2/N))} ∀rεηn

νn is 1
MN

∑
cεL

(X(s) − βt
nQc)2

Sym. MRF Order No Filtering Min. Con. Filtering Min. Ag. Filtering Min.
2 0 0 0
3 280 341 299
4 152 85 96
5 9 15 46

Total 441 441 441

Table 3.1: The MRF order best suited for the unfiltered image is 3 because it has the most minimums.

The order with the lowest Tn is the most appropriate for modelling the texture. The data for Table 3.1 is drawn
from 441 samples of MRF texture parameters from the unfiltered and filtered RADARSAT images. For each sample,
Tn was calculated for 2nd to 5th order symmetric Gaussian MRF. The numbers in the columns represent the number
of times an MRF order had the minimum Tn. Table 3.1 shows that 3rd order symmetric MRFs seem to be preferred
for unfiltered and filtered RADARSAT fine mode imagery.

3.3.4 GLCM Feature Set and Offset

The GLCM is generated by collected frequencies of gray level pairs at a distance and angle (an offset). The offset
as well as the texture statistics generated from the GLCM affect the performance of the texture features (Barber
and e. LeDrew, 1991). It has been shown that some features generated from the GLCM are correlated (Ulaby et al.,
1986a; Clausi, 1996). In the process of texture analysis using GLCM usually only a few relatively uncorrelated
features are best suited for the procedure. Clausi (1996) found that entropy, dissimilarity and correlation were
relatively uncorrelated when examining the textural properties of SAR sea ice. This study uses three GLCM features:
dissimilarity, entropy and correlation (described in §1.4.4 on page 11). The directions { 0o, 45o, 90o, 135o } with d = 1
were chosen because they are a combination which in the past, have characterized SAR texture well (Barber and
e. LeDrew, 1991).

3.4 Experimental Design

The experiments are designed to use three statistical tools which can measure the strength of the relationship
between texture features and operational forestry parameters. Each tool measures this relationship in a slightly
different manner (as discussed below). Hence, the relationship is examined from three different perspectives.
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3.4.1 Hypothesis Testing

Three tools (implemented in MATLAB) were used to examine the relationship between texture and forest parameters:
a multivariate analysis of variance (MANOVA), the Fisher criterion and classification. To test, for example, if texture
is a function of species, a virtual forest where all forestry parameters are kept constant except species is created.
Then for all combinations of species, MANOVA tests, Fisher criteria and classifications are calculated.

MANOVA (Johnson and Wichern, 1992) is able to determine if two datasets have statistically equal or unequal
means. For example, if two sets of texture feature data from a virtual forest, identical in every manner but of different
height, are proven to have significantly unequal means then this supports hypothesis 1. In other words, this indicates
that a change in height has a corresponding change in texture.

The Fisher criterion (Johnson and Wichern, 1992) is the inter-class distance divided by the intra-class variation.
This measure represents the separability of the texture features. For example, high separability between virtual
forest stands with different stocking indicates that texture is a function of stocking. Moreover, the Fisher criterion
places no assumptions upon the distribution of the data, unlike the MANOVA test, as will be mentioned below.

The MANOVA and Fisher criterion are necessary to form conclusions about the relationship between texture and
the forestry parameters. In a hypothetical situation where the Fisher criterion failed to indicate strong separability,
the MANOVA may still indicate that the texture is significantly different. This would prove that although classifi-
cation may not be practical, the texture feature vectors are still measuring a change in the texture. In other words,
the texture measure is still able to detect any fundamental change in the forest stand properties.

In addition to the MANOVA and the Fisher criterion, a more widely understood measurement, the percentage of
windows that were correctly classified with the texture features, was also calculated. Although partially correlated
with the Fisher criterion, classification results could support or contradict hypothesis 1, which a wider audience could
understand. Furthermore the classification scheme makes Gaussian and equal covariance matrix assumptions which
the Fisher criterion does not.

By comparing the test results of from the raw image texture features to the speckle-filtered images, it should be
apparent which contained the most textural information. In this manner hypothesis 2 can be tested. Hypothesis 3
is tested in a similar way. The MANOVA test statistics, the Fisher criterion and the success of classification will be
lower for the texture measure which characterized the texture the poorest.

A note is included at this point to explain how these tests were used. Note that MANOVA tests statistics could
be replaced with the Fisher criterion or the classification accuracy in the following explanation. For a set of virtual
forest stands (which compose a virtual forest), MANOVA test statistics for all pairs are calculated and then averaged.
For example, take a fictitious set of virtual forest stands { H-2-3-3, H-3-3-3, CB-2-3-3, CB-3-3-3, C-2-3-4 }, where
the first letter(s) represent the species (or species composition in the case of two letters), the first number represents
age, the second number represents height and the last number represents stocking (species-age-height-stocking). The
first virtual forest stand in the set has species code of H, age class 2, height class 3 and stocking class 3. For the
species x-label, MANOVA test statistics would be calculated from only two comparisons: H-2-3-3 with CB-2-3-3 and
H-3-3-3 with CB-3-3-3. In these comparisons, only the species changes, not the age, height or stocking. The two test
statistics would be averaged and plotted above the species x-label. Stand C-2-3-4 could not be used with H-2-3-3
or CB-2-3-3 because its’ height is different. For another example, consider the age x-label, where two test statistics
would be calculated by using: H-2-3-3 with H-3-3-3 and CB-2-3-3 with CB-3-3-3 in the average. Nothing changes
but the age. Unless stated otherwise this labelling is used throughout the results section.

3.4.2 Multivariate Analysis of Variance

This test requires independent samples from two populations. This condition is met by taking samples from inde-
pendent forest stands (those not adjacent are considered independent). If the sample population size is small, then
for a meaningful MANOVA both populations must:

1. be multivariate normal.

2. have equal covariance matrices.

For our forest stands the sample sizes are large (greater than 29, but usually greater than 100) in which case the
above assumptions can be relaxed (Johnson and Wichern, 1992). Nevertheless, a random and infrequent comparison
of covariance matrices showed only insignificant differences.

Care should be taken when comparing the results of this test between virtual forests. For example, one might have
the impulse to suggest that, because the average test statistic for age is higher than the others, age is more closely
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correlated with the texture features. This is not the case. The confidence threshold is a constant for all the virtual
forests because the number of samples is extremely large and the threshold tends to a constant. The test statistic
is not known to be comparable above the threshold; the sample sizes are large, but not equal. It is not acceptable
to compare, for example, the test statistics of age and stocking from the same image. However, comparing the same
virtual forest stands’ test statistics, between images that have been filtered or have been left raw, is acceptable and
is done in the results.

3.4.3 The Fisher Criterion

Fisher’s idea was to transform the multivariate samples into samples of fewer dimension with linear combinations. A
good transformation would achieve the maximum separation between the univariate means. Maximizing a criterion,
say J(w), is done to determine the optimal transformation. Let column vectors ma and mb represent the means of
two classes. Then define

SB = (ma − mb)(ma − mb)t (3.8)

and
SW = Sa + Sb (3.9)

where Sa and Sb are the scatter matrices of the classes a and b. A scatter matrix is defined as

Sa =
∑
i

(ma − ai)(mb − bi)t (3.10)

SB is the squared distance between the class means and SW is a measure of the variance of the classes. The Fisher
criterion is then

J(w) =
wtSBw

wtSW w
(3.11)

where
w = S−1

W (ma − mb) (3.12)

Here, w is the optimal linear combination found by differentiating J(w). For this study, the pairs of sample data used
to find a Fisher criterion had uneven numbers of samples which is not taken into account by the Fisher criterion. To
improve the situation, the scatter matrices (Sa and Sb) were replaced by covariance matrices (Clausi, 1996).

3.4.4 Classification Accuracy

A weighted Euclidean distance measure was adopted to classify the forest stands. Half the data was used as training
data which produced an estimate of the mean and covariance matrix. The other half was classified. For each unique
stand of trees, the multivariate mean and variance were calculated. The decision rule for texture features x, given
classes A and B follows: given the mean vectors of A and B (mA and mB) and the covariance matrices (SA, SB), if

(x − mA)S−1
A (x − mA)t < (x − mB)S−1

B (x − mB)t (3.13)

then x is labelled as class A, otherwise x is labelled as class B. This classification method assumes normality, but
because of the large number of samples, this assumption could be relaxed. As well, the best classification was not
desired, only a quick estimate was needed to support the MANOVA and Fisher criterion results. This thesis seeks
to show how forestry parameters are related to texture and so this classification is only a rough procedure and could
potentially be improved.
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Chapter 4

Results and Discussion

The overall objective of this research is to establish a relationship between operational forestry parameters and
SAR image texture features. This relationship was investigated with three tools: multivariate analysis of variance
(MANOVA), Fisher criterion and supervised classification. These tools are able to characterize the relationship
between the texture and forestry parameters as strong, weak or nonexistent, and, subsequently, test each hypothesis.
This chapter is divided into a number of sections where each presents and discusses the results of each hypothesis
test. The test data from the second hypothesis is presented before the first to allow the chapter to flow more naturally
from one section to the next. In addition to the results which came directly from the hypotheses, a number of other
conclusions also became apparent after some testing. These are given in the last section of this chapter.

4.1 Hypothesis 2: Gamma-Gamma MAP Speckle-Filtering

4.1.1 Results

The average MANOVA test statistics from the MRF texture features are shown on the top graph on Figure 4.1 for
all three images: raw, conservatively filtered and aggressively filtered. The x-axis labels represent the type of virtual
forest. The y-axis represents the average test statistic. Some of the samples had distributions with elongated tails
and standard deviation was not an appropriate value to use for error bars. The error bars indicate the 16% and 84%
percentiles. This means that 16% of the samples are below the bottom error bar, 16% of the samples are above the
top error bar and 67% of the data is contained within the error bars. The error bars should give a useful impression
of the uncertainty.

The 99% confidence threshold is 2.80 for the MRF texture features. The 99% confidence threshold for the GLCM
texture features is 2.04. These thresholds are shown as a dashed-dotted horizontal line on the figure. Values greater
than these thresholds indicate differences that are significant at the 99% confidence level. The confidence threshold
is greater for MRF because the MRF feature vector is 6 dimensional and the GLCM feature vector is 12 dimensional.

The top graph demonstrates that calculating MRF texture features from the raw image is generally better than
calculating MRF texture features from the other speckle-filtered images, because the test statistics are higher. This
generality is tempered by the large error bars associated with the raw imagery. This trend is true for all the virtual
forests except stocking. The average test statistics for stocking are relatively constant for all three types of images.

The GLCM texture features from the raw image are better suited to relate texture to forestry parameters than
features derived from the filtered images (see the bottom graph of Figure 4.1, the MANOVA average test statistics
for the GLCM texture features). As with the MRF, the error bars are relatively large for GLCM texture features.
This diminishes the statistical significance of the differences between the raw and filtered images. Stocking, however,
is anomalous because its’ test statistics are consistently low for all three types of images. The GLCM results concur
with the MRF results.

The Fisher criterion graphs (Figure 4.2) are labeled in the same fashion as the MANOVA graphs, but test
statistics are replaced by Fisher criteria. As with the MANOVA figures, the Fisher criteria suggests that the raw
image holds more information relating texture to forestry parameters than the conservatively or aggressively speckle-
filtered images. This is because texture features (for MRF and GLCM) are more separable when computed from the
raw imagery.

As seen on the top graph of Figure 4.3, the MRF texture features from the raw image, in general, were classified
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Figure 4.1: MANOVA average test statistics for MRF and GLCM texture features on all three types of images: raw,
(con)servatively and (agg)ressively speckle-filtered images. The 99% confidence threshold is also indicated with a
straight line.
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Figure 4.2: Average Fisher criteria for MRF and GLCM texture features on all three types of images: raw,
(con)servatively and (agg)ressively speckle-filtered images.

27



species    age   height stocking
50

55

60

65

70

75

80

RAW MRF o

CON MRF x

AGG MRF sq

A
ve

ra
ge

 C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

Forestry Parameters Allowed To Vary
species    age   height stocking

50

55

60

65

70

75

80
RAW GLCM o

CON GLCM x

AGG GLCM sq

A
ve

ra
ge

 C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

Forestry Parameters Allowed To Vary

Figure 4.3: The average percentage of correctly classified windows for MRF and GLCM texture features from all
three types of images: raw, (con)servatively and (agg)ressively speckle-filtered images.

best. The classification of the aggressively speckle-filtered image MRF texture features show a marked improvement
for stocking, which surpassed even the separability of the raw image texture features. Figure 4.3, at the bottom, for
GLCM, shows much the same results as the MRF. The raw image texture features have the best overall classification.
But, an aggressively speckle-filtered image does not improve the stocking classification as the MRF texture features
from the aggressively speckle-filtered imagery did.

4.1.2 Discussion

Data indicates that Gamma-Gamma MAP speckle filtering with point target detect failed to preserve meaningful
textural information. The MANOVA, Fisher criterion and classification tests with both texture measures all weakly
support this conclusion because the raw image had the most successful results. This failure can be attributed to two
possibilities:

1. Inappropriate thresholds chosen for the filter.

2. Erroneous assumptions made by the multiplicative noise model.

Since the image statistics were not close to the theoretical values, ad hoc thresholds were chosen for CF and
Cmax. The Gamma-Gamma MAP filter relies on good choices for CF and Cmax and the behaviour of the filter may
improve with better threshold values. As well, the point target detection also required a threshold. This was chosen
by visual inspection and could be improved.

The multiplicative noise model assumes that the backscatter fluctuations vary slowly relative to the width of the
impulse response. This assumption implies that the texture features are a relatively low frequency image property
compared to the higher frequency speckle process. Results show that this is not the case with fine resolution
RADARSAT imagery. For the imagery in this study, meaningful texture was removed by the filter, along with
speckle-noise, implying that texture was not varying slowly enough and the assumption was not appropriate in this
case. The limitations of the multiplicative noise model have been outlined by Blacknell and Oliver (1993) in response
to a study of forest backscatter by Sheen and Johnston (1992). The failure of the multiplicative noise model suggests
that improved speckle reduction and texture preservation methods need to be developed. Otherwise, a unified speckle
and texture model, such as discussed in §1.4.5 (on page 11) should be investigated further.

28



species   age    height stocking
0

10

20

30

40

50

60

70

Forestry Parameters Allowed To Vary

A
ve

ra
ge

 T
es

t S
ta

tis
tic

GLCM x

MRF o

99% CT .-

species    age   height stocking
0

0.5

1

1.5

2

2.5

3

Forestry Parameters Allowed To Vary

A
ve

ra
ge

 F
is

he
r 

C
rit

er
io

n

GLCM x

MRF o

species    age   height stocking
50

55

60

65

70

75

80

Forestry Parameters Allowed To Vary

A
ve

ra
ge

 C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
) GLCM x

MRF o

Figure 4.4: MANOVA, Fisher and classification results from the raw image

4.2 Hypothesis 1: Operational Forestry Parameters’ Relationship To
Texture

4.2.1 Results

As stated in the above discussion, the raw image texture contained the most information relating to operational
forestry parameters. Therefore, to demonstrate the results concerning hypothesis 1, only the data from the raw
imagery are necessary.

Figure 4.4 plots the average test statistics from the MANOVA tests of the texture features for several virtual
forests from the raw image. As noted earlier, the error bars represent the 16% and 84% percentiles. The average
of all the virtual forests’ test statistics are above these thresholds for MRF and GLCM except for stocking. This
indicates that most of the texture feature vectors had large differences in mean. In turn, the large differences in the
mean suggest that the texture for each forestry parameter changes as the forest parameter’s value changed. This
cannot be said for stocking because the average test statistic is too close to the 99% confidence threshold. Note the
large error bars, which indicate that not all the the virtual stands were successfully tested.

The second graph from Figure 4.4 plots the average Fisher criterion. For MRF texture features, this figure shows
that texture is a slightly stronger function of species than age, height or stocking because the species points are a
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little more separable. As well, for MRF the graph indicates that the separability for age, height and stocking is
almost constant. For the GLCM texture features the graph is inconclusive because the error bars are too large for
all the virtual forests.

The bottom graph on Figure 4.4 details the accuracy of the decision rule used for classification. The overall average
classification, using MRF and GLCM texture features, was between 57% and 67% successful. Texture windows with
age differences are most accurately classified for MRF and GLCM, but classification of species composition and
height are only slightly less accurate.

4.2.2 Discussion

The graphs suggest that the experimental tools have a rudimentary ability to detect changes in texture which reflect
changes in species composition, age and height for SAR images of forest stands. The MANOVA and classification
tests indicated that stocking is not as well related to texture as the other operational forestry parameters. The Fisher
criterion results were inconclusive because none of the forestry parameters were more or less related to the texture
features. This relationship is weak as indicated by the large error bars on the MANOVA graphs and the relatively
low classification accuracy. Other studies, which attempted to classify forest stands based upon canopy type using
texture have achieved comparable accuracies, between 55% and 60%, (for example Ulaby et al. (1986a)). Texture
was also successful for age class (virgin and regrowth) discrimination in Brazil (Luckman et al., 1994).

C-band microwaves tend to scatter from the forest canopy (Ahern et al., 1993b, 1995). Therefore changes in the
forest canopy structure would cause changes in texture. Changes in canopy structure occur when species composition
changes. Thus, it is sensible that SAR texture is related to species. Another consequence of C-band microwaves
mainly scattering from the canopy is that shadows are created in the SAR image. Taller trees cast a larger shadow
than shorter trees. The texture measures seem to be sensitive to the shadows since texture is related to height.
Within a stand of trees, age and height are generally correlated. Trees of the same age will generally be of the same
height. Therefore, it is sensible that texture is also related to age. Stocking failed to show even a weak relationship
to texture. This is unexpected since the spacing of the tree crowns should relate directly to backscatter fluctuations
if the backscatter in mainly from the tree crowns.

The success of this hypothesis demonstrates a new result, being, there is a fundamental relationship between oper-
ational forestry parameters (species composition, age and height, but not including stocking) and CHH RADARSAT
SAR image texture. This is important because it is a contribution with two corollaries. The first is that SAR image
texture, at this scale, is not wholly speckle, but contains spatial information which is related to forestry characteris-
tics. Secondly, it shows that, specifically, this texture is directly related to operational forestry parameters and can
be used to help forest stand classification procedures. However, other image properties (tonal, spectral, contextual,
etc, ...) should be used in conjunction with texture since texture features are not related to all scene characteristics.
This was also concluded by Ulaby et al. (1986a) and Luckman et al. (1994) for, respectively, canopy type and age
(virgin or regrowth) classes.

4.3 Hypothesis 3: Comparing the Success of MRF and GLCM Texture
Features

4.3.1 Results

Since the MANOVA test statistics are a function of the feature-space dimension, no comparisons are made between
MRF and GLCM texture features using test statistics. The Fisher criterion plot, located on Figure 4.4, indicate
that the GLCM texture features have slightly more separability than the MRF texture features. The Fisher criteria,
again, has large error bars, which weakens our ability to draw conclusions from this result. The MRF errors are
smaller than the GLCM error bars. However, the average classification plot, on the same figure, shows that they
performed approximately equally well and had comparable error bars (except stocking). MRF texture features were
slightly better classified for species composition, height and stocking, but GLCM was better for age.

4.3.2 Hypothesis 3: Discussion

The results for this hypothesis were unexpected. It was hypothesized that MRF texture models would perform better
than GLCM, but the graphs indicate that they performed approximately equally well. The Fisher criterion indicated
that the GLCM texture features were slightly more separable in feature space, but the classification suggests they
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Figure 4.5: The MANOVA average test statistic for MRF and GLCM texture features from real forest stands.

are equally separable. Two explanations exist. The first explanation uses the statistical assumptions made by the
Fisher criterion and the classification scheme. The second explanation concerns the conditional distribution chosen
for the MRF texture model.

Since the Fisher distance does not assume the data is multivariate normal and the classification scheme does
assume the data is multivariate normal, the different trends that are present in their graphs is not surprising. If
the GLCM texture features are non-normal and the MRF texture features are normal, then the Fisher criterion and
classification graphs are consistent. The classification scheme penalizes the GLCM texture features because they are
not normal, but the Fisher criterion does not penalize the GLCM texture features. Therefore, the GLCM texture
features would appear more separable than the MRF texture features when tested with the Fisher criterion, but
equal when tested with the classification scheme. This explanation is also consistent with the Fisher criterion and
classification data for the aggressively and conservatively speckle-filtered images on Figures 4.2 (on page 27) and 4.3
(on page 28).

The MRF texture model uses a conditional Gaussian distribution to model the texture. As stated in §3.3.1 (on
page 21), this is a weakness in the MRF texture model. Since this assumption was not tested, it may have degraded
the MRF texture model’s performance.

4.4 Non-hypothesized Results

These results were not from any of the hypotheses. While doing the experiments other investigations were carried
out. Some of these investigations are considered relevant to this thesis and therefore are discussed below.

4.4.1 Results from a Real Forest

The virtual forest stands established a relationship between the forestry parameters and texture. Do these relation-
ships still exist when the characteristics of the forest stand’s being compared are unknown? This is a more realistic
situation and involves segmenting forest stands with all forestry parameters able to vary. This type of forest was de-
fined as a real forest. The MANOVA tests on the real forests (Figure 4.5) indicate there exists significant differences
in mean for all the forestry parameters. This shows that the relationship between texture and forestry parameters
still exists when more uncertainty is added. Figures 4.6 and 4.7 compare the separability (Fisher criterion) and the
accuracy of classification of the real forest to the virtual forests. This was only done for the raw image because it had
the most promising results. The figures show that the average separability and average classification accuracy for
the real forest are lower than the virtual forests. This is not unexpected since texture is a function of many forestry
parameters (as shown in §4.2) and a change in texture, for the real forest stands, could be attributed to any number
of forestry parameters. The virtual forest constructs eliminated this type of confusion.
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Figure 4.6: The average Fisher criterion for MRF and GLCM texture features for real and virtual forest stands.
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Figure 4.7: The average classification accuracy for MRF and GLCM texture features from real and virtual forest
stands
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Figure 4.8: MANOVA, Fisher criteria and classification data plotted for mean, standard deviation and texture
features. The texture features were taken from the raw image and the mean and standard deviation features were
taken from the aggressively speckle-filtered image.

The highest percentage of correctly classified windows for the real forest stands are with age and species for
texture features from the MRF texture model and GLCM. This suggests that the greatest potential to successfully
segment a real forest into distinct classes with texture features would be into species or age classes. This agrees with
the results from testing hypothesis 1, which indicated that texture is a function of species and age.

4.4.2 Relating Tone and Standard Deviation to Forestry Parameters

Is texture providing different information than a simple and faster characterization of the DNs such as mean or
standard deviation? The tonal properties of the image can be clearly distinguished, see Figure 3.1 on page 18. For
the raw and aggressively speckle-filtered images mean and standard deviation (std) values were calculated from a
15x15 window centred on every 5th image cell, exactly as was done for the texture features. The best Fisher criterion
and classification results for the mean and standard deviation were from the aggressively filtered image. This is
consistent with previous research which found that spatial smoothing of the image enhanced tonal classification
(Ulaby et al., 1986a). Our results (from Figure 4.8) suggest that texture measures and mean and standard deviation
are about equally related to forestry parameters. The MANOVA test statistics, at the top on Figure 4.8, show that
the mean and std from species and height virtual forest stands are related to forestry parameters. However, age
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and stocking points are too close to the confidence threshold to make the same conclusion. Figure 4.8, the middle
graph, shows the average Fisher criterion for texture features from the MRF and GLCM measures (from the raw
image) and tonal and standard deviation features (from the aggressive image). The tone and standard deviation
features had comparable Fisher criteria and classification. Note that stocking stands for mean and std features were
most frequently classified correctly. This is not the case for the stocking texture features, which are least frequently
classified correctly. Therefore, stocking may be more closely related to mean and standard deviation (std) properties
than to textural properties. Finally note that the error bars for the mean and std features are large compared to the
texture features, indicating more uncertainty.

Mean and Std MRF Texture Features
Features 1 2 3 4 5 6
Mean 0.02 0.00 -0.01 -0.01 -0.04 -0.02
Std 0.01 -0.01 0.01 0.01 0.07 0.08

Table 4.1: The correlation coefficients of the MRF texture features and mean and std properties.

Mean and Std GLCM Texture Features
Features offset x=1 y=0 offset x=1 y=1

Entropy Dissim. Correl. Entropy Dissim. Correl.
Mean 0.85 0.79 0.32 0.85 0.80 0.31
Std 0.60 0.47 0.57 0.61 0.49 0.57

Mean and Std GLCM Texture Features
Features offset x=0 y=1 offset x=-1 y=1

Entropy Dissim. Correl. Entropy Dissim. Correl.
Mean 0.85 0.79 0.32 0.84 0.80 0.32
Std 0.60 0.48 0.57 0.61 0.50 0.58

Table 4.2: The correlation coefficients from the GLCM texture features and mean and std properties.

Although being comparable at classification the MRF texture features and the mean and standard deviation
properties of the images are uncorrelated, see Table 4.1. The trend is not similar for GLCM texture features,
which show high correlation, see Table 4.2. These results suggest that combing the MRF texture features with
mean and std features would yield a stronger relationship with the operational forestry parameters. The graphs in
Figure 4.9 concur. The combination of MRF, mean and std features are more accurately classified than just MRF
features alone. The GLCM classification compared to the combination of mean, std and GLCM features show little
improvement. Tonal and std properties are providing different information than the MRF textural properties, as the
above evidence suggests. This was also the case in (Luckman et al., 1994), where it was found that tonal features
were able to discriminate clearcut areas, while texture features were able to discriminate virgin forest. Ulaby et al.
(1986a) found that tonal features performed better than textural features, in contrast to this research, but they
used a different set of GLCM statistics and were classifying vastly different canopy types (Brazilian and Eastern US
forests) with coarser resolutions (24-looks, 80m × 80m).

4.4.3 Uncorrelated MRF and GLCM Texture Features

The texture features from the MRF model are uncorrelated with the texture features from the GLCM (see Table
4.3). The MRF texture features are least squares estimates of parameters from a conditional Gaussian distribution.
In contrast, the GLCM matrix is the probability of occurrence of two digital numbers and the GLCM statistics are
generally summations of the probabilities. The assumptions and measurement of the texture is vastly different for
each and thus should not be well correlated.

The low correlation implies that they are characterizing different aspects of the texture and a combined feature
set, may give an improved classification. A plot of the classification results between the MRF and GLCM texture
features from a real forest versus the combined results show a vast improvement for species. The other types of forest
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Figure 4.9: The average classification accuracy comparing the combined mean, std and MRF or GLCM features with
the MRF and GLCM texture features from the virtual forest stands.

stands show little or even a degradation in classification. This can be seen in Figure 4.10. Why did only species show
an improvement, but not the other forestry characteristics? The MRF and GLCM texture features from the species
forest stands must be measuring entirely different properties of the image texture, whereas, the texture features from
age, height and stocking must be similar.
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MRF GLCM Texture Features
Texture offset x=1 y=0 offset x=1 y=1
Features Entropy Dissim. Correl. Entropy Dissim. Correl.

1 -0.03 -0.11 0.01 0.03 0.04 -0.01
2 0.03 0.09 -0.01 -0.01 -0.02 0.01
3 0.01 0.03 0.01 -0.02 -0.07 0.01
4 0.01 0.02 0.01 0.01 0.02 0.01
5 -0.01 -0.01 0.03 -0.03 -0.05 0.04
6 -0.03 -0.08 0.03 0.01 0.02 0.02

MRF GLCM Texture Features
Texture offset x=0 y=1 offset x=-1 y=1
Features Entropy Dissim. Correl. Entropy Dissim. Correl.

1 0.05 0.10 -0.01 0.01 -0.00 0.01
2 -0.05 -0.13 -0.01 0.01 0.02 -0.01
3 0.01 0.03 0.01 0.01 0.03 0.01
4 0.01 0.03 0.01 -0.02 -0.07 0.01
5 -0.05 -0.10 0.02 -0.01 0.01 0.02
6 0.01 0.00 0.03 -0.01 -0.03 0.04

Table 4.3: The correlation coefficients between the MRF and GLCM texture features.
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Figure 4.10: The average classification accuracy for MRF and GLCM texture features from real forest stands versus
a combined classification.
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Chapter 5

Conclusions and Extensions

This research is beneficial to forest monitoring and remote sensing technology. It has related RADARSAT image
texture to operational forestry parameters by applying a texture model, Markov random fields. The Markov random
field texture features were tested with three statistical tools and compared with another well known texture measure,
the grey level co-occurrence matrix statistics. This research also summarized and investigated speckle reduction
theory and applied it to forested images.

Several trends are apparent from the figures and comments presented in the results section. These are listed
below. The first three follow directly from the hypotheses tests. The last couple were derived from ancillary testing.

1. The texture features, from a RADARSAT F2 image, are related to operational forestry parameters species,
age, height. This original result shows that forest scene texture is not wholly speckle, but that it is a function
of forestry characteristics. Therefore, texture is useful for forest stand discrimination.

2. The Gamma-Gamma MAP filter with point target detection did not preserve enough meaningful texture.
Therefore, the raw imagery showed the best relationship between texture and forestry parameters. This shows
that current speckle reduction algorithms may not be preserving valuable textural information and that new
or different approaches should be investigated.

3. Neither MRF texture features or GLCM statistics showed any advantages over the other, although it was
hypothesized that MRF texture models would perform better than GLCM statistics. It can be concluded that
they performed equally well. The failure of hypothesis 3 may be attributed to erroneous normal assumptions
made by the statistical tools or a weakness in the Gaussian MRF texture model.

4. The real forest stands did not show as strong a relationship to texture as the virtual forest stands, which was
expected. However, age and species composition were classified better than height and stocking, implying that
they tend to influence texture more strongly than height and stocking. In general, age and species are stronger
influences on texture than height or stocking (in a RADARSAT, F2 image).

5. Mean and std properties are related to forestry parameters and their usefulness for classification is comparable
to texture features. Tone should not be overlooked as a valuable image property. This study found that stocking
is a stronger function of tonal properties than textural properties.

6. A feature set, composed of MRF texture, mean and standard deviation features classify better than any of
these sets on their own. This is because they are all relatively uncorrelated and therefore measuring different
image properties. However, GLCM statistics are correlated with mean and standard deviation, and therefore,
do not make a valuable feature set.

A number of extensions to this research are listed below.

1. The obvious extension would be to re-classify the features using a more intelligent classification scheme and a
feature set consisting of mean, std, MRF textural and GLCM textural properties. The aforementioned image
properties have been shown to be uncorrelated and, as such, will improve classification.

2. These conclusions are derived from a RADARSAT image of rainforest on Vancouver Island. The height and
species composition of the trees in this climate are vastly different form forests in other climatic zones. At this
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point these findings should not be extended to forests in other climates without some caution. If the relative
heights and species composition change because of climate the trends demonstrated in this thesis may differ.
A logical extension of this research would be to test the same hypotheses on a RADARSAT image of a forested
scene from a different climate.

3. Another extension is to acquire RADARSAT images of the same scene at different seasons and during different
weather conditions and test the same hypotheses. Seasonal and daily variations in moisture and wind velocity
will change the backscatter properties. There may exist a peak season or condition when the textural properties
of the scene are more evident. The RADARSAT image used in this study was obtained during a rainstorm. The
winds may have distorted the spatial distribution of the tree tops by swaying them. This may have distorted
the natural spatial distribution of the tree crowns and thus also affected the textural properties of the image.

38



Bibliography

Ahern, F., Leckie, D., and Werle, D. (1993a). Applications of RADARSAT SAR data in forested environments.
Canadian Journal of Remote Sensing, 19(4):330–337.

Ahern, F. J., Landry, R., Paterson, J., Boucher, D., and McKirdy, I. (1995). Forest landcover information content
of multi-frequency multi-polarized SAR data of a boreal forest. 17th Canadian Symposium on Remote Sensing,
2:537–549.

Ahern, F. J., Leckie, D. J., and Drieman, J. A. (1993b). Seasonal changes in relative C-band backscatter of northern
forest cover types. IEEE Transactions on Geoscience and Remote Sensing, 31(3):668–680.

Barber, D. and e. LeDrew (1991). SAR sea ice discrimination using texture statistics: A multivariate approach.
Photogrammetric Engineering and Remote Sensing, 57:385–395.

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical
Society B, 36(2):192–236.

Besag, J. (1986). On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society B, 48(3):259–302.

Blacknell, D. and Oliver, C. J. (1993). Comments on statistical and spatial properties of forest clutter measured with
a polarimetric synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing, 31(5):1093–1094.

Cenzo, A. D. (1981). Synthetic aperture radar and digital processing: An introduction. Technical Report N81-18266,
Jet Propulsion Laboratory, Pasadena, California, USA.

Chellappa, R. (1985). Two-dimensional discrete Gaussian Markov random field models for image processing. In Kanal,
L. N. and Rosenfeld, A., editors, Machine Intelligence and Pattern Recognition: Progress in Pattern Recognition
2, volume 1, pages 79–112, B.V. (North-Holland). Elsecier Science Publishers.

Chellappa, R. and Chatterjee, S. (1985). Classification of textures using Gaussian Markov random fields. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 33(4):959–963.

Cimino, J., Brandani, A., Casey, D., Rabassa, J., and Wall, S. D. (1986). Multiple incidence angle SIR-B experiment
over Argentina: Mapping of forest units. IEEE Transactions on Geoscience and Remote Sensing, 24(4):498–509.

Clausi, D. (1996). Texture Segmentation of SAR Sea Ice Imagery. PhD thesis, University of Waterloo, Systems
Design Engineering, Waterloo, Ontario, Canada.

Collins, M. J. (1993). Response of an airborne synthetic aperture radar to sea ice in the marginal ice zone. PhD
thesis, York University, Earth and Space Science, Toronto, Ontario, Canada.

Cross, G. R. and Jain, A. K. (1983). Markov random field texture models. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 5(1):25–39.

Drieman, J. A. (1994). Forest cover typing and clearcut mapping in Newfoundland with C-band SAR. Canadian
Journal of Remote Sensing, 20(1):11–16.

Fitch, J. P. (1988). Synthetic Aperture Radar. Springer-Verlag, New York.

Frost, V. S., Shanmugan, K. S., and Holtzman, J. C. (1984). The influence of sensor and flight parameters on texture
in radar images. IEEE Transactions on Geoscience and Remote Sensing, 22(5):440–448.

39



Frost, V. S., Stiles, J. A., Shanmugan, K. S., and Holtzman, J. C. (1982). A model for radar images and its
application to adaptive digital filtering of multiplicative noise. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 4(2):157–165.

Haralick, R. M. (1979). Statistical and structural approaches to texture. Proceedings IEEE, 67(5):786–804.

Haralick, R. M., Shanmugan, K., and Dinstein, I. (1973). Textural features for image classification. IEEE Transac-
tions on Systems, Man, and Cybernetics, 3(6):610–621.

Hess, L., Melack, J., and Simonett, D. (1990). Radar detection of flooding beneath the forest canopy: a review.
International Journal of Remote Sensing, 11(7):1313–1325.

Jao, J. K. (1984). Amplitude distribution of composite terrain radar clutter and the k-distribution. IEEE Transactions
on Antennas and Propagation, 32(10):1049–1061.

Johnson, R. A. and Wichern, D. W. (1992). Applied Multivariate Statistical Analysis. Prentice-Hall Inc., Englewood
Cliffs, New Jersey, 3 edition.

Kashyap, R. and Chellappa, R. (1983). Estimation and choice of neighbors in spatial-interaction models of images.
IEEE Transactions on Information Theory, 29(1):60–72.

Kasischke, E., Bourgeau-Chavez, L., N.L. Christensen, J., and Haney, E. (1994). Observations on the sensitivity of
ers-1 sar image intensity to changes in aboveground biomass in young loblolly pine forests. International Journal
of Remote Sensing, 15(1):3–16.

Kindermann, R. and Snell, J. L. (1980). Markov Random Fields and their Applications. American Mathematical
Society, United States of America.

Kuan, D. T., Sawchuk, A. A., Strand, T. C., and Chavel, P. (1985). Adaptive noise filter for images with signal-
dependent noise. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7(2):165–177.

Kuan, D. T., Sawchuk, A. A., Strand, T. C., and Chavel, P. (1987). Adaptive restoration of images with speckle.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 35(3):373–383.

Kux, H. J. H. and Henebry, G. M. (1994). Multi-scale texture in SAR imagery: landscape dynamics of the Pantanal,
Brazil. IGARSS, pages 1069–1071.

Le Toan, T., Beaudoin, A., Roim, J., and Guyon, D. (1992). Relating forest biomass to SAR data. IEEE Transactions
on Geoscience and Remote Sensing, 30(2):403–411.

Lee, J.-S. (1981). Speckle analysis and smoothing of synthetic aperture radar images. Computer Graphics and Image
Processing, 17:24–32.

Lombardo, P. and Oliver, C. J. (1994). Estimation of texture parameters in k-distributed clutter. IEE Proceedings
- Radar, Sonar and Navigation, 141(4):196–204.

Lopes, A., Nezry, E., Touzi, R., and Laur, H. (1990a). Structure detection and statistical adaptive speckle filtering
in SAR images. International Journal of Remote Sensing, 14(9):1735–1758.

Lopes, A., Touzi, R., and Nezry, E. (1990b). Adaptive speckle filters and scene heterogeneity. IEEE Transactions
on Geoscience and Remote Sensing, 28(6):992–1000.

Luckman, A., Groom, G., and Baker, J. (1994). Forest age discrmination from texture measures of SAR imagery. In
IGARSS 1994, pages 104–107.

Manjunath, B. and Chellappa, R. (1991). Unsupervised texture segmentation using Markov random field models.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(5):478–482.

Murtha, P. (1991). Radar imaging of natural systems (RAINS). ADRO project no. 384.

Murtha, P. (1996). Airborne SAR studies of north Vancouver Island rainforests. Canadian Journal of Remote
Sensing, 22(2):175–183.

40



Murtha, P. (1997). Radar imaging of natural systems (RAINS). In GER ’97.

Oliver, C. J. (1991). Information from SAR images. Journal of Physics D: Applied Physics, 24:1493–1514.

Oliver, C. J. (1993). Optimum texture estimators for SAR clutter. Journal of Physics D: Applied Physics, 26:1824–
1835.

Oliver, C. J. and Lombardo, P. (1996). Simultaneous mean and texture edge detection in SAR clutter. IEE Proceedings
- Radar, Sonar and Navigation, 143(6):391–399.

Porcello, L. J., Massey, N. G., Innes, R. B., and Marks, J. M. (1976). Speckle reduction in synthetic-aperture radar.
Journal of the Optical Society of America, 66(11):1305–1311.

Pratt, W. K., Faugeras, O. D., and Gagalowica, A. (1978). Visual discrimination of stochastic texture fields. IEEE
Transactions on Systems, Man, and Cybernetics, 8(11):796–804.

Rauste, Y. (1990). Incidence-angle dependence in forested and non-forested areas in Seasat SAR data. International
Journal of Remote Sensing, 11(7):1267–1276.

Sayn-Wittgenstein, L. (1970). Patterns of spatial variation in forests and other natural populations. Pattern Recog-
nition, 2:245–253.

Shanmugan, K. S., Narayanan, V., Frost, V. S., Stiles, J. A., and Holtzman, J. C. (1981). Textural features for radar
images analysis. IEEE Transactions on Geoscience and Remote Sensing, 19(3):153–156.

Sheen, D. and Johnston, L. P. (1992). Statistical and spatial properties of forest clutter measured with polarimetric
synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing, 30(3):578–588.

Tamura, H., Mori, S., and Yamawaki, T. (1978). Textural features corresponding to visual perception. IEEE
Transactions on Systems, Man, and Cybernetics, 8(6):460–472.

Ulaby, F. T., Kouyate, F., Brisco, B., and Williams, T. H. L. (1986a). Textural information in SAR images. IEEE
Transactions on Geoscience and Remote Sensing, 24(2):235–245.

Ulaby, F. T., Moore, R. K., and Fung, A. K. (1982). Microwave Remote Sensing Active and Passive Volume II.
Addison-Wesley Publishing Company, Reading, Masachussetts.

Ulaby, F. T., Moore, R. K., and Fung, A. K. (1986b). Microwave Remote Sensing Active and Passive Volume III.
Artech House Inc, Canton, MA.

Visentin, R. L. (1988). A digital signal processing view of strip-mapping synthetic aperture radar. Master’s thesis,
University of Illinois.

Weszka, J. S., Dyer, C. R., and Rosenfeld, A. (1976). A comparitive study of texture measures for terrain classification.
IEEE Transactions on Systems, Man, and Cybernetics, 6(4):269–285.

Woodcock, C., Strahler, A., and Jupp, D. (1988a). The use of variograms in remote sensing: I. scene models and
simulated images. Remote Sensing of the Environment, 25:323–348.

Woodcock, C., Strahler, A., and Jupp, D. (1988b). The use of variograms in remote sensing: II. real digital images.
Remote Sensing of the Environment, 25:349–379.

Woodcock, C. E. and Strahler, A. H. (1987). The factor of scale in remote sensing. Remote Sensing of the Environ-
ment, 21:311–332.

Woods, J. W. (1972). Two-dimensional discrete Markovian fields. IEEE Transactions on Information Theory,
18(2):232–240.

Wu, S. (1987). Potential application of multipolarization SAR for pine-plantation biomass estimation. IEEE Trans-
actions on Geoscience and Remote Sensing, 25(3):403–409.

41



Appendix A

SAR Geometry and Resolution
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Figure A.1: SAR geometry.

In Figure A.1 the geometry of a SAR system is depicted. The distance from a point on the platform’s trajectory
to a scatterer (on the ground) is R. The height of the platform is h and y is the horizontal distance from the target to
the platform. The axis along the flight path is indicated by x. As the platform moves it emits frequency modulated
(FM) signals, called chirps, and receives the backscatter or echos (Cenzo, 1981; Fitch, 1988).

SAR is a ranging device. By recording when echos are received, the slant-range of those scatterers can be
determined. A signal emitted from the SAR platform would travel a distance of 2R in a time of t at a speed of c
(speed of light). Therefore

R =
ct

2
(A.1)

If two echos return within a very short time frame, say, less than ρt, the individual echos can not be resolved
because they overlap. If two echos can be resolved in time, they must be separated (in time) by more than ρt, the
time resolution. Therefore, with appropriate time resolution, the ground-range of any echo can be determined and
assigned a position on the image by using the slant-range and angle β.

How does the system recognize an echo? The SAR system correlates the echo with a signal which is identical to
the original transmitted signal. When the correlation function has a peak, the echo and the signal are very similar
and one can be sure that an echo has indeed returned from a strong scatterer (a scatterer that reflects the signal
well). The FM signal has a large maximum at zero and rapidly falls as the autocorrelation function moves away from
zero. This makes the FM signal ideal for correlating the signal with an echo. If the correlation does not have a large
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enough peak, it is deduced that no strong scatterer is present. This, however does not mean that no scatterers were
present, it suggests only that no strong scatterers were present.

With the proper time resolution and using correlation, the system is able to record the response and position of
all the scatterers along a range-line (the y axis). To form an image, the echos at different x positions along the flight
path are collected, and an image can be built up.

Since the platform is moving, with velocity v, the signal reflected by a scatterer will be recorded several times.
This happens because the pulse illuminates an elliptical shape on the surface of the earth and the ellipses from
different pulses will partially overlap. Therefore, each echo from same scatterer (but different pulses) will experience
a Doppler shift. If the scatterer is being approached the frequency shift is positive and if the scatterer is being left
the frequency shift is negative. To form an azimuth-line of imagery using the Doppler shifts, the echos from the same
scatterer, but illuminated from several different angles, are aligned and the processed into one echo.

A.1 Range Resolution

This paragraph explains how the bandwidth of the chirp is related to the slant-range resolution. First note that the
inverse of the time resolution is approximately equal to the bandwidth of the signal, W .

ρ−1
t ≈ W (A.2)

This is necessary to ensure the echos do not overlap. Also the range resolution ρr is related to the time resolution
by (same relationship in Equation (A.1))

ρr =
cρt

2
(A.3)

Then combining these two equations, one can see that the range resolution is inversely proportional to the signal
bandwidth.

ρr =
c

2W
(A.4)

A.2 Azimuth Resolution

This section explains why the azimuth resolution is independent of range and wavelength. Consider an equation
which relates the azimuth resolution to the Doppler bandwidth and the velocity of the platform.

ρx =
v

∆fD
(A.5)

The Doppler bandwidth is denoted by ∆fD and azimuth resolution is denoted by ρx. Furthermore, the Doppler
bandwidth is related to the velocity of the platform, the wavelength of the radiation, λ, and the angle over which
the scatterer is illuminated, α, in the following equation.

∆fD ≈ 2vα

λ
(A.6)

The azimuth resolution is independent of range and wavelength because

α ≈ λ

D
(A.7)

where D is the azimuth dimension of the antenna. Substituting Equations (A.7) and (A.6) into (A.5) yields

ρx ≈ D

2
(A.8)

which is independent of range or wavelength. This equation implies that the azimuth dimension of the antenna is
directly proportional to the azimuth resolution.
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Appendix B

GIS Stand Classes

The GIS polygon attribute data was in the form of codes which represented classes of forestry parameters. This
appendix outlines the GIS codes and classes that were used in this thesis.

Species Codes and Classes
1 A Cottonwood
2 B Balsam
3 C Western red cedar
4 Cy Yellow cedar
6 D Alder
7 F Douglas fir
8 H Hemlock
10 Pl Lodgepole pine
11 Pw White pine
12 S Spruce

Age Codes and Classes
1 1-20 years
2 21-40 years
3 41-60 years
4 61-80 years
5 81-100 years
6 101-120 years
7 121-140 years
8 141-250 years
9 250+ years

Height Codes and Classes
1 1-10 m
2 10.1-20 m
3 20.1-30 m
4 30.1-40 m
5 40.1-50 m
6 50.1-60 m
7 60.1-70 m
8 70.1-80 m

Stocking Codes and Classes
1 dense
2 normal
3 open
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