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Abstract

A practical problem in computer graphics is that of representing a tex-
tured surface at arbitrary scales. I consider the underlying mathematical
problem to be that of interpolating autoregressive random fields under
arbitrary coordinate transformations. I examine the theoretical basis
for the transformations that autoregressive parameters exhibit when the
associated stationary random fields are scaled or rotated. The basic re-
sult is that the transform takes place in the continuous autocovariance
domain, and that the spectral density and associated autoregressive pa-
rameters proceed directly from sampling the continuous autocovariance
on a transformed grid. I show some real-world applications of these
ideas, and explore how they allow us to interpolate into a random field.
Along the way, I develop interesting ways to estimate simultaneous au-
toregressive parameters, to calculate the distorting effects of linear inter-
polation algorithms, and to interpolate random fields without altering
their statistics.
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1 Setting the stage

Randomness is essential to our world. It informs the turbulent flows of the world’s oceans
and atmosphere, which in turn drive climatic cycles. It influences the chromosomal dance
that takes place at human conception. In the distant past, small random variations in
gaseous density gave rise to the universe’s first galaxies. Our daily lives ebb and flow
according to the chance encounters and acquaintances that we make. Even our thoughts,
which we often view as a bastion of order, have an irrational undercurrent at all times.

So we must celebrate randomness, even when it makes our work challenging. The
topic of my thesis is the transformation of autoregressive random fields under scaling and
rotation of the coordinate system. The intended application is one in computer graphics:
I would like to be able to generate visual textures at arbitrary scales, even when they
contain some randomness. My thesis is primarily an exploration of the mathematical
underpinnings of the topic, along with illustrative examples, both synthesized and from
real life.

So what is visual texture? Along with love and courage, it is easily recognized, can be
of crucial importance, but defies definition. Nevertheless, we can say a few things. There
must be tonal variation; there must be repetition; the elements that are repeated should
not be pre-attentively identifiable as individuals; and texture has a region of support – in
other words, it is a property of a region, not a point. Think of scanning a crowd to find a
familiar face. The inchoate sea of faces is a texture. To find the person we are searching
for, we have to narrow the field of view down to 16-20 people, at which point texture fades
and individuals appear.

The Wold decomposition theorem is the starting point. Any 1D stationary signal
divides into a predictable part, and a random process with a moving average (MA) rep-
resentation. Any 2D stationary signal divides into a predictable part, an evanescent field
(more about that in section [4]), and an MA process. Rotating and scaling the deter-
ministic part of a signal amounts to transforming a geometric model, which is a solved
problem. So I concentrate upon rotating and scaling the random component. In order to
accomplish this, we need a parametric model, so that we can generate an autocovariance
function under any coordinate transformation. That leads directly to the concept of inter-
polating a random field, by which I mean the ability to generate field samples in between
existing ones, samples which preserve the process statistics.

So why autoregressive fields? An autoregressive (AR) random process is a restriction
of an MA process, so we seem to be losing generality right from the start. I do that because
autoregressive models underlie a large number of visual texture analysis techniques, and
because behind AR models lies a large body of knowledge extending back many decades.

But to return to our main question: what is texture? It’s like explaining where babies
come from: we all think we’re experts, but it’s still hard to describe. We can say a
few more things, though. The first-order statistics of a texture derive from illumination
and reflectance. Texture intrinsically resides in the second and higher order statistics of
an image, in particular in the distribution of information-rich structures such as edges,
closures, joins, and crossings. Julesz has demonstrated this quite conclusively [1].

So here is the plan of action: sections [2]-[4] define the problem more precisely and
describe interesting previous work. Sections [5]-[8] describe the mathematical nature and
limitations of autoregressive random fields. Sections [9]-[11] describe how I generate such
fields, how I estimate their characteristic parameters, and how accurate those estimates
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Figure 1: smooth muscle cells in a monkey’s renal calyx. Source: Dept of Anatomy and
Cell Biology, Indiana University School of Medicine [2]

can be. Section [12] develops and illustrates the scaling transform in one dimension. Sec-
tion [13] shows why an autoregressive model is a poor one if the signal under study is nearly
periodic. Section [14] talks about the problems inherent in standard 2D interpolation tech-
niques. Section [15] presents my main argument, namely that rotation and scaling occur in
the continuous covariance domain, and do not commute with sampling. Sections [16] and
[17] examine the practicality of transform invariants and look at possible basis functions
for 2D autocovariances. Sections [18] and [19] look at interpolating one-dimensional ran-
dom fields. After the wrap-up, sections [21]-[24] collect various mathematical derivations
that the main narrative touches upon.

2 Is transforming a pixel grid always a valid operation?

Well, not really. The whole concept of rotating and scaling a pixel grid presupposes
that the random quantity that we are observing has discoverable values “in between” the
original pixel grid locations. In some cases, the random quantity of interest is defined at
discrete locations and cannot be interpolated. For example, Figure 1 shows smooth muscle
tissue from a monkey’s renal calyx.

Suppose we are interested in the pulling strength of each cell under uniform electrical
stimulation. Clearly, there is a random, 2D correlated component to this quantity. Just as
clearly, we cannot measure it “in between” existing cells; it exists only for the actual cells.
In brief, we can only ask the question about how 2D autoregressive parameters transform
under rotation when the resolution at which we are observing the autoregressive field is
significantly greater than the field’s intrinsic resolution.

By “intrinsic resolution”, I mean the smallest possible resolution at which the quantity
of interest can be defined. For example, one can consider soil fertility as a correlated
random field, and measure it on the scale of kilometers or meters. But we cannot measure
soil fertility on a sub-millimeter scale, because the smallest plants that could possibly
indicate fertility have millimeter sizes.
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Fortunately, when it comes to visual textures, it is nearly always the case that we are
imaging a surface at a resolution several orders of magnitude more coarse than its intrinsic
resolution. So, in my analysis, I will assume that this is the case.

3 Narrowing the quest: simplifying assumptions

The purpose of the current thesis is to determine how the autoregressive parameters of
one-dimensional and two-dimensional random fields transform under coordinate system
rotation. This is of interest to me because of an apparent contradiction. In the definition
of a discrete Markov random field, the grid on which we make our observations plays a
central role. When I observe visual textures, however, I feel intuitively that the position,
scale, and orientation of the pixel grid is irrelevant. That leads naturally to the questions
of how the autoregressive parameters transform under rotation, and of what invariants –
if any! – exist.

So here are the main questions that I want to answer. First, how do autoregressive
parameters change when we change scale or rotate the underlying coordinate system?
Second, how can we interpolate between the known values of an autoregressive random
field without altering its autocovariance structure?

Needless to say, we have to make some simplifying assumptions in order to render the
problem tractable. So here they are, in no particular order:

• The random field of interest may be 1D temporal, 1D spatial, 2D spatial, but not
spatiotemporal.

• The random field is stationary and ergodic.

• The field has real, continuous variates and real, continuous autoregressive parame-
ters.

• The field observations are uniformly spaced and noiseless.

• The random fields of interest may be described by a linear ARMA (autoregressive
moving average) model, conditional or simultaneous but not seasonal (i.e. without
a strictly periodic component).

• The model innovations are independent and identically distributed (IID), with a
constant variance.

• As mentioned in the previous section, the random field can be observed at any scale.

The last two assumptions, in particular, are very restrictive. We exclude heteroskedas-
tic fields, discrete fields, and those random fields that may appear autoregressive at one
scale, but not another.

4 Interesting previous work

There is always room in the world for innovation. However, attacking a difficult problem is
more bearable when other researchers consider the problem important. Several authors use
autoregressive models to analyze and synthesize video sequences, in particular Campbell
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[3] and Wolfe [4]. J.P. Lewis [5] described the general problem of stochastic subdivision
(i.e. interpolation into a 2D random field). This technique, sometimes called fractal
interpolation, has also been used to generate metallic fracture surfaces [6] and electrical
demand sequences [7].

As for the general theory of 2D autoregressive fields, that started with Whittle [8].
Whittle thought that Bessel functions were “natural” basis functions for 2D autocovari-
ances. They suffice for isotropic or nearly-isotropic fields, but for highly directional fields,
I find that skew-separable basis functions are a better choice (see section [16]). Of course,
one can always use both!

Visual texture analysis has been a topic of interest for more than four decades, and I
will not summarize that history here. A very good summary is that of Tuceryan and Jain
[9], which divides texture analysis methods into four broad groups: statistical, structural,
model-based, and filter-based. As I mentioned earlier, visual textures have a predictable
part and a stochastic part. Structural methods focus on the predictable part, while statis-
tical methods focus on the stochastic part. Random mosaic, morphological, and syntactic
methods are structural: they regard texture as a collection of placement rules and ele-
ments (“textons”) to be placed. Models involving Markov random fields, Gibbs random
fields, and autoregressive fields all view texture as statistical in nature.

Stochastic models make heavy use of second-order statistics, especially those embodied
in the spectral density function. This is a matter of practicality, since texture samples are
typically far too small to allow calculation of higher-order image statistics. One observation
we can make right away is that second-order statistics alone do not let us distinguish among
a deterministic signal with added noise, a constant texton with “jittered” placement rules,
and a deterministic signal sampled over a small region; in each case, the spectral density
consists of narrow peaks. Figure 2 illustrates this idea.

Several researchers have attempted a direct Wold decomposition of visual texture,
in particular Francos [10] and Cadzow [11]. Now, if texture classification were our only
goal, then we could ignore the Wold decomposition and focus on structural or stochastic
elements exclusively. However, if texture synthesis is our goal – and in my case, it is – then
we have to recognize that autoregressive models are poor at synthesizing nearly periodic
visual textures. Others have noted this, including Picard [12] and Petrou [13]. In section
[13] I give a mathematical interpretation of this fact.

In two dimensions, the Wold decomposition has three parts (as opposed to two parts in
one dimension). A 2D stationary random field divides into a predictable part, a stochastic
part with a moving average equivalent, and an evanescent part. An evanescent field
is deterministic in one direction and random in the orthogonal direction [10]. Figure
3 illustrates such a field, along with its estimated autocovariance and spectral density.
Here, I synthesize the signal as a product of a sinusoid in one direction and an AR(1)
series in the orthogonal direction. In my opinion, these functions are not important for
2D visual textures. Even if they were, the diagram clearly shows that the spatial frequency
peaks spread out even after extensive averaging, making these field components difficult
to identify.

The stochastic part of the Wold decomposition admits structural, statistical, and para-
metric analysis methods. A structural analysis seeks to identify textons and their place-
ment rules, at least one of which must have some randomness. Statistical methods seek
to characterize a texture by the statistical distribution of its pixels. Parametric meth-
ods posit a model that can reproduce the statistical pixel distribution. In this thesis, I
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Figure 2: Contour map of the natural logarithm of the estimated spectral density of a
nearly periodic signal. Each chart is centered on the origin. Left: a compound 2D sinusoid
with 2% added Gaussian noise. Middle: the same 2D sinusoid in which the amplitude has
a 2% Gaussian dither. Right: the same 2D sinusoid with a 2% frequency Gaussian dither.
In all three cases, the generated field is 1056 x 1056, the contour intervals are one unit
apart, and the I estimate the spectral density via the Welch method with a Hamming
window of size 63 x 63 (see section [11]).

Figure 3: A purely evanescent 2D signal, harmonic in the X direction and AR(1) (with
r=0.7) in the Y direction. Left: the estimated autocovariance. Middle: a representative
sample. Right: Natural logarithm of the estimated spectral density. I averaged these
estimates over 16 instances of a 640 x 640 synthesized random field. I estimate the spectral
density via the Welch method with a Hamming window of size 63 x 63 (see section [11]).
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adopt a parametric model, and view the stochastic part of the Wold decomposition as an
autoregressive series.

Statistical methods of texture analysis commonly reduce to computing the spectral
energy over certain regions of the spatial frequency domain, and using these measures as
a texture “signature”. Gabor filters, wavelet filters, polarograms, and kriging techniques
all fall into this category. I refer to these as “slice and dice” techniques. According
to Picard and Elfadel [14], if we assume that third-order statistics are negligible, then
Markov random fields, Gibbs random fields, and co-occurrence matrices all reduce to
a simultaneous autoregressive model. In other words, they are just different ways of
describing a spectral density.

As for fractal generalizations of autoregressive models, they are based on the obser-
vation that some naturally occurring textures exhibit self-similarity over a certain range
of resolutions. Good introductory treatments are in Hipel [15] (for 1D) and Ilow [16] (for
2D). I have found, however, that fractal synthesis gives poor results because the fractional
integration stage ruins all the sharp edges that the ARMA model creates. Besides, visual
textures are not always self-similar, yet are needed in practical situations such as computer
graphics.

The quest for statistical quantities of visual texture that are invariant under rotation
is of interest to me because such a quest necessarily involves a notion of how random fields
transform under rotation. A good survey of rotation-invariant methods is that of Zhang
and Tan [17]. The circular autoregressive model of Kashyap and Khotanzad [18] and
the generalized version of Eom [19] are easily shown to be special cases of simultaneous
autoregressive fields. Similarly, both the rotation-invariant and multi-resolution simulta-
neous autoregressive models of Mao and Jain [20] are special cases of simultaneous AR
models. I treat the mathematical basis of multi-resolution models in section [13].

An interesting procedure involving rotational-invariant texture features is described
in Lahajnar [21] and Deng and Clausi [22]. The basic idea is to slice and dice the 2D
polarogram, and then do a further Fourier transform along the orientation axis. The
magnitude of the resulting spectrum is independent of initial texture orientation.

This section’s topic is interesting previous work, so I must mention the contributions
of Cadzow (for synthesis) and of Cohen, Fan, and Patel (for analysis), since their work
aligns most closely with my own view of visual texture. Cadzow [11] views the true visual
texture as a filtered excitation with measurement noise, subject to histogram modification:

Iactual = φ[H ∗ (Ed + Er) + N ] (4.1)

where Ed and Er are the deterministic and random excitation fields, H is a finite MA filter,
N is additive measurement noise, and φ is a histogram shaping operator which models the
effect of illumination. In time series analysis, that is known as a transfer function noise
model [23].

Cohen, Fan, and Patel [24] attacked this problem in a direct fashion by incorporating
both rotation and scaling into their texture classification algorithm, treating visual texture
as a Gaussian Markov random field. I comment further upon their work in section [15].
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5 Hello autoregressive world: the conditional discrete AR(1)
process

The best way to start our journey is to regard an autoregression as a linear transform
between vector spaces. Consider, for example, the simplest 1D discrete conditional au-
toregressive model, AR(1):

[y(t)− µ] = r [y(t− 1)− µ] + e(t) t > 0, y(0), e(0) given (5.1)

Here, t is an integral index, µ is the mean of the observed random series y(t), r is the sole
autoregressive parameter, and e(t) is a stationary, independent and identically distributed
(IID) random process with zero mean and constant variance σ2, commonly known as the
innovation sequence. Note that y(t) is an observed series, whereas the innovation sequence
is not observed but postulated as part of the model. Let x(t) = y(t) − µ be the mean-
reduced series, which we can split into homogeneous and particular parts xh(t) and xp(t).
The homogeneous part of x(t) satisfies xh(t) − rxh(t − 1) = 0, and is xh(t) = C0r

t. Let
Xp(z) and E(z) be the z-transforms of xp(t) and e(t), respectively. Then the particular
part of x(t) is given by

Xp(z) =
1

1− rz−1
E(z)

= (1 + rz−1 + r2z−2 + . . . )E(z) (5.2)
=⇒ xp(t) = e(t) + re(t− 1) + r2e(t− 2) + · · ·+ rte(0) (5.3)

Imposing the boundary condition at x = 0 gives the complete solution

x(t) = [x(0)− e(0)] rt +
t∑

j=0

rje(t− j), t ≥ 0 (5.4)

In order to keep the solution bounded, we must require that |r| < 1. Now suppose that
t À 0; then we can neglect the homogeneous part and get

x(t) =
∞∑

j=0

rje(t− j) (5.5)

=⇒ var [x(t)] = (1 + r2 + r4 + . . . )var [e(t)]

=
1

1− r2
σ2 (5.6)

So the marginal series variance is larger than the innovation variance by a factor 1/(1−r2).
If we select a group of n successive variates from the series, then the first will have an
apparent marginal variance of σ2/(1 − r2). Collecting a mean-reduced sample {x(t +
1), . . . , x(t + n)} and corresponding innovations {e(t + 1), . . . , e(t + n)} into vectors ~x and
~e respectively, where t À 0, their relation is




√
1− r2 0 · · · 0 0
−r 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −r 1







x1

x2
...

xn


 =




e1

e2
...

en


 i.e. L~x = ~e (5.7)
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So the observation vector ~x and innovation vector ~e are linearly related; in particular, the
matrix L defined above is a shear followed by a dilatation.

Now, the innovations are stationary and IID, so the probability density p(~e) should be
invariant with respect to all permutations of {e1, . . . en}. Thus it must be a function of

the quantities
n∑

j=1
ej ,

n∑
j=1

ej
2, . . .

n∑
j=1

ej
n. Suppose that it is a function of |~e|2 only. In this

case,
|~e|2 = ~eT~e = ~xT (LT L)~x = ~xT Q~x (5.8)

and thus we can observe directly the precision matrix Q, but not the model matrix L.
Any unitary transform S, applied to L~x, will give equivalent observables:

~e = SL~x =⇒ ~eT~e = ~xT LT ST SL~x = ~xT LT L~x = ~xT Q~x (5.9)

This is an important point, so I will illustrate it with some examples. First, consider a set
of three successive variates extracted from an AR(1) series in which t À 0. Their relation
to the corresponding innovations is:



√

1− r2 0 0
−r 1 0
0 −r 1







x1

x2

x3


 =




e1

e2

e3


 i.e. Lf~x = ~e (5.10)

First, perform a reflection in the plane P1 that contains e2 and bisects e1e3. This takes
{x1, x2, x3} into {x′1, x′2, x′3}. Next, perform a further reflection in the plane P2 that
contains the origin, x′2, and 1

2(x′1 + x′3). This takes {x′1, x′2, x′3} into {x̄1, x̄2, x̄3}. Figure 4
illustrates these reflections.

The resulting model can be deduced from the diagram by inspection. It is



1 −r 0
0 1 −r

0 0
√

1− r2







x̄1

x̄2

x̄3


 =




e1

e2

e3


 i.e. Lb~x = ~e (5.11)

In this new coordinate system, time seems to go backwards! So we will call Lf a causal
model, and Lb an anti-causal model. They both lead to the same precision matrix (i.e.
Lf

T Lf = Lb
T Lb), so we can’t prefer one to the other unless we have additional information.

If we know, for example, that {x1, x2, x3} is derived from a time series, then we could reject
the anti-causal model on physical grounds.

In that last example, the transform that took the causal model into the anti-causal
model was the product of two reflections, which is a rotation. Can we rotate half-way and
get time to “stand still”? To answer that, consider another three-point conditional AR(1)
sample, but this time we’ll make a circular approximation:




1 0 −r
−r 1 0
0 −r 1







x1

x2

x3


 = Lf~x = ~e = Lb~x =




1 −r 0
0 1 −r
−r 0 1







x̄1

x̄2

x̄3


 (5.12)

The rotation that takes Lf into Lb is clearly around the axis with unit vector (1/
√

3)(1, 1, 1).
The matrix representing a rotation of an angle θ about an axis with unit vector (ax, ay, az)
is [25]:

R(â, θ) =




c + (1− c)ax
2 (1− c)axay − saz (1− c)axaz + say

(1− c)axay + saz c + (1− c)ay
2 (1− c)ayaz − sax

(1− c)axaz − say (1− c)ayaz + sax c + (1− c)az
2


 (5.13)

8



x2

( sin α = r )

reflection
in P1

reflection
in P2

net result is
a rotation

Causal and anti-causal models for a 3-point AR(1) series

α

α

α

x1

x3

e1

e2

e3

P1

1 / √ 1 - r2

r / √ 1 - r2

e1

e3

e2

x1'

x2'

x3'
α

α

α

P2

e1

e3

e2

x1

x2

x3
x3
_

x2
_

x1
_

Figure 4: Unitary transformations alter the physical meaning of an autoregressive model,
without affecting its observables.

x1

x2

x3

e1

e2

e3

s1

s2

s3

x1
_

x3
_

x2
_

θ
1
√3

a =      (1,1,1)

Simultaneous model for a 3-point circulant AR(1) series

Figure 5: A specific rotation converts a causal autoregressive model into an anticausal
one. Rotating half-way about the same axis leads to a simultaneous model.
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where c = cos θ and s = sin θ. Solving R[(1/
√

3)(1, 1, 1), θ]Lf = Lb yields

cos θ =
2 + 2r − r2

2(1 + r + r2
, sin θ =

√
3r(2 + r)

2(1 + r + r2
(5.14)

which in turn gives us

cos
θ

2
=

2 + r

2
√

1 + r + r2
, sin

θ

2
=

√
3r

2
√

1 + r + r2
(5.15)

which in turn gives us

R(
1√
3
(1, 1, 1),

θ

2
)Lf = Ls =

√
1 + r + r2

3




2 −1 −1
−1 2 −1
−1 −1 2


 +

1− r

3




1 1 1
1 1 1
1 1 1


 (5.16)

and it may be verified that

LT
f Lf = Ls

2 = LT
b Lb =




1 + r2 −r −r
−r 1 + r2 −r
−r −r 1 + r2


 (5.17)

This illustrates that the simultaneous model Ls is “midway” along the rotation that takes
Lf into Lb. Figure 5 illustrates this situation. It is important to note that in the absence
of any information other than the observed series {y1, y2, . . . yn}, we have no reason to
prefer a causal model over a simultaneous one, or vice versa.

6 Simultaneous autoregressive models in 1D

A simultaneous (i.e. bilateral) 1D process is non-causal. Let’s start by supposing that

x(t) = ax(t− 1) + bx(t + 1) + e(t), e(t) ∼ I.I.D. (6.1)

where x(t) is a mean-reduced random series, and e(t) is a stationary, IID random series
of constant variance. Neglecting the homogeneous part of the solution, we might expect
a particular part of the form

g(t) =
t−1∑

k=−∞
at−ke(k) +

+∞∑

k=t+1

bk−te(k) + e(t) (6.2)

In fact, the equation that g(t) satisfies is not equation (6.1), but

(1 + ab)g(t) = ag(t− 1) + bg(t + 1) + (1− ab)e(t), e(t) ∼ IID (6.3)

But there is a problem here. Since the innovation sequence is IID, we can reflect it about
t without altering g(t)’s statistics. So replacing e(k) with e(2t− k) in equation (6.2) gives

ḡ(t) =
t−1∑

k=−∞
at−ke(2t− k) +

+∞∑

k=t+1

bk−te(2t− k) + e(t)

=
t−1∑

k=−∞
bt−ke(k) +

+∞∑

k=t+1

ak−te(k) + e(t) (6.4)
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which is the same as g(t), but with the autoregressive parameters a and b interchanged.
But g(t) and ḡ(t) have identical statistics, so we cannot distinguish a from b. For example,
the autocovariance of both g(t) and ḡ(t) is

γ(s) =

[
a|s|

1− a2
+

b|s|

1− b2
+

a|s|b− ab|s|

a− b

]
var[e(t)] (6.5)

which is invariant under the interchange a ↔ b. Hence a stationary, discrete, simultaneous
AR(1) process must have the form

(1 + r2)x(t) = rx(t− 1) + rx(t + 1) + (1− r2)e(t), e(t) ∼ IID (6.6)

with particular solution

x(t) = e(t) +
∞∑

k=1

rk[e(t− k) + e(t + k)] (6.7)

To ensure a bounded solution, we must require that |r| < 1. The corresponding autoco-
variance and marginal series variance are

γ(s) = r|s|
(

1 + r2

1− r2
+ |s|

)
var[e(t)] (6.8)

var[x(t)] = γ(0) =
1 + r2

1− r2
var[e(t)] (6.9)

Now, the preceding section showed that under the very general assumption that the prob-
ability distribution of the innovation vector depends only upon its magnitude, conditional
and simultaneous models are interconvertible. We can go even further and say that for
(nx1)-dimensional observation and innovation vectors ~x and ~e, the models L that satisfy
~eT~e = ~xT LT L~x = ~xT Q~x form a set that includes

√
Q and all unitary transformations ap-

plied to
√

Q (i.e. all S
√

Q such that ST S = In). But we must remember that although all
those S

√
Q’s lead to the same precision matrix Q (i.e. to the same series autocovariance),

they represent physically different realities.
The easier conversion is from simultaneous to conditional form. The transfer function

corresponding to equation (6.6) is

X(ω)
E(ω)

=
1− r2

1 + r2 − 2r cosω
=

1− r2

(1− re−jω)(1− rejω)
(6.10)

where X(ω) and E(ω) are the discrete Fourier transforms of the observation and innovation
vectors respectively. The corresponding spectral density is

∣∣∣∣
X(ω)
E(ω)

∣∣∣∣
2

=
[

1− r2

(1− re−jω)2

] [
1− r2

(1− rejω)2

]
(6.11)

and it is therefore clear that the equivalent conditional model is
[
X(ω)
E(ω)

]

c

=
1− r2

(1− re−jω)2
(6.12)
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which would have this form in the time domain:

x(t) = 2rx(t− 1)− r2x(t− 2) + (1− r2)e(t), e(t) ∼ IID (6.13)

where x(t) is the mean-reduced series, and e(t) is the innovation sequence. That’s a
conditional AR(2) model with a double root.

The harder conversion is from conditional to simultaneous form. If our conditional
model is

x(t) = rx(t− 1) + e(t), e(t) ∼ IID (6.14)

then the transfer function and spectral density are

X(ω)
E(ω)

=
1

1− re−jω

[
X(ω)
E(ω)

]2

=
1

1 + r2 − 2r cosω
(6.15)

and thus the equivalent simultaneous model has
[
X(ω)
E(ω)

]

s

=
1√

1 + r2 − 2r cosω
=

1√
1 + r2

1√
1− 2β cosω

(6.16)

where β = r/(1 + r2), 0 < β ≤ 1/2. To fourth order in β, that would give

√
1 + r2

[
X(ω)
E(ω)

]

s

=
1

c0 − c1 cosω − c2 cos 2ω − 1
8β3 cos 3ω − 5

64β4 cos 4ω
(6.17)

where the first three coefficients are

c0 = 1− 1
4
β2 − 15

64
β4, c1 = β +

3
8
β3, c2 =

1
4
β2 +

5
16

β4 (6.18)

The expression in equation (6.16) actually converges pretty quickly; the leading term
of order n is −[(2n− 3)!!/(2n−1n!)]βn cosnω, and β is always less than one-half. Thus, a
conditional AR(1) process has a simultaneous counterpart that is of infinite order. We may
approximate its autoregressive roots as follows. Suppose that the equivalent simultaneous
model has p autoregressive roots of the form {φj = rjr, 1 ≤ j ≤ p}. Then we would like
to have, as closely as possible, a match-up between the spectral densities:

1
1 + r2 − 2r cosω

=
1∏p

j=1(1 + φj
2 − 2φj cosω)2

(6.19)

Taking natural logarithms of both sides yields

∞∑

n=1

2
n

rn cosnω =
∞∑

n=1

4
n




p∑

j=1

φj
n


 cosnω (6.20)

and substituting in φj = rjr for the first p terms gives

p∑

j=1

rj
n =

1
2
, 1 ≤ n ≤ p. (6.21)
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Conversion from conditional to simultaneous AR form

Figure 6: Approximations to the roots of a simulataneous autoregressive process that has
the same spectral density as a conditional AR(1) process. The estimated solution is that
calculated through equation (6.22).

For small values of p, we can solve that system of equations directly. For large values of
p, the solution takes the approximate form

log rk = −a1(1/p)− (1/p) sin(θ/2)
a2 sin(θ/2) + a3(1/p)

+ jθ,

θ = 2π(k − 1)/p, 1 ≤ k ≤ p, a1 = 0.83, a2 = 0.15, a3 = 0.455 (6.22)

to first order in 1/p. Figure 6 shows the spectrum of equivalent autoregressive roots
for several values of p. Using the foregoing results, and the methods of partial fraction
expansion outlined in section [21], we can interconvert 1D conditional and simultaneous
autoregressions at will.

The two styles of 1D autoregressive series each have their advantages and disadvan-
tages. Under a conditional model of order p, knowledge of p successive mean-reduced
variates {x(t) . . . x(t + p − 1)} splits the remaining series into two independent parts.
Using the causal model

x(t) =
p∑

j=1

ajx(t− j) + e(t), e(t) ∼ IID (6.23)

we can write the probability distribution for {x(t)|t > p} as

p[x(t + p + 1), x(t + p + 2), . . .] =
∞∏

j=t+p

p(x(j)|{x(j − 1) . . . x(j − p)}) (6.24)

and using the equivalent anticausal model

x(t) =
p∑

j=1

ajx(t + j) + e(t), e(t) ∼ IID (6.25)

13



we also have

p[. . . x(t− 2), x(t− 1)] =
t−1∏

j=−∞
p(x(j)|{x(j + 1) . . . x(j + p)}) (6.26)

Those two distributions are independent, conditioned on knowledge of {x(t) . . . x(t+p−1).
That’s where the “conditional” name comes from! Under a simultaneous model, however,
no such division is possible. For example, if we expand a simultaneous AR(p) model into
the form

X(z)
E(z)

=
p∑

k=1

dk

1 + rk
2 − rk(z + z−1)

(6.27)

via a partial fraction expansion, then the moving average equivalent is

x(t) =
p∑

k=1

dk

1− rk
2


e(t) +

∞∑

j=1

rk
j [e(t + j) + e(t− j)]


 (6.28)

which involves all the innovations. That’s where the “simultaneous” name comes from; if
the series is a temporal one, then the probability distribution of any subset of the variates
must necessarily involve all of them, past and future.

From the point of view of practical computations, the most important difference be-
tween conditional and simultaneous models has to do with the “bandedness” of the asso-
ciated model matrices. Suppose that we estimate the covariance of an n-point 1D series,
and find that the precision matrix Q is banded with width 2p. A causal model will have
a lower diagonal matrix, banded with width p. A simultaneous model, in the best case,
will be banded with width p; in the worst case, it will be dense.

But the worst case is not that bad! Recall from equation (6.16) above that if we
convert a conditional AR(p) model into simultaneous form, the autoregressive coefficients
decrease as βk, where k is the distance from the main diagonal and β < 1/2. Thus we
could approximate the simultaneous model very well with a banded matrix of width p + 7
or p + 8. In the case of a very large series, the fact that the causal model is banded with
a small, finite width may override all other considerations for model selection.

On the other hand, we may have a system which is clearly simultaneous in nature. For
example, suppose we take a transect through an agricultural field and use plant size as an
indication of soil fertility, as I have illustrated in Figure 7. In this figure, the concentration
of organic nutrients below each plant plays the role of an innovation. As long as the land is
flat, each plant’s roots will tend to spread equally to either side, resulting in a simultaneous
model.

7 Restrictions on the autoregressive parameters

First, we’ll examine the 1D models in some detail, and then touch upon 2D models. A
conditional AR(p) process has a transfer function of the form

X(z)
E(z)

=
1

1− a1z−1 − a2z−2 . . .− az−p
p

=
1

(1− r1z−1)(1− r2z−1) . . . (1− rpz−1)
(7.1)
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Figure 7: A spatial transect involving soil fertility will most likely be simultaneous in
nature, if it is autoregressive at all.

where X(z) is the z-transform of the mean-reduced series, E(z) is the z-transform of the
innovation sequence, and {r1, . . . rp} are the roots of zp − a1z

p−1 . . . − ap = 0. In order
to ensure a real series, the autoregressive roots must be real, or occur in conjugate pairs.
The spectral density corresponding to equation (7.1) is

∣∣∣∣
X(z)
E(z)

∣∣∣∣
2

=
1[

1 + r2
1 − r1(z + z−1)

]
. . .

[
1 + r2

p − rp(z + z−1)
]

=
1

(1− a1z−1 − . . .− apz−p)(1− a1z − . . .− apzp)

=
1

1 + a1
2 + . . . + ap

2

1
1− β1(z + z−1)− . . .− βp(zp + z−p)

(7.2)

where βj is given by

βj =
aj −

∑p−j
k=1 akak+j

1 +
∑p

k=1 ak
2

(7.3)

The thing to note here is that the spectral density of the conditional AR(p) process is
proportional to the transfer function of a simultaneous AR(p) process that has the same
roots. Hence, from the known allowable space of the {r1 . . . rp}, we can calculate the
allowable spaces of the {a1 . . . ap} and {β1 . . . βp}. For example, for a conditional AR(2)
process, the root space is composed of two parts:

Both roots real : −1 < r1 < 1, −1 < r2 < r1

Complex conjugates : r1 = rejθ, r2 = re−jθ

0 < θ < π, 0 ≤ r < 1 (7.4)
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r1,r2 complex
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a2 = -r1r2

β1 = a1 ( 1 - a2 ) / ( 1 + a1
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2 )
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2 )

AR(2) and simultaneous AR(2) parameter spaces

Figure 8: The parameter spaces for conditional AR(2) and simultaneous AR(2) processes.

Transforming those spaces through

a1 = r1 + r2, a2 = −r1r2, β1 =
a1(1− a2)

1 + a1
2 + a2

2
, β2 =

a2

1 + a1
2 + a2

2
(7.5)

gives us the allowable parameter spaces for {a1, a2} and {β1, β2}. Figure 8 illustrates these
parameter spaces.

For a conditional AR(3) process, the root space is again composed of two parts:

3 real roots: −1 < r1 < 1, −1 < r2 ≤ r1, −1 < r3 ≤ r2

1 real, 2 complex roots: −1 < r1 < 1, r2 = rejθ, r3 = re−jθ

0 < θ < π, 0 ≤ r < 1

Now transform that root space to {a1, a2, a3} space through

a1 = r1 + r2 + r3

a2 = −(r1r2 + r2r3 + r1r3) (7.6)
a3 = r1r2r3
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Figure 10: The parameter space for a conditional AR(3) process.
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Figure 11: The parameter space for a simultaneous AR(3) process.

Now transform that to {β1, β2, β3} space through

(1 + a1
2 + a2

2 + a3
2)β1 = a1 − a1a2 − a2a3

(1 + a1
2 + a2

2 + a3
2)β2 = a2 − a1a3 (7.7)

(1 + a1
2 + a2

2 + a3
2)β3 = a3

Figures 10 and 11 illustrate the parameter spaces for conditional and simultaneous
AR(3) processes in one dimension. Figure 12 illustrates that model truncation is not
necessarily possible. By model truncation, I mean dropping the last parameter of an
AR(p) model in order to get an AR(p-1) model. For example, figure 12 illustrates a case
in which the combination (a1, a2, a3) = (0.6, 0.6,−0.4) is allowed, but dropping a3 results
in the disallowed combination (0.6, 0.6, 0.0).

Autoregressive parameter restrictions in two dimensions are considerably more com-
plicated than in the one-dimensional case. A transfer function such as

X(ωx, ωy)
E(ωx, ωy)

= [1− 2β1,0 cosωx − 2β0,1 cosωy (7.8)

−2β1,1 cos(ωx + ωy)− 2β−1,1 cos(−ωx + ωy)− . . .]−1

(in the simultaneous case) or indeed a spectral density of that form (in the conditional
case) is not generally factorable [26]. The general requirement is easy to state: if the
transfer function or spectral density takes the form

1
D(zx, zy)

=


1−

∑

~k

β(~k)zx
kxzy

ky



−1

(7.9)
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Figure 12: Truncating the last parameter from a conditional AR(p) model may result in
an inadmissible AR(p-1) model.

where the summation is over all those displacements ~k such that ~k 6= 0, β(~k) 6= 0, and
β(~k) = β(−~k), then the locus of the zeros of D(zx, zy) must lie outside the unit bicircle
[27]. However, working that out in detail can be tricky. For example, suppose we have

D(ωx, ωy) = 1− 2β10 cosωx − 2β01 cosωy

−2β11 cos(ωx + ωy)− 2β11 cos(−ωx + ωy)
= 1− 2β10 cosωx − 2β01 cosωy − 4β11 cosωx cosωy (7.10)

Then D(ωx, ωy) = 0 is a conic in the (cosωx, cosωy) plane, and will touch the square
{| cosωx| ≤ 1, | cosωy| ≤ 1} at one of its four corners, so the allowed parameter space in
this case is

2β10 + 2β01 + 4β11 < 1
−2β10 + 2β01 − 4β11 < 1

2β10 − 2β01 − 4β11 < 1 (7.11)
−2β10 − 2β01 + 4β11 < 1

which I have sketched in figure 13. The whole topic is explored further in Lakshmanan
and Derin [28].

8 Limitations of autoregressive models

For a stationary conditional autoregressive field, the inverse spectral density is a cosine
series. Let’s take the example of a one-dimensional AR(p) series, for which the spectral
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Figure 13: The parameter space for a restricted class of AR(1,1) two-dimensional autore-
gressive processes in which β(−1, 1) = β(1, 1) = β11.

density is
∣∣∣∣
X(z)
E(z)

∣∣∣∣
2

=
1

(1− a1z−1 − . . .− apz−p)(1− a1z − . . .− apzp)

=
1

1 + a1
2 + . . . + ap

2

1
1− β1(z + z−1)− . . .− βp(zp + z−p)

=⇒
∣∣∣∣
X(ω)
E(ω)

∣∣∣∣
2

=
1

1 + a1
2 + . . . + ap

2

1
1− 2β1 cosω − . . .− 2βp cos pω

(8.1)

and the general expression for βj is

βj =
aj −

∑p−j
k=1 akak+j

1 +
∑p

k=1 ak
2

(8.2)

So the inverse of the spectral density is
[∣∣∣∣

X(ω)
E(ω)

∣∣∣∣
2
]−1

= (1 + a1
2 + . . . + ap

2)(1− 2β1 cosω − . . .− 2βp cos pω) (8.3)

which is definitely a cosine series. Similarly, for a stationary simultaneous 1D autoregres-
sive field, the inverse square root of the spectral density is a cosine series:

X(z)
E(z)

=
1

1− β1(z + z−1)− . . .− βp(zp + z−p)

=⇒
[∣∣∣∣

X(ω)
E(ω)

∣∣∣∣
2
]− 1

2

= 1− 2β1 cosω − . . .− 2βp cos pω (8.4)

Thus, autoregressive models are well suited to random fields for which the inverse spectral
density, or inverse square root of the spectral density, is well approximated by a cosine
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Figure 14: Spectral density and inverse spectral for a nearly periodic two-dimensional
autoregressive random field.

series with a small number of terms. When do we not get this? Clearly, when the series is
truly periodic, or very nearly periodic. In this case, the spectral density has sharp peaks,
leading to equally sharp “notches” in the inverse spectral density. Figure 14 illustrates
that situation for a nearly periodic two-dimensional random field.

The problem is this: we not only have to reproduce those notches, we have to ensure
they do not dip below the zero plane, since spectral density is always positive. So we
will need a large number of terms in our cosine series. But that defeats the purpose of
modeling: we would like to end up with a small batch of autoregressive parameters, not
an extensive one.

I will illustrate this with two random series, both of which are nearly periodic. The
first is the well-known Wolfer sunspot series. This series has been discussed at length
elsewhere, for example in Hipel [29], so I will not dwell on it. The sunspot series shows
approximate cyclic behavior at two periodicities of roughly 11 years and 100 years. Figure
15 shows the series, its estimated spectral density, and the inverse spectral density. I
estimate the spectral density by the Welch method, which I describe further in section
[11].

Capturing those first two dips in the inverse spectral density is essential, and the
corresponding discrete frequency change is some 2π/10, meaning we will need at least an
AR(9) or AR(10) model to capture the nearly-periodic character of the sunspot series.
This conclusion remains valid even if we subject the series to a Box-Cox transformation.

My next example is a visual texture, and many visual textures are in fact nearly
periodic. Figures 16 and 17 below show the estimated autocovariance and spectral density
of the Brodatz raffia texture D84 [30]. I estimated the autocovariance by a discrete FFT
method, which I describe further in section [15].

The thing to note here is that for a human observer, the approximate periodicity of the
raffia texture is its most salient feature. For the autocovariance, however, and especially for
the spectral density, that near-periodicity is a minor feature. The corresponding peaks in
the spectral density are very narrow and tight around the origin, and if our autoregressive
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Figure 15: The Wolfer sunspot series illustrates the difficulties of modelling a nearly
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Figure 17: Estimated spectral density of the Brodatz raffia visual texture at zero degrees
rotation. The chart on the left uses the Welch method with a 16x16 Hamming window,
while the one on the right uses a 128x128 Hamming window. In each case the vertical
scale is logarithmic. The spectral density is scaled so that the average logarithm is zero.

model is of a low enough order, we will miss them entirely.

9 Approximations involved in maximum likelihood estimates

Before we can talk about maximum likelihood estimates for the various parameters in-
volved in a stationary autoregression, we need to choose a probability distribution for the
innovations. Now, I said right at the beginning that I will imagine my random fields to
be quasi-continuous, in the sense that I can sample them at some resolution of interest,
and also at a much smaller intrinsic resolution. For the sake of argument, suppose that
we have a stationary, temporal, conditional, mean-reduced autoregressive field x(t) which
we examine at a resolution that is a multiple M of the intrinsic resolution. So

x(t) =
p∑

k=1

ajx(t− k) + e1(t), e1(t) ∼ IID

X(z)
E(z)

=
1

1−∑p
k=1 akz−k

(9.1)

Defining D(z) and {r1 . . . rp} through

z−pD(z) = 1−
p∑

k=1

akz
−k =

p∏

k=1

(1− rkz
−1) (9.2)
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the moving average equivalent is (see section [21])

x(t1) =
∞∑

j=0

p∑

k=1

rk
p−1

D′(rk)
rk

je1(t1 − j)

=
t1∑

j=−∞

[
p∑

k=1

rk
p−1

D′(rk)
rk

t1−j

]
e1(j)

=
t1∑

j=−∞
G1(j − t1)e1(j) (9.3)

When we change to the smaller intrinsic resolution, the transfer function is still a finite
partial fraction (this is the subject of section [12]), so we get a similar result at that
resolution:

x(t2) =
t2∑

j=−∞
G2(j − t2)e2(j) (9.4)

By assumption our random field is stationary, so these two representations must hold at all
field points t, and that can only happen if e1(t1) is a linear combination of the neighboring
e2(t2)’s when t1 and t2 denote the same field point. Figure 18 illustrates this situation.

Specifically, we need

G1(0)e1(t1) =
0∑

j=−M+1

G2(j)e2(t2 + j)

G1(−1)e1(t1 − 1) =
−M∑

j=−2M+1

G2(j)e2(t2 + j) etc (9.5)

This shows that e1(t1) is a linear combination of {e2(t2−M +1) . . . e2(t2)} where t1 and t2
represent the same physical time. So regardless of the actual probability distribution of the
e2(t2)’s, the central limit theorem assures us that the e1(t1)’s will have an approximately
Gaussian distribution.

For the purposes of this section, then, I will assume a Gaussian distribution for the
innovations. We’ll consider the approximations inherent in estimating a conditional AR(1)
series, and generalize from there. For a sample of length n, drawn from a conditional AR(1)
series {. . . y(0), y(1), . . . y(n), y(n + 1), . . .} with mean µ, we had, with xj = yj − µ:

L~x =




√
1− r2 0 · · · 0 0
−r 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −r 1







x1

x2
...

xn


 =




e1

e2
...

en


 = ~e (9.6)

where r is the autoregressive root and now ej ∼ N(0, v), v being the variance of the
innovation sequence. The corresponding probability density is

p(~x) =
1

(2πv)n/2
| detL| exp

[
−~xT (LT L)~x

2v

]

=
1

(2πv)n/2

√
1− r2 exp


− 1

2v


(1− r2)x1

2 +
n∑

j=2

(xj − rxj−1)2





 (9.7)
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Figure 18: If a random field is autoregressive at two commensurate resolutions, then their
innovations must be related.
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and our minimization target will be

T = − 2
n

log p(~x)− log 2π

= log v − 2
n

log
√

1− r2 +
1
nv

U(µ, r) (9.8)

where U(µ, r) is the residual sum of squares:

U(µ, r) = (1− r2)(y1 − µ)2 +
n∑

j=2

[(yj − µ)− r(yj−1 − µ)]2 (9.9)

Minimizing T with respect to v, µ, and r gives us the normal equations:

v =
1
n


(1− r2)x1

2 +
n∑

j=2

(xj − rxj−1)2




0 =
n∑

j=1

(yj − µ) +
r

1− r
[(y1 − µ) + (yn − µ)]

0 = −
n∑

j=2

xjxj−1 + r
n−1∑

j=2

xj
2 + r

v

1− r2

0 = −
n−1∑

j=1

xjxj+1 + r
n−1∑

j=1

xj
2 − rx1

2 + r
v

1− r2
(9.10)

The customary zeroth-order estimates for the mean and innovation variance are

µ0 =
1
n

n∑

j=1

yj

v0 =
1

n− 1

n∑

j=2

(xj − rxj−1)2 (9.11)

and in terms of these quantities our first two normal equations are

nv̂ = (1− r2)x1
2 + (n− 1)v0

0 = n(µ0 − µ̂) +
r

1− r
[(y1 − µ̂) + (yn − µ̂)] (9.12)

These equations demonstrate that both v0 and µ0 differ by terms of order 1/n from their
true values v̂ and µ̂. If, however, |r| is near 1, then the edge effects become important,
especially for the sample mean. As for the autoregressive root r, we note that v/(1− r2)
is an estimate of the marginal series variance x̄2 = E[x2], and the zeroth-order estimate
of r is

r0 =

∑n−1
j=1 xjxj+1∑n−1

j=1 xj
2

(9.13)
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and consequently our third normal equation becomes

r0

n−1∑

j=1

xj
2 ≈ r̂

n−1∑

j=1

xj
2 − r̂(x̄2 − x1

2)

=⇒ (r0 − r̂)(n− 1)x̄2 ≈ r̂(x1
2 − x̄2) (9.14)

Thus the estimate r0 differs from its true value r̂ by a term of order 1/n, much like our
other maximum likelihood estimates.

Now, the precision matrix in the previous example had a Toeplitz structure:

Q = LT L =




1 −r · · · 0 0
−r 1 + r2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 + r2 −r
0 0 · · · −r 1




(9.15)

Suppose we gave it a circular structure instead; that is,

Q =




1 + r2 −r · · · 0 −r
−r 1 + r2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 + r2 −r
−r 0 · · · −r 1 + r2




, L =




1 0 · · · 0 −r
−r 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · −r 1




(9.16)

Here, detL is now 1− rn, and thus

p(~x) =
1− rn

(2πv)n/2
exp− 1

2v


(x1 − rxn)2 +

n∑

j=2

(xj − rxj−1)2


 (9.17)

which results in the following normal equations for maximum likelihood estimates:

µ =
1
n

n∑

j=1

yj (no approximation!)

v =
1
n


(x1 − rxn)2 +

n∑

j=2

(xj − rxj−1)2


 (9.18)

x1xn +
n−1∑

j=1

xjxj+1 = r
n∑

j=1

xj
2 +

nrn−1

1− rn
v

As for that last equation, we will do no worse than before (i.e. than equation (9.10)) if we
maintain

nrn−1

1− rn
≤ r

1− r2
=⇒ r < 1− 1

2(n + 1)
(9.19)

As long as we have that, then approximating the precision matrix as circulant instead of
Toeplitz introduces errors of order 1/n, which is no worse than what we had before.
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So, now we can talk about relative errors. As we have just seen, when estimating
a conditional AR(1) series, the circulant approximation and the zeroth-order parameter
estimates

µ0 =
1
n

n∑

j=1

yj

v0 =
1

n− 1

n−1∑

j=1

(xj+1 − rxj)2 (xj = yj − µ0)

r0 = [
n−1∑

j=1

xjxj+1]/[
n−1∑

j=1

xj
2] (9.20)

introduce biases of approximate magnitude r/n(1 − r). And what about the variance of
those estimates? I treat this subject further in section [11], but for my purposes here I
will note that if v is the innovation variance, then for a conditional AR(1) process

var(µ0 − µ) ≈ 1
(1− r)2

v

n

var(r0 − r) ≈ 1− r2

n
(9.21)

Those results show that for a conditional AR(1) series, the ratio of bias to standard error
for µ0 and r0 is approximately 1/

√
n, and so for sufficiently large series, the approximations

we have made so far introduce negligible bias. To be completely sure of that, we should
require

1
1− |rk| <

1√
n

=⇒ |rk| < 1− 1√
n

(9.22)

for all of the autoregressive roots {r1 . . . rp}.
That leaves us with two cases to consider: two-dimensional autoregressions, and si-

multaneous autoregressions. The effect of the circulant approximation on two-dimensional
conditional autoregressive fields is covered in depth by Rue and Held [31], so I won’t repeat
it all. The basic idea is that for a conditional autoregression of order p x p, and a sample
of size N x N, the total edge effect is of order

edge effect ≈ no. of “edge” points
total no. of points

=
2pN

N2
=

2p

N
(9.23)

while the relative variance of estimates of the mean and autoregressive coefficients is of
order

variance of mean
variance of innovations

≈ 1
N

variance of AR coeff ≈ 1
N

(9.24)

So we’re on pretty safe ground, in the sense that the biases introduced by the circulant
approximation and by neglecting the Jacobean term, which is the |det L| in

p(~x) =
1

(2πv)−n/2
| detL| exp− 1

2v
~xT (LT L)~x (9.25)
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are of similar size to the standard error of the parameters we wish to estimate.
For simultaneous autoregressive fields in 1D or 2D, the Jacobean term is not negligible,

so we need another way of obtaining the maximum likelihood estimates. I cover this in
sections [11] and [22]. The end result is that for conditional autoregressive fields in 1D or
2D, we can approximate the precision matrix as circulant and estimate the model parame-
ters by working directly with the residual sum of squares. For simultaneous autoregressive
fields, we can make the circulant approximation and drop edge terms, but we cannot drop
the Jacobean term.

10 Series generation via the circulant approximation

Suppose that we wish to generate a 1D autoregressive series x(t), of length n, whose model
is of the form L~x = M~e, where ~x is the vector of mean-reduced observations and ~e is the
innovation vector. Let L be circulant with base ~l, and let M be circulant with base ~m.
Then both L and M are diagonalized by the discrete Fourier transform [32]:

[F ]km =
1√
n

exp(−2πj
km

n
), FH = F−1

L = FΛLFH , M = FΛMFH

ΛL =
√

n diag(F~l), ΛM =
√

n diag(F ~m) (10.1)

Here F is the forward discrete Fourier transform, and FH is the inverse transform. Thus,
if we have L~x = M~e, or




l1 l2 · · · ln
ln l1 · · · ln−1
...

...
. . .

...
l2 l3 · · · l1


 ~x =




m1 m2 · · · mn

mn m1 · · · mn−1
...

...
. . .

...
m2 m3 · · · m1


~e (10.2)

where ~l = [l1 . . . ln] and ~m = [m1 . . . mn] then we can represent an ARMA model of either
conditional or simultaneous type. The inverse transform of the reduced observations is

~x = L−1M~e = (FΛLFH)−1(FΛMFH)~e = FΛL
−1ΛMFH~e

=⇒ (FH~x) = ΛL
−1ΛM (FH~e) =

[
diag(F ~m® F~l)

]
(FH~e)

= (F ~m® F~l)¯ (FH~e) (10.3)

where ® and ¯ denote element-by-element division and multiplication, respectively. Hence

~x = FFT
[[

FFT(~m)® FFT(~l)
]
¯ IFFT(~e)

]
(10.4)

Thus, to generate a vector ~x, we need only sample the innovation vector ~e, and then
apply the preceding formula. For a pure autoregressive series, we just set ~m to be the
(1 x n )-dimensional row vector [1, 0, 0, 0...0].

In the case of a two-dimensional random field, the matrices L and M are said to be
block-circulant, and have two-dimensional bases ~l and ~m, which are the same size as the
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field itself. A two-dimensional simultaneous AR(1,1) model, for example, with defining
equation

x(s, t) = β10[x(s− 1, t) + x(s + 1, t)] + β01[x(s, t− 1) + x(s, t + 1)] + e(s, t) (10.5)

and which is defined over an N x N grid, would lead to

~l =




1 −β01 · · · −β01

−β10 0 · · · 0
...

...
. . .

...
−β10 0 · · · 0


 , ~m =




1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 (10.6)

The formula, then, for generating a two-dimensional ARMA series is

~x = FFT2
[[

FFT2(~m)® FFT2(~l)
]
¯ IFFT2(~e)

]
(10.7)

where ~e is a generated sample of the innovation field.

11 Parameter estimation for autoregressive models

Let’s consider the easier case first, namely that of conditional autoregressive models defined
in 1D or 2D. The 1D version has been explored at length elsewhere – see for example
Luhtkepohl [33] – so I will just indicate the highlights. Suppose that our model is

x(t) =
p∑

j=1

ajx(t− j) + e(t), x(t) = y(t)− µ, e(t) ∼ IID (11.1)

and that we have both a ”preamble” {y(−p+1), y(−p+2), . . . y(0)} and a sample {y(1), y(2), . . . y(n)}.
Then we’ll define the following quantities:

P (z) = zp − a1z
p−1 − . . .− ap−1z − ap

= (z − r1)(z − r2) . . . (z − rp)
~y = [y(1) . . . y(n)] [ 1 x n ]
~e = [e(1) . . . e(n)] [ 1 x n ]
~a = [a1 . . . ap] [ 1 x p ]
~1 = [1 . . . 1] [ 1 x n ]

Z(µ) =




y(0)− µ · · · y(n− 1)− µ

· · · . . . · · ·
y(−p + 1)− µ · · · y(n− p)− µ


 [ p x n ]

~x = ~y − µ~1 = ~aZ + ~e (11.2)

Our results of section [9] above allow us to say that if n À p, and all the autoregressive
roots satisfy |rk| < 1− 1/

√
n, then we can ignore edge effects and the Jacobean term, and

derive our parameter estimates from the residual sum of squares

T = ~e~eT = (~x− ~aZ)(~xT − ZT~aT ) (11.3)
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Under those assumptions, the parameter estimates satisfy

µ̂ =
1
n

n∑

j=1

y(j), and
(

1
n

ZZT

)
âT =

1
n

Z
(
~y − µ̂~1

)T
(11.4)

The quantity (1/n)ZZT is an estimate of the covariance of p successive variates of the
mean-reduced series:

Γ =




γ(0) γ(1) · · · γ(p− 1)
γ(−1) γ(0) · · · γ(p− 2)

...
...

. . .
...

γ(−p + 1) γ(−p + 2) · · · γ(0)


 (11.5)

where γ(h) = E[x(t)x(t + h)]. Setting Γ̂ = (1/n)ZZT , our estimate of ~a is now

âT = Γ̂−1

[
1
n

Z(~y − ~µ~1)T

]
(11.6)

As for the corresponding variances, applying a series averaging operator to the model
equation gives 

1−
p∑

j=1

aj


 (µ̄− µ) =

1
n

n∑

j=1

e(j) (11.7)

and taking the variance gives

var(µ̄− µ) =
1

(1−∑
aj)2

[
1
n

var[e(t)]
]

(11.8)

We can be sure that
∑

aj 6= 1 because if that were true, then z = 1 would be a root of
the characteristic polynomial P (z) = zp − a1z

p−1 − . . .− ap−1z − ap, but we have already
required that all those roots be less than 1 − 1/

√
n in magnitude. A similar calculation

yields

cov(âT − aT ) = Γ̂−1

[
1
n

var[e(t)]
]

(11.9)

and it is clear from the results of section [9] and this one that, as long as all the autoregres-
sive roots are less than 1−1/

√
n in magnitude, our parameter estimates are asymptotically

unbiased and consistent. The 2D version is much the same as the 1D version, so I will not
go over it here.

The hard case – the one I will dwell on here – is the case of simultaneous regressions
in 1D or 2D. In section [22] I present an argument that we can form maximum likelihood
estimates of the autoregressive parameters of a simultaneous 1D series by fitting a cosine
series to the inverse square root of its geometrically normalized periodogram. That makes
a whole lot of sense, because for a model such as

x(t) =
p∑

k=1

βk[x(t + j) + x(t− j)] + e(t), x(t) = y(t)− µ, e(t) ∼ IID (11.10)

the corresponding transfer function is

X(ω)
E(ω)

=
1

1− 2
∑

βk cos kω
(11.11)
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where X(ω) and E(ω) are the discrete Fourier transforms of the mean-reduced series and
innovation sequence, respectively. Denoting their respective spectral densities by Pxx(ω)
and Exx(ω), we have

[∣∣∣∣
X(ω)
E(ω)

∣∣∣∣
2
]− 1

2

=
[

Pxx(ω)
Exx(ω)

]− 1
2

= 1− 2
p∑

k=1

βk cos kω (11.12)

which is indeed a cosine series. Now, the periodogram of a series is a poor estimate of
its spectral density; Oppenheim and Schafer discuss this topic at length [34]. So we have
to do some smoothing and averaging. A good starting point is the observation that the
periodogram of a colored Gaussian signal is approximately [35]

Im(ω) = Pxx(ω)[Im(ω) for white noise of unit variance ]
=⇒ Im(ω) ≈ Pxx(ω)[χ2(1) variate ]

=⇒ mean[Im(ω)] ≈ Pxx(ω)[mean of χ2(1) variate]
=⇒ var[Im(ω)] ≈ Pxx(ω)[variance of χ2(1) variate] (11.13)

where Im(ω) is the periodogram of a sample of length m, Pxx(ω) is the true spectral
density, and each of the m χ2(1) variates is independent. Suppose that we average over ν
independent periodograms in order to estimate Pxx(ω); then we get

Īm(ω) ≈ Pxx(ω) • 1
ν

[sum of ν χ2(1) variates]

≈ Pxx(ω) • 1
ν

[χ2(ν) variate] (11.14)

The probability density of a χ2(ν) variate is

p(x, ν) =
1

2ν/2Γ(ν/2)
x

ν
2
−1e−

x
2 (11.15)

Using that and Stirling’s approximation for Γ(z), we find that the mean and variance of
x−1/2, where x is a χ2(ν) variate, is (to first order in 1/ν)

E[x−1/2] =
1√
ν

(1 +
3
4ν

)

var[x−1/2] = E[x−1]−E2[x−1/2] =
1

2ν2
(11.16)

which in turn shows that our estimate of [Pxx(ω)]−1/2 has a small positive bias. Figures
19 and 20 illustrate this.

What we’ve got so far is that if we compute ν independent m-point periodograms,
and average them, then we get a set {F (ω1)u1, F (ω2)u2, . . . F (ωm)um} where the uj ’s are
independent random variables of mean 1 + 3ν/4 and variance 1/2ν, and

F (ω) = b0 − 2b1 cosω − 2b2 cos 2ω − . . .− 2bp cos pω

= [scaling constant][1− 2
p∑

k=1

βk cos kω] (11.17)
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Figure 19: The probability distribution of an averaged periodogram.
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Figure 20: The probability distribution of the inverse square root of an averaged peri-
odogram.
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and the ωj ’s are equally spaced discrete frequencies. Applying the discrete cosine transform
to that set yields biased estimates of the {bj} but unbiased estimates of the {βj}. As for
the estimate variance, I computed that as

var[b0] =
1

2νm
(b0

2 + 2
p∑

k 6=0

bk
2)

var[bj ] =
1

2νm
(
1
2
b0

2 +
3
2
bj

2 +
p∑

k 6=j

bk
2) (11.18)

and consequently

var[βj ] ≈ 1
νm

(1 + 2β1
2 + . . . + 2βp

2) (11.19)

The point of all that is simple: if we take a simultaneous autoregressive series of length n,
divide it into ν sets of m successive observations, compute the corresponding periodograms,
and then fit a cosine series to the inverse square root of the average of those ν periodograms,
then the resulting estimates of the autoregressive parameters are unbiased and have a
variance of approximately (1/n)(1 + 2

∑
βk

2).
In order to illustrate the foregoing analysis, I generated simultaneous AR(2) series over

the allowable parameter space, and estimated the known parameters β1 and β2 two ways:
first by using the residual sum of squares (i.e. as if this were a conditional autoregression),
and then by computing an averaged periodogram and fitting a cosine series to its inverse
square root. In order to estimate the spectral density, I use the Welch method with a
Hamming window of size 32. That smoothing method is described further in Oppenheimer
and Schafer [36].

The results, summarized in figure 21, show that my method of estimating the autore-
gressive coefficients of a simultaneous series is pretty good, only really failing when the
underlying autoregressive roots r1 and r2 are both close to 1 or -1.

Another method of estimating the autoregressive coefficients of a series is suggested
by the expansion [37]

log
[

1
1 + r2 − 2r cos θ

]
=

∞∑

n=1

2
n

rn cosnθ (|r| < 1) (11.20)

Suppose, for example, that we have a 1D conditional ARMA(2,1) model with discrete
transfer function

X(z)
E(z)

=
1−m1z

−1

(1− r1z−1)(1− r2z−1)
(11.21)

The corresponding spectral density is
∣∣∣∣
X(z)
E(z)

∣∣∣∣
2

=
1 + m1

2 − 2m1 cosω

(1 + r1
2 − 2r1 cosω)(1 + r2

2 − 2r2 cosω)
(11.22)

and taking natural logarithms yields

log
∣∣∣∣
X(z)
E(z)

∣∣∣∣
2

=
∞∑

n=1

2
n

(r1
n + r2

n −m1
n) cos nω (11.23)
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Bias of simultaneous AR(2) parameter estimates

β1 β2

Figure 21: The top row represents the biases obtained by estimating a simultaneous AR(2)
series as if it were conditional. The middle row shows the results of my method. The
bottom row shows the parameter range under consideration. Each (β1, β2) point involves
a series of length 2048 and an average over 25 trials.
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One could thus estimate the spectral density, fit a cosine series to its logarithm, and then
choose the autoregressive roots {r1, r2,m1} to best reproduce the observed cosine series.

To be more specific, suppose again that we have a simultaneous AR(p) process, and
that we compute ν independent periodograms of length m, and average them. Then

Īm(ω) ≈ Pxx(ω) • 1
ν

[χ2(ν) variate] (11.24)

If x is a χ2(ν) variate, then

E[log x] = log 2 + Ψ(ν/2)
var[log x] = Ψ′(ν/2) (11.25)

where Ψ(z) and Ψ′(z) are the digamma and trigamma functions, respectively [38]. Using
their asymptotic forms for large z gives

E[log Īm(ω)] = log Pxx(ω)− 1
ν

var[log Īm(ω)] =
2
ν

(11.26)

and so we see that log Īm(ω) and Īm(ω)/Pxx(ω) have the same variance. Unfortunately,
the negative bias in E[log Īm(ω)] does not cancel out this time, since we are not taking
ratios. Nevertheless, there are some solid advantages to estimating autoregressive roots by
this method. First, the target of the discrete cosine transform has uniform variance across
its domain. Second, the method estimates the roots directly, as opposed to the quantities
βj = rj/(1 + rj

2); this is crucial if any roots are close to one in magnitude. Third, there
is no problem with truncation (see section [7]). As long as all the estimated roots satisfy
|rj | < 1, the product

∏
(1 + rj

2 − 2rj cosω) will be positive definite for all −π ≤ ω ≤ π.

12 The scaling transform in 1D

The basic principle for transformations involving stretch or rotation is that they take place
in the continuous autocovariance domain. One of our umbrella assumptions is that the
random fields under study are quasi-continuous in nature. Thus, we can posit the existence
of a continuous autocovariance function

γ(~s) = E[x(~r)x(~r + ~s)], x(~r) = y(~r)− µ (12.1)

and when we choose a particular scale and orientation for our discrete grid, the resulting
discrete autocovariance is just a sampling of the continuous one.

As an illustration of this, consider our original example, a 1D conditional AR(1) series,
which had

x(t) = rx(t− 1) + e(t) x(t) = y(t)− µ, e(t) ∼ IID

γ(s) = E[x(t)x(t + s)] =
r|s|

1− r2
var[e(t)] (s integral)

∣∣∣∣
X(ω)
E(ω)

∣∣∣∣
2

=
1

1 + r2 − 2r cosω
(12.2)
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If we consider the autocovariance as being a sampling from a continuous function γ(u),
then

1
var[e(t)]

γ(u) =
r|u|

1− r2
(u real) (12.3)

and if we sampled that at a new positive spacing h, we would get

1
var[e(t)]

γ(hs) =
rh|s|

1− r2
=

1− r2h

1− r2

[
rh|s|

1− r2h

]
(s integral) (12.4)

and the corresponding discrete spectral density is
∣∣∣∣
X(ω)
E(ω)

∣∣∣∣
2

h

=
1− r2h

1− r2

1
1 + r2h − 2rh cosω

(12.5)

Thus, when we apply a scale change h to a conditional AR(1) process, we get a new AR(1)
process, whose autoregressive root is rh and whose innovation variance is (1−r2h)/(1−r2)
times the original one.

Well, the simplicity stops there. Suppose now that we have a conditional AR(2) process
with

x(t) = (r1 + r2)x(t− 1)− r1r2x(t− 2) + e(t), x(t) = y(t)− µ, e(t) ∼ IID (12.6)

then the spectral density is (see section [21])
∣∣∣∣
X(ω)
E(ω)

∣∣∣∣
2

=
1

(1 + r1
2 − 2r1 cosω)(1 + r2

2 − 2r2 cosω)

=
1

(r1 − r2)(1− r1r2)

[
r1

1 + r1
2 − 2r1 cosω

− r2

1 + r2
2 − 2r2 cosω

]
(12.7)

and applying a scale change h gives
∣∣∣∣
X(ω)
E(ω)

∣∣∣∣
2

h

=
1

(r1 − r2)(1− r1r2)
• (12.8)

[
r1

1− r1
2

1− r1
2h

1 + r1
2h − 2rh

1 cosω
− r2

1− r2
2

1− r2
2h

1 + r2
2h − 2rh

2 cosω

]

Consequently

(r1 − r2) (1− r1r2)
∣∣∣∣
X(ω)
E(ω)

∣∣∣∣
2

h

= (12.9)

T0 + T1 cosω

(1 + r1
2h − 2r1

h cosω)(1 + r2
2h − 2r2

h cosω)

where

T0 = r1

(
1− r2h

1

1− r1
2

)
(1 + r2

2h)− r2

(
1− r2h

2

1− r2
2

)
(1 + r1

2h)

1
2
T1 = r2r1

h

(
1− r2h

2

1− r2
2

)
− r1r2

h

(
1− r2h

1

1− r1
2

)
(12.10)
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Figure 22: Theoretical and experimental results for the scaling transformation of a condi-
tional AR(2) series that starts out with two conjugate roots defined by r = 0.85, θ = 0.3
at h = 1. The series length is 2048, and the chart shows the 95% confidence intervals
obtained over 25 trials.

Choosing α so that 2α/(1 + α2) = T1/T0, the spectral density after scaling is

∣∣∣∣
X(ω)
E(ω)

∣∣∣∣
2

h

= [const]
1 + α2 + 2α cosω

(1 + r1
2h − 2r1

h cosω)(1 + r2
2h − 2r2

h cosω)
(12.11)

which shows that the scaled process is no longer AR(2) but ARMA(2,1) with autoregressive
roots r1

h and r2
h, and a moving average root −α. Figure 22 shows the results that I got

by trying that case with conjugate roots r1 = r+jθ, r2 = r−jθ.
Clearly, scaling preserves a partial fraction expansion, so we can say that a conditional

ARMA(p,p-1) process remains an ARMA(p,p-1) process under scaling.
What about simultaneous autoregressions? Our basic simultaneous AR(1) process was

(1 + r2)x(t) = rx(t− 1) + rx(t + 1) + (1− r2)e(t), x(t) = y(t)−µ, e(t) ∼ IID (12.12)

and the corresponding discrete spectral density is

∣∣∣∣
X(ω)
E(ω)

∣∣∣∣
2

=
[

1− r2

1 + r2 − 2r cosω

]2

= (1− r2)(1 + r
∂

∂r
)
[

1
1 + r2 − 2r cosω

]
(12.13)
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Subjecting that to a scaling transform gives

1
1− r2

∣∣∣∣
X(ω)
E(ω)

∣∣∣∣
2

h

= (1 + r
∂

∂r
)
[
1− r2h

1− r2

1
1 + r2h − 2rh cosω

]
(12.14)

and working all that out gives
∣∣∣∣
X(ω)
E(ω)

∣∣∣∣
2

h

=
1

1− r2

T0 + T1 cosω

(1 + r2h − 2rh cosω)2

T0 = 1 + r2 − 4hr2h + 4hr2h+2 − r4h − r4h+2

1
2rh

T1 = (h− 1)− (h + 1)r2 + (h + 1)r2h − (h− 1)r2h+2 (12.15)

The scaled spectral density is no longer a perfect square, so the corresponding series is
not a finite simultaneous one. However, if r is not close to 1 and h is not near zero, then
T1/T0 is pretty small, and we can approximate the scaled series as a simultaneous AR(2)
as follows. First, let a = T1/(2T0), and β = rh/(1 + r2h). Then

[
1
T0

(1− r2)(1 + r2h)2
∣∣∣∣
X(ω)
E(ω)

∣∣∣∣
2

h

]− 1
2

= (1− 2β cosω)(1− 2a cosω)−
1
2 (12.16)

which, to third order in a and second order in cosω is
[∣∣∣∣

X(ω)
E(ω)

∣∣∣∣
2

h

]− 1
2

= [const][(1 + aβ +
3
4
a2)− (12.17)

2(β +
1
2
a +

9
8
a2β +

15
16

a3) cosω + 2(
1
2
aβ +

3
8
a2) cos 2ω]

Figure 23 shows the results that I got for some typical combinations of r and h. Our
theory is definitely holding up so far!

The foregoing analysis suggests that if we sample a conditional AR(p) process at a
sufficiently small scale, then it will appear to be a random walk. Let the partial fraction
expansion for its spectral density be

∣∣∣∣
X(ω)
E(ω)

∣∣∣∣
2

=
p∑

k=1

dk

1 + rk
2 − 2rk cosω

(12.18)

Then a scale transformation will result in
∣∣∣∣
X(ω)
E(ω)

∣∣∣∣
2

h

=
p∑

k=1

dk
1− rk

2h

1− rk
2

1
1 + rk

2h − 2rh
k cosω

(12.19)

and taking the limit as h → 0 gives
∣∣∣∣
X(ω)
E(ω)

∣∣∣∣
2

h

=

[
2h

p∑

k=1

dk(− log rk)
1− rk

2

][
1

2− 2 cos ω

]
(12.20)

which is the discrete spectral density of a random walk, whose innovation variance is
proportional to the scale h. Figure 24 shows an illustration of that effect, based on the
S&P 500 financial index [39].
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Figure 23: These charts represent the difference between the experimental and theoretical
values of β1 and β2 for a scaled simultaneous AR(1) series. The theoretical values come
from equation (12.17). The estimates are 95% confidence intervals over 25 trials, each
involving a series of length 2048 and a Hamming window of length 32.

Now, the S&P 500 index comprises a broad spectrum of companies with large capi-
talization, so in effect it tracks the entire North American economy. As such, its autore-
gressive structure will be at the annual scale, not at daily or hourly scales. I should also
point out that this kind of series is more accurately modelled as an ARCH process, that
is, one in which the innovation variance is not constant but has a random variation of its
own [40]. That makes sense for a financial index since the individual stock transactions
that drive it are made by investors with widely diverging tolerance for risk.

One last note about scaling transforms: this theory does allow the concept of a multi-
resolution texture. Suppose, for example, that we have the situation illustrated in figure
25. At resolution level 2, for example, r1 is inactive, we see the structure caused by r2 and
r3, while r4 and r5 create a slowly-varying substrate for the structure that we do see.

13 Nature of the continuous domain

Let’s review momentarily the moving average representations of one-dimensional AR(1)
processes. For a conditional AR(1) series, we had

x(t) = rx(t− 1) + e(t), x(t) = y(t)− µ, e(t) ∼ IID

x(t) =
∞∑

j=0

rje(t− j) =
t∑

j=−∞
rt−je(j) (13.1)
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whereas for a simultaneous AR(1) series, we had

(1 + r2)x(t) = r[x(t− 1) + x(t + 1)] + (1− r2)e(t)
x(t) = y(t)− µ, e(t) ∼ IID (13.2)

x(t) = e(t) +
∞∑

j=1

rj [e(t− j) + e(t + j)] =
+∞∑

j=−∞
r|t−j|e(j)

In both cases, the operational structure is the same:



discrete
difference
operator


x(t) = e(t); x(t) =




discrete
summation
operator


 e(t) (13.3)

and this structure continues to hold for AR(p) series. Suppose, for example, that we
sample a temporal conditional autoregressive field at an integral multiple of its intrinsic
resolution, and that its transfer function at this resolution is

X(z)
E1(z)

= (1−
p∑

k=1

akz
−k) with

z−pD(z) = 1−
p∑

k=1

akz
−k =

p∏

k=1

(1− rkz
−1) (13.4)

Then the moving average equivalent is

x(t1) =
t1∑

j=−∞

[
p∑

k=1

rk
p−1

D′(rk)
rk

t1−j

]
e1(j) (13.5)

which is in the form of a discrete summation operator:

x(t1) =
t1∑

j=−∞
G1(t1 − j)e1(j) [resolution of interest] (13.6)

In section [9], I presented an argument that this form of moving average equivalent is also
valid at the smaller intrinsic resolution:

x(t2) =
t2∑

j=−∞
G2(t2 − j)e2(j) [intrinsic resolution] (13.7)

The requirement of stationarity means that these two representations must both hold
when t1 and t2 denote the same field point, and so e1(t1) must be a linear combination
of the neighboring {e2(t2)}. So, regardless of the probability distribution of the {e2(t2)},
the {e1(t1)} will have an approximately Gaussian probability distribution. If we are going
to look at continuous random fields, then, we need the concept of a continuous Gaussian
noise field.

This topic has been thoroughly explored elsewhere [41], so I will limit myself to the
highlights. To construct quasi-continuous noise in 1D, divide each unit in the interval of
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Figure 26: A construction procedure for continuous Gaussian noise.

interest into T equal subintervals, and place a N(0, Tσu
2) Gaussian variate at each point.

Figure 26 illustrates this procedure.
The derivative

(zj+1 − zj)σu

√
T

(1/T )
= (zj+1 − zj)σuT

3
2 (13.8)

has mean zero and variance 2σu
2T 3, while the “integral”

∫ t2

t1

n(t)dt '
(t2−t1)T∑

j=1

(zjσu

√
T )(

1
T

) (13.9)

has zero mean and variance (t2 − t1)σu
2. Taking the limit as T →∞ and setting σu

2 = 1
gives us continuous unit Gaussian noise n(t). Although continuous unit Gaussian noise
and its derivatives are unbounded, its integral has two properties of interest:

var
[∫ t2

t1

n(t)dt

]
= (t2 − t1)

cov
[∫ t2

t1

n(t)dt,

∫ t4

t3

n(t)dt

]
= 0 if [t1, t2] ∩ [t3, t4] = ∅ (13.10)

That last equation merely states that distinct increments of the integrated continuous
noise are independent.

Now, going back to our conditional AR(1) process, we might expect the discrete dif-
ference and discrete summation operators to become differential and integral operators
when the process is viewed as a continuous random field. Indeed, if we have a series

x(t) = rx(t− 1) + e(t),
x(t) = y(t)− µ, e(t) ∼ IID, var[e(t)] = σ2 (13.11)

with autocovariance

γ(s) =
r|s|

1− r2
σ2 [s integral] (13.12)
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we can imagine that autocovariance to be a sampling from a continuous function, in which
case

γ(u) =
r|u|

1− r2
σ2 [u real] (13.13)

and the corresponding continuous spectral density is

|G(ω)|2 =
∫ +∞

−∞
γ(u)e−jωudu =

2σ2

1− r2

p

p2 + ω2
(13.14)

where p = − log(r). At this point we need to choose a phase for the transfer function
G(ω). I will explore this whole question further in section [18], but for now let’s choose a
causal transfer function:

G(ω) =
X(ω)
N(ω)

= σ

√
2p

1− r2

1
p + jω

(13.15)

That then implies a differential equation

(p +
d
dt

)x(t) = σ

√
2p

1− r2
n(t) (13.16)

with corresponding particular solution

x(t) = σ

√
2(− log r)

1− r2

∫ t

−∞
rt−t′n(t′)dt′ (13.17)

If we now look at that solution for two values of t, separated by a distance h, we get the
situation illustrated in figure 27.

By “envelope” for x(t), I mean the function that multiplies n(t′) in the equation

x(t) =
∫ t

−∞
g(t− t′)n(t′)dt′

45



From the figure, we can see right away that

x(t) = (rh)x(t− h) + e(t, h) where

e(t, h) = σ

√
2(− log r)

1− r2

∫ t

t−h
rt−t′n(t′)dt′ (13.18)

and the corresponding innovation variance is

var[e(t, h)] = σ2 2(− log r)
1− r2

∫ t

t−h
r2(t−t′)dt′ = σ2

(
1− r2h

1− r2

)
(13.19)

This is exactly what we deduced in section [12]; upon scaling, a conditional AR(1) pro-
cess with autoregressive root r and innovation variance σ2 maintains its AR(1) statistics,
but the autoregressive root and innovation variance become rh and σ2(1 − r2h)/(1 − r2)
respectively. The only difference is that in the continuous case, the innovations e(t) are
definitely Gaussian in nature.

14 Problems of interpolation

The following few sections are concerned with coordinate transformations that include ro-
tation, and so at times we will be generating discrete random fields and then interpolating
between the mesh points. We need to consider what errors, if any, are introduced by the
interpolation methods chosen. The plain fact is that interpolation methods can introduce
spurious correlations between field points, and can decrease the apparent series variance.
The current section is devoted to an exploration of those effects. In sections [18] and [19], I
look at ways to interpolate random fields that preserve their autoregressive characteristics.

Suppose that we are doing nearest-neighbor interpolation on a rotated grid, with no
scale transform. Although source and target pixels have equal planar densities, some
source pixels are used twice and some are unused. Let the inter-pixel distance be h. Then,
surrounding each source pixel is a “strike zone” of size h x h, centered on the source pixel.
If a target pixel falls within this region, then it assumes the source pixel’s value. At
rotation angles θ other than zero and ninety degrees, there is a finite probability that two
adjacent target pixels will fall within the same “strike zone” and be assigned the same
value. Figure 28 illustrates this situation. This, of course, results in a spurious correlation.
On a large enough grid, the target points will be approximately evenly distributed, so the
spurious correlations introduced will be approximately

γ(1, 0)
γ(0, 0)

=
γ(0, 1)
γ(0, 0)

= (1− sin θ)(1− cos θ), 0 ≤ θ ≤ π/2 (14.1)

Figure 29 shows a test of that, in which I generate a two-dimensional Gaussian white
noise field, and calculate the γ(1, 0)/γ(0, 0) and γ(0, 1)/γ(0, 0) correlation coefficients for
a rotated grid, using nearest-neighbor interpolation.

Well, that was an easy case. Suppose now that we are using bilinear interpolation to
populate a rotated grid, and that there is no scale transform. Figure 30 illustrates the
situation. Here, T00 is the field value at the target point, and {S00, S10, S01, S11} are the
field values at the source points that surround it. Then

T00 = (1− u)(1− v)S00 + (1− u)vS01 + u(1− v)S10 + uvS11 (14.2)

46



source pixel

1

1-cosθ

1-sinθ

sinθ

1

target pixel

θ

1

Nearest neighbor interpolation with 

rotation but no scaling

Figure 28: Nearest-neighbor interpolation on a rotated grid will introduce some spurious
correlations if there is no scaling.

0.10

0.08

0.06

0.04

0.0

0.02

0 10 20 30 40

Value of θ in degrees

Theoretical value:

(1 - sin θ)(1 - cos θ)

γ(1,0)

γ(0,0)

Nearest neighbor interpolation with 

rotation but no scaling: results

Figure 29: Comparison of theoretical and experimental results for the autocorrelation
obtained by nearest-neighbor sampling of a rotated, uncorrelated random field. The orig-
inal field size is 1024x1024, and the sampled field is 512x512. The chart shows the 95%
confidence intervals over 25 trials.
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If the grid is large enough, then we can average E[T00T00] over the unit square {0 ≤ u, v ≤
1} and get

E[T00T00] =
4
9
γ(0, 0) +

2
9
[γ(1, 0) + γ(0, 1)] +

1
18

[γ(1, 1) + γ(−1, 1)] (14.3)

where γ(K, L) = E[S00SKL]. Thus, if we take an uncorrelated random field and rotate
it through bilinear interpolation, we reduce its variance by more than one-half! As for
calculations of E[T00T10], E[T00T01] etc, they get pretty complicated, so I will illustrate
just one of them – E[T00T11] – in the case where only γ(0, 0) is non-zero (i.e. the source
field is uncorrelated). There are two cases to look at, which I have shown in figure 31.

In the first case, T00 and T11 have two source points in common, namely S01 and S11.
In the second case, T00 and T11 have only one source point in common, S11. We’ll look at
these two cases in order.

In this first case, we have

T00 = (1− u)(1− v)S00 + (1− u)vS01 + u(1− v)S10 + uvS11

T11 = (1− ū)(1− v̄)S01 + (1− ū)v̄S02 + ū(1− v̄)S11 + ūv̄S12 (14.4)

If the source field is uncorrelated, so that E[S00SKL] = σ2δK0δL0, then
1
σ2

E[T00T11] = (1− u)v(1− ū)(1− v̄) + uvū(1− v̄) (14.5)

Here’s the situation for the second case:

T00 = (1− u)(1− v)S00 + (1− u)vS01 + u(1− v)S10 + uvS11

T11 = (1− ū)(1− v̄)S11 + (1− ū)v̄S12 + ū(1− v̄)S21 + ūv̄S22

1
σ2

E[T00T11] = uv(1− ū)(1− v̄) (14.6)
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Figure 33: In this case, T00 and T11 have just one source point in common, namely S11.
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Figure 34: Comparison between theoretical and experimental results for the spurious
correlations induced by bilinear interpolation of a rotated random field when there is no
scaling. The original field is size 1024x1024, the sampled field is size 512x512, and the
chart shows the 95% confidence intervals over 25 trials.

Integrating over both regions gives

1
σ2

E[T00T11] =
∫ uc

0

∫ vc

0
(1− u)v[1− u−

√
2 cos(

π

4
+ θ)][2− v −

√
2 sin(

π

4
+ θ)]dudv

+
∫ uc

0

∫ vc

0
uv[u +

√
2 cos(

π

4
+ θ)− 1][2− v −

√
2 sin(

π

4
+ θ)]dudv

+
∫ 1

uc

∫ vc

0
uv[2− u−

√
2 cos(

π

4
+ θ)][2− v −

√
2 sin(

π

4
+ θ)]dudv (14.7)

where
uc = 1−

√
2 cos(

π

4
+ θ) and vc = 2−

√
2 sin(

π

4
+ θ) (14.8)

Similar calculations give E[T00T10], E[T00T01], etc. Figure 34 shows a comparison between
those calculations and some experimental results.

So the bottom line is this: standard methods of interpolation may distort random
fields, changing the very correlations that we are trying to study. In sections [18] and [19]
I examine alternative methods of interpolation. For now, however, I will restrict myself to
nearest neighbor interpolation.

15 Attempting the rotational transform

A key observation when looking at the transformations of continuous random fields is
that the continuous autocovariance function is the closest thing we have to an invariant.
Consider the defining equations for the continuous and discrete autocovariance functions:

γ(~u) = E[x(~r)x(~r + ~u)], x(~r) = y(~r)− µ, ~r, ~u continuous
γ(~s) = E[x(~r)x(~r + ~s)], x(~r) = y(~r)− µ, ~r,~s discrete (15.1)
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Figure 35: The discrete Fourier transform assumes periodic boundary conditions, which
may distort the actual autocovariance function of a random series.

where y(~r) is a stationary 2D random field and µ is its mean. As long as the domains of
both functions are unbounded, we will get γ(~u) = γ(~s) when ~u and ~s coincide. When the
discrete domain is bounded, we start to get slight distortion, which comes about in a way
which figure 35 illustrates.

The discrete Fourier transform assumes that the sample has periodic boundary con-
ditions, and the same idea then applies to the autocovariance. This is not an effect of
aliasing in the discrete frequency domain. Normally this is not a big issue because with a
large enough sample, the autocovariance drops to insignificant values far inside the sample
boundaries.

If, however, the random field is very highly correlated, or if the sample size is small
enough, then we lose a substantial portion of the actual autocovariance function. The first
situation is rare, especially in the case of visual texture. Our only real concern is when
our sample size is small. So let’s restrict ourselves to those cases where our resolution
and sample size are sufficient to give us an autocovariance that drops to zero well within
the sample boundaries. Figure 36, for example, shows the estimated 2D autocorrelation
of the Brodatz water texture D38 at several different angles [42]. The source images are
not interpolated here; they are digital photographs of the original Brodatz prints, taken
at various angles, hence there is no distortion due to interpolation. I use a well-known
technique to estimate the autocovariance [43].

These charts illustrate that to a very good approximation, the underlying continuous
autocovariance function remains constant. Now consider what happens when we sample
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Figure 36: The estimated autocovariance of the Brodatz water texture at several different
angles, with no scaling transform.
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Figure 37: Under nearest neighbor interpolation, the expectation of γ(~s) will be the inte-
gral of γ(~u) over a unit square centered on ~s.

a discrete random field, using nearest-neighbor interpolation, in order to estimate the
autocovariance of a rotated version of that random field.

If our sample size is large enough, then under coordinate transformation we sample
evenly across a unit square centered on the target displacement ~s. So the expectation of
γ(~s) will be the integral of γ(~u) over a unit square centered on ~s. This will necessarily
cause some distortion if the scale factor h is less than

√
2. Figures 37 and 38 illustrate

this idea.
Hence, even when using nearest-neighbor interpolation, we need to introduce a scale

factor of at least
√

2 in order to ensure that the autocovariance estimates do not have
spurious correlations between them.

As an illustration of these ideas, consider a simulataneous AR(1,1) 2D field with defin-
ing equation

x(s, t) = β10[x(s− 1, t) + x(s + 1, t)] + β01[x(s, t− 1) + x(s, t + 1)] + e(s, t),
x(s, t) = y(s, t)− µ, e(s, t) ∼ N(0, σ2) (15.2)

which we then sample on a transformed grid via nearest-neighbor interpolation. The
theoretical autocovariance is easily calculated from the defining equation. I calculated the
theoretical spectral density at various angles and scales through

γ(~s) =
∫ ux+ 1

2

ux− 1
2

∫ uy+ 1
2

uy− 1
2

γ(ux, uy)duxduy (15.3)

where (ux, uy) is the pre-image of ~s, and then taking the discrete Fourier transform of the
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result. We can compare that to the experimental spectral densities estimated through the
methods of section [11]. Figure 39 shows some typical results.

Now, we’ll get more adventurous and try this theory on some real data. Two estimates
of the spectral density for the Brodatz water texture D38, for a transform with θ = −π/6
and h = 1.4, appear in figure 40.

Here’s how I got those two estimates. For the one on the left, I estimated the au-
tocovariance at θ = −π/6 and h = 1.4 on a 248 x 248 grid at each of the seven angles
for which I have rotated Brodatz texture images. Then, I took the average, took the 2D
discrete Fourier transform, and collapsed the result into a 31 x 31 array. For the estimate
on the right, I estimated the spectral density directly from the rotated Brodatz image at
θ = −π/6, sampling with h = 1.4 via nearest-neighbor interpolation on a 358 x 358 grid,
and applying the Welch method with a Hamming window size of M=31.

If my theory is correct, then these two estimates should match up. They do show
remarkable agreement, even though the spectral density varies by more than three orders
of magnitude over its range. So our theory looks pretty solid so far. A good question to
ask here is, when calculating the theoretical discrete spectral density from the continuous
autocovariance, do we transform the coordinate system and then take the discrete Fourier
transform, or can we reverse those operations? In other words, do the operations of
coordinate transformation and discrete Fourier transform commute? That question may
seem inconsequential, but in fact it does matter, and the difference is measurable. So let’s
take a closer look.

First, suppose we do sampling before rotation. Then we get a spectral density of the
form

|X(~ω)|2 =
1∑

β(~k) exp(j~kT ~ω)
|E(~ω)|2 =

σ2

∑
β(~k) exp(j~kT ~ω)

(15.4)
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Figure 39: Comparison between experimental and theoretical spectral densities for a syn-
thesized simultaneous AR(1,1) series that is subject to both rotation and scaling. The
original field is of size 1300x1300. M is the size of the Hamming window used in estimat-
ing the spectral density. The spectral densities are scaled so that their average logarithm
is zero.
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scaled so that their average logarithm is zero. The text has further details.

( , )

uy

ux

(- ,- )

uy

ux

ωx

ωy

γ(ux, uy) sample continuous autocovariance 

on unbounded transformed grid

form discrete Fourier transform 

to get spectral density

1

2

Transformation of the continuous 2D autocovariance 

Figure 41: In this representation of a random field transform, we perform the rotation
first, then the sampling. The order of operations is important.
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The corresponding autocovariance is

γ(~s) =
σ2

4π2

∫

A1

exp(+j~sT ~ω)∑
β(~k) exp(j~kT ~ω)

d2~ω (15.5)

where A1 is the unit square over which discrete frequencies are defined in the original
coordinate system. This only equals the continuous autocovariance γ(~u) at the discrete
grid points. In between, it is a blending of all the autocovariance samples [44]:

γs(~u) =
∑

grid

γ(~s)sincπ(sx − ux)sincπ(sy − uy) (15.6)

Clearly, then, when we perform a rotation, we get a possibly distorted version of γ(~u):

γs(R~u) =
∑

grid

γ(~s)sincπ[sx − h(ux cos θ + uy sin θ)] •

sincπ[sy − h(uy cos θ − ux sin θ)] (15.7)

where I have separated the coordinate transformation R into a scale factor h and a rotation
angle θ.

An example will make this idea clear. Suppose that we have a 2D stationary random
field that is AR(1) with innovation variance σ2 and autoregressive parameter r along the
x direction, and is uncorrelated along the y direction. Then the continuous 2D autoco-
variance will be

γ(ux, uy) =
σ2

1− r2
r|ux|δ(uy) (15.8)

Sampling this continuous autocovariance at integral grid points gives

γ(nx, ny) =
σ2

1− r2
r|nx|δ0,ny (15.9)

The corresponding discrete spectral density is

X(ωx, ωy) =
σ2

1 + r2 − 2r cosωx

=
σ2

1− r2

∑
nx

r|nx|e−jnxωx (15.10)

and the continuous reconstruction of the autocovariance would be

γs(ux, uy) =
1

4π2

∫ +π

−π

∫ +π

−π

σ2

1− r2
ej(ωxux+ωyuy)

∑
nx

r|nx|e−jnxωxdωxdωy

=
∑
nx

σ2

1− r2
r|nx|sincπuysincπ(ux − nx) (15.11)

which can look quite different from the original autocovariance, as figure 42 shows.
What would we predict for the autoregressive coefficients in a case like this? Well, we

had

γ(~u) =
σ2

4π2

∫

A1

exp(+j~uT ~ω)∑
β(~k) exp(j~kT ~ω)

d2~ω (15.12)
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Figure 42: The reconstruction of an autocovariance function from its samples can look
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where the summation is over all lags ~k for which β(~k) is non-zero. Applying a rotation R
and a scaling h results in

γ(Rh~u) =
σ2

4π2

∫

A1

exp(+jRh~uT ~ω)∑
β(~k) exp(j~kT ~ω)

d2~ω

=
σ2

4π2h2

∫

A2

exp(+j~uT ω̄)∑
β(~k)exp[j(RT

h
~k)T ω̄]

d2ω̄ (15.13)

under the change of variables ω̄ = hRT ~ω. To put this in standard autoregressive form, we
need

γ̄(~u) =
σ̄2

4π2

∫

A1

exp(+j~uT ω̄)∑
β̄(~k) exp(j~kT ω̄)

d2ω̄ (15.14)

and so, at a minimum, we need to solve

β̄(~k) exp (j~kT ω̄) = β(~k) exp [j(
RT

h
~k)T ω̄] (15.15)

Also, in order to proceed further along this line of reasoning, we must make the additional
assumption that the spectral density is band-limited, so that we can assert that integra-
tions over regions A1 and A2 are the same. In this case, we can expand exp[j(RT /h)~kT ~ω]
in terms of exp(j~kT ~ω). Setting

~L =
RT

h
~k =

1
h

[
cos θ − sin θ
sin θ cos θ

] [
k
l

]
, ~k =

[
m
n

]
(15.16)

the projection of exp (j~LT ~ω) onto exp (j~kT ~ω) is

1
4π2

∫ π

−π

∫ π

−π
exp j(~L− ~k)T ~ωd2~ω

= sinc2π(~L− ~k) (15.17)

= sincπ
[
k cos θ − l sin θ

h
−m

]
sincπ

[
k sin θ + l cos θ

h
− n

]

and hence the total coefficient of exp j~kT ~ω would be

β̄(m, n) =
∑

k,l

β(k, l)sincπ
[
k cos θ − l sin θ

h
−m

]
sincπ

[
k sin θ + l cos θ

h
− n

]
(15.18)

This is similar to formula (3.15) in Cohen, Fan, and Patel [24]. It may look seductive, but
it isn’t right! The operations of rotation and discrete Fourier transform do not commute.
Returning to our previous example, suppose we have a conditional AR(1) field along the
x-direction, so that

γ(~u) =
σ2

1− r2
r|ux|δ(uy) (15.19)

The corresponding discrete spectral density is

|X(ω)|2 =
σ2

1 + r2 − 2r cosωx
(15.20)
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Figure 43: If we subject a conditional AR(1,0) series to a rotation θ = −π/4 and scale
factor h, we should get a pretty simple AR series with only β̄(1, 1) showing up.

and, using the notation of equation (15.4) above, we can say that β(0, 0) = 1 + r2 and
β(1, 0) = β(−1, 0) = −r. Now subject this system to a transform with θ = −π/4 and
h =

√
2. If we sample first and then rotate, then equation (15.18) above would yield

β̄(0, 0) = 1 + r2 − r[sinc2(
π

2
) + sinc2(−π

2
)] (15.21)

β̄(m,n) = −r[sincπ(−1
2
−m)sincπ(−1

2
− n) + sincπ(

1
2
−m)sincπ(

1
2
− n)]

This predicts a non-zero value for all β̄(m,n). Now suppose instead that we rotate and
scale the autocovariance first, and then sample it, as illustrated in figure 43. After sam-
pling, we find that the system is still a conditional AR(1) autoregressive field, but with
spectral density

|X(ω)|2 =
[const]

1 + r2h
√

2 − 2rh
√

2 cos(ωx + ωy)
(15.22)

that is, the only non-zero coefficients are β̄(0, 0), β̄(−1,−1) and β̄(1, 1). Figure 44 charts
some actual results, which clearly demonstrate that we must transform the random field
before sampling it.

The bottom line, then, is that in order to calculate the discrete spectral density under
coordinate transformation, we need to:

(1) estimate (or calculate) the continuous autocovariance
(2) rotate and scale the continuous autocovariance
(3) sample the transformed autocovariance, averaging if necessary
according to the mode of physical sampling

(4) calculate the resulting spectral density and autoregressive coefficients
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Figure 44: Here I subject a synthesized conditional AR(1,0) series with r = 0.6 to a
transform with θ = −π/4 and h = 1.4. The resulting spectral density is consistent with
the idea that we must apply the transform to the continuous autocovariance first, and
then sample the result. The original field is of size 1200x1200, the sampled field is of size
558x558, the Hamming window is of size 31x31, and the chart shows the averages obtained
over 16 trials.
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16 Skew-separable spectral density

In section [24] I demonstrate that the two-dimensional Fourier transform retains its form
even under a shear transformation of the coordinate axes. What this means, in practice,
is that if an autocovariance term is separable along two directions, then the corresponding
spectral density term is also separable along two directions, perpendicular to the original
pair.

Why might this be of interest? Well, in the last section I talked about estimating the
continuous autocovariance of a two-dimensional random field, and it would be nice to have
some basis functions to use for that purpose. The aim of the current section is to suggest
what kind of basis functions would make sense for 2D autoregressive fields.

We can always estimate a two-dimensional conditional autoregressive random field’s
spectral density as ∣∣∣∣

X(~ω)
E(~ω)

∣∣∣∣
2

=
[const]∏

[1 + rj
2 − 2rj cos~kj

T ~ω]
(16.1)

by fitting a cosine series to the logarithm of the spectral density, as outlined in section
[11]. We might attempt a partial fraction expansion of the form

∣∣∣∣
X(~ω)
E(~ω)

∣∣∣∣
2

=
∑

j

Dj

1 + rj
2 − 2rj cos~kj

T ~ω
(16.2)

but that implies a continuous autocovariance

1
σ2

γ(~u) =
∑

j

Dj

1− rj
2
rj
|k̂j

T ~u|/|~kj |δ(k̂j
T û− 1) (16.3)

where σ2 is the innovation variance, k̂j = ~kj/|~kj |, and û = ~u/|~u|. Each individual term in
equation (16.3) is what I call a “line autocovariance”, because it looks like a thin sheet
when you plot it out (see figure 45).

So an expansion such as equation (16.2) above may look reasonable, but actually repre-
sents a non-physical autocovariance. What to do? Well, the next simplest representation
would be a summation of the form

∣∣∣∣
X(~ω)
E(~ω)

∣∣∣∣
2

=
∑

j

Dj

1 + rj1
2 − 2rj1 cos~kj1

T ~ω

1

1 + rj2
2 − 2rj2 cos~kj2

T ~ω
(16.4)

in which each term involves two lags, namely ~kj1 and ~kj2. I call such terms “skew-
separable”. Even if these two lags are not perpendicular to each other, we know from
section [24] that the corresponding autocovariance term will also be separable. If need be,
we can get the various possible ~kj ’s from a cosine transform of the representation

∣∣∣∣
X(~ω)
E(~ω)

∣∣∣∣
2

=
[const]∏

[1 + rj
2 − 2rj cos~kj

T ~ω]
(16.5)

as noted above. The individual discrete spectral density terms

1

1 + r1
2 − 2r1 cos~k1

T ~ω

1

1 + r2
2 − 2r2 cos~k2

T ~ω
(16.6)
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Figure 45: A spectral density such as that in equation (16.2) would lead to a non-physical
autocovariance.

have corresponding continuous autocovariance terms

r1
|q̂1

T ~u|/|~q1|r2
|q̂2

T ~u|/|~q2| (16.7)

where ~k2
T ~q1 = 0, ~k1

T ~q2 = 0, q̂1 = ~q1/|~q1|, and q̂2 = ~q2/|~q2|. These autocovariance
terms now have a two-dimensional shape and could form possible basis functions for a
real autocovariance. In fact, we can group them together by allowing one or both of the
factors of

1

1 + r1
2 − 2r1 cos~k1

T ~ω

1

1 + r2
2 − 2r2 cos~k2

T ~ω
(16.8)

to assume complex conjugate AR(2) form, in which case the corresponding autocovariance
term would look like

r1
|u1|/q1r2

|u2|/q2 cos(θ2u2 −Ψ2)
or r1

|u1|/q1 cos(θ1u1 −Ψ1)r2
|u2|/q2 cos(θ2u2 −Ψ2) (16.9)

where u1 = q̂1
T~u, u2 = q̂2

T~u, q1 = |~q1|, q2 = |~q2|, and the remaining variables have the
meanings assigned to them in section [23], where I consider continuous AR(2) propagators.
In particular, Ψ1 is a function of (r1, θ1) and Ψ2 is a function of (r2, θ2). So our AR(2)
basis function

r1
|u1|/q1 cos(θ1u1 −Ψ1)r2

|u2|/q2 cos(θ2u2 −Ψ2) (16.10)

is really a six-parameter function, those parameters being r1, θ1, r2, θ2, and the azimuthal
directions of q̂1 and q̂2. These functions are quite versatile. Figure 46 shows some typical
functional shapes, and figure 47 shows a fit of four such terms onto the average covariance
of the Brodatz D38 water texture, with no rotation. Even though there are only four
terms, and I performed the fit by hand, those four terms capture the principal features of
the discrete autocovariance.
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Figure 47: A manual fit of four skew-separable basis functions to the estimated autoco-
variance of the Brodatz water texture at zero degrees rotation.
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17 Rotational invariants

In the last section, I suggested that a logarithmic expansion of a 2D discrete spectral
density such as ∣∣∣∣

X(~ω)
E(~ω)

∣∣∣∣
2

=
[const]∏

j [1 + rj
2 − 2rj cos(~ωT~kj)]

(17.1)

could lead to a representation of the corresponding continuous autocovariance as

γ(~u) =
∑

j

rj1
|~uT k̂j1|rj2

|~uT k̂j2| (k̂j1 6= k̂j2) (17.2)

and that this representation can be a practical one for visual texture. Are there any
rotational invariants in there? Well, the rj ’s are clearly invariant under pure rotation, but
if we have say n distinct directions k̂1 . . . k̂n, then one is arbitrary and the remaining n−1
directions may be measured with respect to the arbitrary one.

In fact we can say a bit more. Under the transform ū → Rh~u where R is a rigid
rotation and h is a scale factor, we have

γ(~u) =
∑

j

[rj1
(1/h)]|ū

T Rk̂j1|[rj2
(1/h)]|ū

T Rk̂j2| (k̂j1 6= k̂j2) (17.3)

which shows that the quantities (log rj)/h and the angular differences between the k̂j ’s
are preserved.

We might consider looking at the Taylor series for the continuous autocovariance for
possible rotational invariants, but that idea has little merit since the second-order cur-
vatures are undefined at the origin. A more promising avenue of attack is to look at
the inverse of the spectral density. There is some theoretical justification for this. For a
“pseudo-Markovian” continuous random field, for example, the inverse spectral density is
a finite polynomial in ~ω [45] :

∣∣∣∣
X(~ω)
E(~ω)

∣∣∣∣
−2

=
∑

~k

ak1...kN
ω1

k1 . . . ωN
kN (17.4)

where k1+· · ·+kN ≤ 2p. Here the field is N-dimensional, ~ω is an N-dimensional continuous
spatial frequency, and 2p is the order of the expansion. Might that work for us? Well, as
noted above, by exploiting the basic relation

log
1

1 + r2 − 2r cos θ
=

∞∑

n=1

2
n

rn cosnθ (17.5)

we can represent any conditional autoregressive spectral density as
∣∣∣∣
X(~ω)
E(~ω)

∣∣∣∣
2

=
[const]∏

j [1 + rj
2 − 2rj cos(~ωT~kj)]

(17.6)
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If the scale of our observations is already small with respect to the rj ’s, then we can derive
an approximate version as follows:

∣∣∣∣
X(~ω)
E(~ω)

∣∣∣∣
2

' [const]
∏

j

[
(−2 log rj)

(− log rj)2 + (~ωT~kj)2

]

∣∣∣∣
X(~ω)
E(~ω)

∣∣∣∣
−2

' [const]
∏

j

[
(− log rj)2 + (~ωT~kj)2

]

' [const]
∏

j

[
1 +

1
(− log rj)2

(~ωT~kj)2
]

(17.7)

That is clearly a polynomial in the discrete spatial frequency ~ω. We know that the spectral
density is invariant under coordinate inversion, so we can expand it as

∣∣∣∣
X(~ω)
E(~ω)

∣∣∣∣
−2

= [const][1 +
1
2!

~ωT A2~ω +
1
4!

~ω~ωT A4~ω~ωT + . . . ] (17.8)

where A2, A4, . . . are matrices related to the partial derivatives of |X(~ω)/E(~ω)|−2 at the
origin. Suppose, for example, that f is the normalized inverse spectral density:

f(~ω) =
|X(~ω)/E(~ω)|−2

|X(~0)/E(~0)|−2
= 1 +

1
2!

~ωT A2~ω +
1
4!

~ω~ωT A4~ω~ωT + . . . (17.9)

Then A2 is given by

A2 =
[

∂2/∂x2 ∂2/∂x∂y
∂2/∂x∂y ∂2/∂y2

]
f =

[ ∇xx ∇xy

∇xy ∇yy

]
f (17.10)

The transforms of partial derivatives under rotation are pretty straightforward. Here are
the second order ones:

1
2
(∇xx +∇yy) =

1
2
(∇̄xx + ∇̄yy)

[
1
2(∇xx −∇yy)

∇xy

]
=

[
cos 2θ − sin 2θ
sin 2θ cos 2θ

] [
1
2(∇̄xx − ∇̄yy)

∇̄xy

]
(17.11)

In this last set of equations, the coordinate system rotates through a counterclockwise angle
θ, and the barred derivatives are measured after rotation. The fourth order transforms
are:

1
2
(∇xxxx + 2∇xxyy +∇yyyy) =

1
2
(∇̄xxxx + 2∇̄xxyy + ∇̄yyyy)

[
1
2(∇xxxx −∇yyyy)
∇xxxy +∇xyyy

]
=

[
cos 2θ − sin 2θ
sin 2θ cos 2θ

] [
1
2(∇̄xxxx − ∇̄yyyy)
∇̄xxxy + ∇̄xyyy

]
(17.12)

[ ∇xxxy −∇xyyy
1
4(∇xxxx − 6∇xxyy +∇yyyy)

]
=

[
cos 4θ sin 4θ
− sin 4θ cos 4θ

] [ ∇̄xxxy − ∇̄xyyy
1
4(∇̄xxxx − 6∇̄xxyy + ∇̄yyyy)

]

Thus, for example, in the expansion
∣∣∣∣
X(~ω)
E(~ω)

∣∣∣∣
−2

' [const]
∏

j

[
1 +

1
(− log rj)2

(~ωT~kj)2
]

' [const]


1 +

∑

j

1
(− log rj)2

~ωT~k~kT ~ω + . . .


 (17.13)
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we can identify

trA2 = ∇2f =
∑

j

|~kj |2
(− log rj)2

(17.14)

We already know from equation (12.5) that the rj ’s transform exponentially under scaling,
so we would expect the quantity

h2trA2 = h2∇2f =
∑

j

[
h

− log rj

]2

|~kj |2 (17.15)

to be an invariant under rotation and scaling, where h is the scale factor. It is proportional
to the Laplacian of the inverse of the continuous spectral density.

Figure 48 shows a test of that idea, applied to a synthetic conditional AR(1,1) series.
What the figure tells us is that calculating rotational invariants in this way is a fool’s
errand. As far as samples of visual texture go, 480x480 is a pretty large size. But even
at this sample size, our ability to calculate even the simplest rotational invariant is poor.
At 35 degrees, for example, the smallest significant contributor to

∑ |~kj |2/(− log rj)2 is
at lag (7,5), and that term contributes more than one-quarter of the total. So calculating
rotational invariants to any reasonable precision at smaller sample sizes is just not on.

18 Interpolation into a conditional AR(1) field

As we’ve seen before, standard methods of interpolation can cause noticeable distortion
when applied to correlated random fields. in particular, they can reduce the series variance
and introduce spurious correlations. So a natural question is: are there better ways to
interpolate into a random field?

The first thing we must do is distinguish between interpolation and forecasting. The
point of forecasting is to minimize the target point’s variance, while the point of interpo-
lation is to preserve the target point’s variance (i.e. make it “fit in” with the rest of the
series). For example, suppose that we have a conditional AR(2) series, defined by

x(t) = a1x(t− 1) + a2x(t− 2) + e(t), x(t) = y(t)− µ, e(t) ' N(0, σ2) (18.1)

and a sample {x(1) . . . x(n)}. The best forecast of x(n + 1) would be a1x(n) + a2x(n− 1),
because that is the expected value of x(n + 1), conditioned on the sample. However, the
best extrapolation of the series would be a1x(n) + a2x(n− 1) + zσ where z is a standard
N(0, 1) variate.

So let’s start by defining our interpolation problem. I imagine a discrete sequence (or
grid) of source points, whose autoregressive character I either know, or have estimated.
I wish to calculate a field value at a target point, that is in between some source points.
A target point’s value will consist of two parts: a linear combination of nearby source
points, and a random part. The linear combination will be related to the autoregressive
coefficients of the source sequence. The variance of the random part will be zero when the
target point coincides with a source point, and will be greatest when the target point is
equidistant from neighboring source points.

Now, let’s put those ideas into practice. For a conditional AR(1) series, defined by

x(t) = rx(t− 1) + e(t), x(t) = y(t)− µ, e(t) ' N(0, σ2) (18.2)
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Figure 48: Calculation of a rotational invariant, in this case the Laplacian of the inverse
of the continuous spectral density. The base series is a synthesized conditional AR(1,1)
random field of size 1400x1400 with rx = ry = 0.854. The sampled series are of size
480x480 with h = 2. The bar charts show the discrete cosine transform of the logarithm
of the estimated spectral density.
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the transfer function and autocovariance are
∣∣∣∣
X(ω)
E(ω)

∣∣∣∣
2

=
1

1 + r2 − 2r cosω

1
σ2

γ(s) =
r|s|

1− r2
[s integral] (18.3)

If we regard the series {x(t)} as being a sampling from a continuous field, then the con-
tinuous autocovariance will be

1
σ2

γ(u) =
r|u|

1− r2
[u real] (18.4)

and the corresponding continuous spectral density is

|G(ω)|2 =
∫ +∞

−∞
γ(u)e−jωudu =

2σ2

1− r2

p

p2 + ω2
(18.5)

where p = − log r. In order to create a continuous moving average equivalent, or “propa-
gator”, we need to choose a phase function for G(ω). The only constraint is that the phase
be antisymmetric, so that the propagator (and hence the continuous random field) will be
real-valued. This situation is the continuous analogue of the situation that I noted back
in section [5]: if a mean-reduced sample of an autoregressive series and the corresponding
innovations are in a linear relation L~x = ~e, and the probability density of ~e depends on ~eT~e
only, then any unitary transform applied to L yields an equivalent model. If we choose

G(ω) = σ

√
2p

1− r2

1
p + jω

= σ

√
2p

1− r2

1√
p2 + ω2

exp
(
−j tan−1 ω

p

)
(18.6)

then we get a causal model, in which

x(t) = σ

√
2(− log r)

1− r2

∫ t

−∞
rt−t′n(t′)dt′ (18.7)

and n(t′) is continuous unit Gaussian noise (see section [13]). But that’s not the only
possibility! Suppose that we choose instead

G(ω) = σ

√
2p

1− r2

1√
p2 + ω2

exp
(
−jm tan−1 ω

p

)

g(v, m) =
1
2π

∫ +∞

−∞
G(ω)e+jωvdω (18.8)

where m is now a parameter. I calculated that numerically, and figure 49 shows what the
resulting propagator looks like.

The propagator for m = 1 is the usual causal one. The propagator for m = 0 is the
simultaneous version,

1
σ

√
1− r2

2p
g(v, 0) =

1
π

K0(pv) (18.9)
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m=-1.0
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m=1.0
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m=0.5

Phase of 

G(ω,m)

1 - r2

2(- log r)

g(v,m)

σ

m=0

Conditional AR(1) system: continuous propagator

Figure 49: Knowledge of the spectral density function does not completely constrain the
phase of the corresponding propagator function.

where K0(z) is a modified Bessel function of the second kind [46]. The other cases illus-
trated are “partially causal”. A good question to ask here is: are there are any physical
realizations of a partially causal propagator? Well here’s one: birds in a flock take their
acceleration cues from their spatial neighbors. Any one specific bird will have its own
random component of acceleration, but it will be most heavily influenced by the birds in
front of it, and will be the least influenced by birds behind it (note that most flocking
birds have a wide visual field). So their moving average function will be something like
the one illustrated in figure 50.

For now, though, we will restrict ourselves to a causal continuous propagator:

g(t, t′) =
{

σ
√

2p/(1− r2) rt−t′ t′ < t, p = − log r
0 t′ > t

(18.10)

with corresponding moving average representation

x(t) = σ

√
2p

1− r2

∫ t

−∞
rt−t′n(t′)dt′, n(t′) = unit Gaussian noise (18.11)

In a case like this, where x(t) =
∫

f(t− t′)n(t′)dt′, I say that f(t− t′) is the “envelope” of
x(t). Figure 51 illustrates the envelopes of x(t), x(t + α), and x(t + 1).

We’ll attempt an interpolant of the form

x(t + α) = g0x(t) + g1(x(t + 1) + e(t, α) (18.12)

in which case the envelope of e(t, α) is that of the shaded area in figure 51. The variance
of e(t, α) works out to

1− r2

σ2
var[e(t, α)] = (g0 + rg1 − rα)2 + (rα − g1r)2(r−2α − 1)

+(g1r)2(r−2 − r−2α) (18.13)
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m≈0 in this 

direction
m≈½ in this 

direction

direction 

of flight

Asymmetric 2D continuous moving average equivalent

Figure 50: Birds that fly in flocks probably have a moving average function that is skewed
toward the forward direction.

envelope 
for e(t,α)

envelope 
value in 
units of

1

0
t+1t+αt

g0f(t)+g1f(t+1)

g0f(t)

g1f(t+1)

f(t)

f(t+α)

f(t+1)

2(- log r)

1 - r2
σ

Conditional AR(1) interpolation: continuous envelopes

Figure 51: Setting up the conditional AR(1) interpolation problem.
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Conditional AR(1) interpolation: estimate bias

Figure 52: Differences between estimated and theoretical values of autoregressive root and
innovation variance for an interpolated AR(1) series. The series length is 2048, and the
chart shows the 95% confidence intervals over 25 trials.

If we minimize var[e(t, α] with respect to g0 and g1, we get

g0 =

[
1− r2(1−α)

1− r2

]
rα, rg1 =

[
r2(1−α) − r2

1− r2

]
rα (18.14)

and the ratio of var[e(t, α] to the innovation variance of the original series is:

1
σ2

var[e(t, α)] =
1 + r2 − r2−2α − r2α

(1− r2)2
(18.15)

At this point, this procedure is an educated guess because I have not shown that minimiz-
ing var[e(t, α)] has anything to do with autoregressive fields. To test the idea, I generated
a conditional AR(1) series with length n, autoregressive root r, and innovation variance 1,
and then interpolated n− 1 points at a known offset α, using the equations above for g0,
g1, and var[e(t, α)], and then estimated r̂ and σ̂2 using just the interpolated points (i.e.
no source points). If my procedure has any merit, I should recapture the autoregressive
nature of the original series. Figure 52 shows the results that I got.

The results show that my interpolation procedure does indeed capture the autore-
gressive statistics of the original series. Figure 53 shows the interpolation variance as a
function of autoregressive parameter r and offset α.

Now let’s compare the AR(1) interpolation result to a simultaneous equivalent. For
the original series, we had

∣∣∣∣
X(ω)
E(ω)

∣∣∣∣
2

=
1

1 + r2 − 2r cosω

→
∣∣∣∣
X(ω)
E(ω)

∣∣∣∣
2

1/2

=
1− r

1− r2

1
1 + r − 2

√
r cosω

(18.16)

73



envelope 
for e(t,α)
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α
r

t t+α t+1 t t+1

Conditional AR(1) interpolation: interpolant variance

Figure 53: The form of the interpolation variance as a function of autoregressive root and
offset for a conditional AR(1) series.
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Now convert that to simultaneous form:
[
X(ω)
E(ω)

]

1/2

=
1

1 + r

1√
1− 2β cosω

(β =
√

r

1 + r
) (18.17)

To second order in β and cosω, that is
[
X(ω)
E(ω)

]

1/2

=
1

1 + r

1
(1− 1

4β2)− β cosω − 1
4β2 cos 2ω . . .

(18.18)

So the equivalent simultaneous form would suggest

(1− 1
4
β2)x(t +

1
2
) =

1
2
β[x(t) + x(t− 1)] (18.19)

+
1
8
β2[x(t− 1

2
) + x(t +

3
2
)] + . . . +

1
1 + r

σz

where z is a standard normal N(0, 1) variate. Our interpolation procedure, on the other
hand, would give

x(t +
1
2
) = β[x(t) + x(t + 1)] +

1
1 + r

σz (18.20)

So, in effect, the interpolation is “squeezing” the effect of all the neglected terms of the
simultaneous expansion into its larger coefficient of [x(t) + x(t + 1)]. Section [23] later on
talks about the continuous propagator for a conditional AR(2) system.

19 Interpolation into a simultaneous AR(1) field

Let’s start with the defining equations and autocovariance of a 1D simultaneous AR(1)
process with Gaussian innovations:

(1 + r2)x(t) = r[x(t− 1) + x(t + 1)] + (1− r2)e(t), x(t) = y(t)− µ, e(t) ' N(0, σ2)
1
σ2

γ(s) = r|s|
[
1 + r2

1− r2
+ |s|

]
[integral s] (19.1)

If we assume that the series has been plucked from a continuous random field, then the
continuous autocovariance would be

1
σ2

γ(u) = r|u|
[
1 + r2

1− r2
+ |u|

]
[real u] (19.2)

Setting p = − log r and z = pu, that is equivalent to

γ(u)
γ(0)

= e−z

[
1 +

(
tanh p

p

)
z

]
(19.3)

which I have illustrated in figure 54.
Taking the continuous Fourier transform yields a spectral density of

1
2σ2

|G(ω)|2 =
1 + r2

1− r2

p

p2 + ω2
+

p2 − ω2

(p2 + ω2)2
(19.4)
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Autocovariance of a continuous simultaneous AR(1) field

Figure 54: For a simultaneous AR(1) series, the shape of the autocovariance function
varies significantly with the autoregressive root.

Here, we will choose a constant phase of zero for our propagator, i.e.

1
2σ2

[G(ω)]2 =
1 + r2

1− r2

p

p2 + ω2
+

p2 − ω2

(p2 + ω2)2
(19.5)

For smallish p (i.e. r near 1), we get

1
σ

G(ω) ≈ 2p

p2 + ω2
=

1
p + jω

+
1

p− jω
(19.6)

and the corresponding propagator is

1
σ

g(v) = e−p|v| = r|v| (19.7)

For the moment, we will take g(v) = σr|v| as an approximate continuous propagator. That
then leads to a geometric interpretation of the quantities entering into the discrete series
equations

(1 + r2)x(t) = r[x(t− 1) + x(t + 1)] + (1− r2)e(t)

x(t) = e(t) +
∞∑

j=1

rj [e(t + j) + e(t− j)] (19.8)

Let f(t) be the envelope of x(t), and let ē(t) be the envelope of e(t). Using the envelope
functions as illustrated in figures 55 and 56, we get

f(t) = [rf(t− 1)− r2f(t)] + [rf(t + 1)− r2f(t)] + r2f(t) + ū(t)
= ē(t) + r[ē(t− 1) + ē(t + 1)] + r2[ē(t− 2) + ē(t + 2)] + . . .

ē(t) = ū(t) + r2ū(t) + r4ū(t) + . . .

=
1

1− r2
ū(t) (19.9)
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Simultaneous AR(1) interpolation: continuous envelopes

Figure 55: If we take our simulataneous AR(1) propagator to be g(v) = σr|v|, then a
simple geometric interpretation of the quantities in the defining equation is possible.
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Simultaneous AR(1) interpolation: innovation envelopes

Figure 56: A geometric interpretation of the innovations for a simultaneous AR(1) series.
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Simultaneous AR(1) interpolation: innovation overlap

Figure 57: If we take our simulataneous AR(1) propagator to be g(v) = σr|v|, then the
series innovations are not independent.

Integrating the envelope equation over a continuous unit Gaussian noise function gives
back our discrete defining equation:

(1 + r2)f(t) = r[f(t− 1) + f(t + 1)] + (1− r2)ē(t)
→ (1 + r2)x(t) = r[x(t− 1) + x(t + 1)] + (1− r2)e(t) (19.10)

However, the character of our initial approximation g(v) = σr|v| shows up in the fact that
the quantities u(t) = (1− r2)e(t) are not independent, as illustrated in figure 57.

They would be independent only if they did not overlap in t (see equation (13.10)
above). Keeping the nature and limitations of our approximation in mind, then, let’s set
up the interpolation problem as illustrated in figure 58.

There are now four regions of interest, and we have two possible algorithms. If we
require that the linear combination g0f(t)+ g1f(t+1) match up with f(t+α) outside the
interval [t, t + 1], then we get

[
1 r
r 1

] [
g0

g1

]
=

[
rα

r1−α

]

→
[

g0

g1

]
=

2r

1− r2

[
sinh(1− α)(− log r)

sinhα(− log r)

]
(19.11)

However, if we require instead that var[e(t, α)] be a minimum, where

1
σ2

var[e(t, α)] =
∫ +∞

−∞
[g0f(t, t′) + g1f(t + 1, t′)− f(t + α, t′)]2dt′ (19.12)

and f(t, t′) = r|t−t′|, then the result is
[

1 r(1− log r)
r(1− log r) 1

] [
g0

g1

]
=

[
rα(1− α log r)

r1−α[1− (1− α) log r]

]
(19.13)
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Setting up the simultaneous AR(1) interpolation problem

Figure 58: Setting up the interpolation problem for a simultaneous AR(1) series.

Note that in the conditional AR(1) case, these two algorithms yield the same result. In
the simultaneous AR(1) case, however, the two algorithms yield the same result only in
the limiting cases of α = 0, α = 1, or r ≈ 1. In other cases, and particularly when r is
small but non-zero, the two different approximations look like those illustrated in figure
59.

Now, we don’t want to get too worked up about these two different approximations.
The case in which r is small but non-zero corresponds to a weakly correlated field, which
will be noise-like, so slight errors in innovation variance may well be unimportant. A more
pressing question is, how closely does this interpolant capture the statistics of the original
field? To answer this, I generated a simultaneous series with length n, autoregressive root
r, and modified innovation variance (1− r2)σ2/(1+ r2) = 1, and interpolated n− 1 points
at a known offset α using equation (19.11), and then estimated r̂ and (1− r̂2)σ̂2/(1 + r̂2)
using just the interpolated points. I estimated r̂ by fitting a cosine series to the logarithm
of the smoothed and averaged spectral density (see section [11] above).

The results, embodied in figure 60, show that the match-up algorithm overestimates r
and seriously underestimates the innovation variance. To see why this happens, we need
to develop a more accurate version of the simultaneous AR(1) propagator. Our original
equations were

1
σ2

γ(u) = r|u|
[
1 + r2

1− r2
+ |u|

]
[real u]

1
2σ2

[G(ω)]2 =
1 + r2

1− r2

p

p2 + ω2
+

p2 − ω2

(p2 + ω2)2
(p = − log r) (19.14)

As for the actual propagator g(v), it must have the form σr|v| at large |v| because that is
the only way to get the σ2|u|r|u| term of γ(u). At small |v|, however, the function must
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t+1t+αt

t+1t+αt

f(t+α)

1

0

envelope 
value in 

units of σ

g0f(t)+g1f(t+1) obtained by 

minimizing var[e(t,α)]

g0f(t)+g1f(t+1) obtained by 

matching f(t+α) outside of [t,t+1]

envelope of e(t,α) obtained by 

matching interpolant to f(t+α)

envelope of e(t,α) obtained 

by minimizing var[e(t,α)]
envelope 
value in 

units of σ

Two ways of interpolating into a simultaneous AR(1) field

Figure 59: There are two ways we could solve the simultaneous AR(1) interpolation prob-
lem, which lead to different innovation variances.
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Simultaneous AR(1) interpolation: estimate bias

Figure 60: Differences between estimated and theoretical values of autoregressive root and
modified innovation variance for an interpolated simultaneous AR(1) series. The series
length is 2048, the Hamming window size is 32, and the chart shows the 95% confidence
limits over 25 trials.

look more like

g(v) ≈ σ

√
1 + r2

1− r2
(− log r) r|v| small |v| (19.15)

in order to reproduce the (1 + r2)σ2r|u|/(1 − r2) term of γ(u). I calculated the inverse
Fourier transform of

1
2σ2

[G(ω)]2 =
1 + r2

1− r2

p

p2 + ω2
+

p2 − ω2

(p2 + ω2)2
(19.16)

by numerical means, and got the results encompassed in figure 61.
So our expectations are indeed fulfilled, and our earlier approximation g(v) = σr|v| is

supplemented by a cap, or perturbation, which however always seems to be negligible for
|v| > 1. So the true situation for the simultaneous AR(1) propagator and interpolation
problem is something like that shown in figure 62. Thus, it is indeed possible for the
innovations e(t) to be independent, as long as the integrals

∫
ē(t)ē(t + s)dt are zero, as

illustrated in figure 62.
We can also see why we underestimated the innovation variance in our first stab at a

simultaneous AR(1) interpolator. The integral of ē2(t) is appreciably larger in the true
case than in our first-order approximation. Figure 63 illustrates this fact.

20 Wrap-up and acknowledgement

We are at a good stopping point. They say that if you aim for the stars, you may strike the
moon. I didn’t reach my original goal — arbitrary interpolation into a 2D autoregressive
random field — but I found some interesting results along the way.
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Propagator shape for the simultaneous AR(1) system

Figure 61: The true propagator shape for a simultaneous AR(1) random field, obtained
through numerical integration.
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approx f(t)
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actual         [f(t-1)+f(t+1)]
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1-r2

e(t-1)
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1-r2

e(t)

Simultaneous AR(1) interpolation: true envelope shapes

e(t)e(t-1)

Figure 62: Sketch of the simultaneous AR(1) interpolation problem using the true prop-
agator function. This chart shows how successive innovations can be orthogonal even
though their envelopes overlap.
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1+r2
1-r2

actual         e(t)

tt-1 t+1
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Simultaneous AR(1) interpolation: true innovation variance

Figure 63: Sketch of the simultaneous AR(1) innovation envelopes using the true propa-
gator function.
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First of all: my idea concerning the use of a propagator for solving the interpolation
problem is sound. The only caveat is that if the model is simultaneous in nature, we
have to calculate the propagator function numerically. My approximate one-dimensional
version, equation (19.7), was not good enough to reproduce series statistics accurately.

Next up: standard interpolation methods. These can cause spurious correlations in
random fields. Of course, these are calculable, and in section [14], I show example calcu-
lations. In theory then, one can use standard interpolation methods and then reverse the
distortion to recover the original discrete autocovariance.

Next up: estimation of parameters for a simultaneous autoregressive field. In this case,
the Jacobean factor is not negligible and we cannot use the traditional analysis that looks
at the residual sum of squares. Instead, I propose a method that fits a cosine series to
the inverse square root of the estimated spectral density. As figure 21 shows, this method
only breaks down when there are double roots close to one in magnitude.

And finally: how does an autoregressive model change under rotation and scaling?
Here’s the prescription:

• Estimate (or calculate) the continuous autocovariance function.

• Sample this autocovariance on a grid with the desired rotation and scaling, averaging
if necessary according to the mode of physical sampling.

• Calculate the resulting spectral density function.

• Fit a cosine series to the inverse spectral density to get a conditional model, or to
the inverse square root of the spectral density for a simultaneous model.

As for how many terms to include in that cosine series, that can best be decided by
using an information criterion such as the Akaike information criterion [47]. My section
[15] illustrates this procedure and its efficacy (see figures 39 and 40 in particular). Does
this suggest any rotational invariants? As I show in section [17], a Taylor series of the
inverse spectral density would have rotational invariants related to its partial derivatives,
but these are impractical to compute accurately for the small sample sizes so often met
in visual texture classification. A more practical observation is that the locus of poles
of the continuous spectral distribution has the same rotation and scaling as the desired
transformation, a fact implied by the prescription given earlier.

So what’s left to do? Well, the main item left in the agenda is to calculate a general
2D propagator, given a 2D autocovariance. I looked at some simple one-dimensional cases,
but we are still a long way from a general 2D case. For me, another interesting question
is what happens when a random field is autoregressive in two spatial dimensions and one
time dimension, and in particular how it reacts to disturbances distributed over time. We
will have to save those questions for the next iteration!

This is also a good point at which to extend, once again, my sincerest thanks to Dave
Clausi, for acting both as an instructor and as a thesis supervisor. Dave is a model
professor and a great asset to the University of Waterloo.
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21 Partial fraction expansions

The transfer function of a mean-reduced AR(p) series is

X(z)
E(z)

=
1

1− a1z−1 − a2z−2 − · · · − apz−p

=
zp

zp − a1zp−1 − a2zp−2 − · · · − ap

=
zp

(z − r1)(z − r2) . . . (z − rp)
=

zp

C(z)
(21.1)

where {r1 . . . rp} are the roots of C(z) = 0. Near a particular root rk, the transfer function
is dominated by the (z − rk) term:

X(z)
E(z)

≈ z

z − rk

rk
p−1

∏
j 6=k(rk − rj)

for z ≈ rk

≈ z

z − rk

[
rk

p−1

C ′(rk)

]
for z ≈ rk

=⇒ X(z)
E(z)

=
p∑

k=1

[
rk

p−1

C ′(rk)

]
1

1− rkz−1
(21.2)

which gives the moving average equivalent directly:

x(t) =
∞∑

j=0

p∑

k=1

rk
p−1

C ′(rk)
rk

je(t− j) (21.3)

Suppose now that we need the autocovariance of the same series. The discrete spectral
density is ∣∣∣∣

X(z)
E(z)

∣∣∣∣
2

=
1

(1− r1z−1) . . . (1− rpz−1)
1

(1− r1z) . . . (1− rpz)
(21.4)

where z = ejω, and ω is the discrete frequency, and hence
∣∣∣∣
X(z)
E(z)

∣∣∣∣
2

=
1[

1 + r2
1 − r1(z + z−1)

]
. . .

[
1 + r2

p − rp(z + z−1)
] (21.5)

=⇒ (1 + r2
1) . . . (1 + r2

p)
∣∣∣∣
X(z)
E(z)

∣∣∣∣
2

=
1

(1− s1u−1) . . . (1− spu−1)
=

up

(u− s1) . . . (u− sp)
(21.6)

where u−1 = z + z−1, and s1 = r1/(1 + r2
1), . . . sp = rp/(1 + r2

p). Define D(u) = (u −
s1) . . . (u− sp), and by the results we just developed, we have

=⇒ (1 + r2
1) . . . (1 + r2

p)
∣∣∣∣
X(z)
E(z)

∣∣∣∣
2

=
p∑

k=1

sk
p−1

D′(sk)
1

1− sk(z + z−1)

=
p∑

k=1

sk
p−1

D′(sk)
1 + rk

2

1 + rk
2 − 2rk cosω

(21.7)
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Taking the discrete Fourier transform yields

(1 + r2
1) . . . (1 + r2

p)
γ(n)
σ2

=
∑

k=1

p
sk

p−1

D′(sk)
1 + rk

2

1− rk
2
rk
|n| (21.8)

where σ2 is the variance of the innovation sequence. For example, suppose we have an
AR(2) series

X(z)
E(z)

=
1

1− a1z−1 − a2z−2
=

1
(1− r1z−1)(1− r2z−1)

(21.9)

with innovation variance σ2. Then
∣∣∣∣
X(z)
E(z)

∣∣∣∣
2

=
1

[1 + r1
2 − r1(z + z−1)] [1 + r2

2 − r2(z + z−1)]

=
u2

(1 + r1
2)(1 + r2

2)(u− s1)(u− s2)

=
u2

(1 + r1
2)(1 + r2

2)D(u)
(21.10)

where u−1 = z+z−1, s1 = r1/(1+r1
2), s2 = r2/(1+r2

2), and D(u) = u2−(s1+s2)u+s1s2.
So D′(u) = 2u− (s1 + s2), and

(1 + r1
2)(1 + r2

2)
∣∣∣∣
X(z)
E(z)

∣∣∣∣
2

=
s1

s1 − s2

1
1− s1u−1

+
s2

s2 − s1

1
1− s2u−1

(21.11)

and substituting s1 = r1/(1 + r1
2), s2 = r2/(1 + r2

2) gives

∣∣∣∣
X(z)
E(z)

∣∣∣∣
2

=
1

(r1 − r2)(1− r1r2)

[
r1

1 + r1
2 − r1(z + z−1)

− r2

1 + r2
2 − r2(z + z−1)

]
(21.12)

Recalling that the discrete autocovariance resulting from a spectral density component
such as 1/[1 + r2 − r(z + z−1)] is r|n|/(1− r2), we have for this AR(2) process

γ(n)
σ2

=
1

(r1 − r2)(1− r1r2)

[
r1
|n|+1

1− r1
2
− r2

|n|+1

1− r2
2

]
(21.13)

and the corresponding marginal variance is

γ(0)
σ2

=
1 + r1r2

(1− r1r2)(1− r1
2)(1− r2

2)

=
1− a2

(1 + a2)(1− a1 − a2)(1 + a1 − a2)
(21.14)

Requiring 1 + a2 > 0, 1 − a1 − a2 > 0, and 1 + a1 − a2 > 0 gives the allowed AR(2)
parameter space directly.

Now suppose that we have instead a simultaneous AR(p) series with transfer function

X(z)
E(z)

=
1

1− β1(z + z−1)− β2(z2 + z−2)− . . .− βp(zp + z−p)
(21.15)
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To proceed further, we need zn+z−n in terms of powers of z+z−1, or equivalently, 2 cosnθ
in terms of powers of 2 cos θ. Fortunately, the Chebyshev polynomials of the first kind do
that for us [48]:

Tn(cos θ) = cosnθ

2 cos nθ = n

[n/2]∑

m=0

)(−1)m (n−m− 1)!
m!(n− 2m)!

(2 cos θ)n−2m (21.16)

which leads to the identities

z2 + z−2 = (z + z−1)2 − 2
z3 + z−3 = (z + z−1)3 − 3(z + z−1) (21.17)
z4 + z−4 = (z + z−1)4 − 4(z + z−1)2 + 2 etc.

Using these polynomials, we get

1− β1(z + z−1)− . . . −βp(zp + z−p)
= c0 + c1(z + z−1) + c2(z + z−1)2 + . . . + cp(z + z−1)p

= c0

[
1− s1(z + z−1)

] [
1− s2(z + z−1)

]
. . .

[
1− sp(z + z−1)

]

= c0(1− s1u
−1)(1− s2u

−1) . . . (1− spu
−1) (21.18)

where {c0 . . . cp} are functions of {β1 . . . βp}, {s1 . . . sp} satisfy D(u) = c0u
p + c1u

p−1 +
. . . + cp = 0, and u−1 = z + z−1. Thus, for example, a simultaneous AR(4) series would
have

[
X(z)
E(z)

]−1

= 1− β1(z + z−1)− β2(z2 + z−2)− β3(z3 + z−3)− β4(z4 + z−4)

D(u) = (1 + 2β2 − 2β4)u4 + (3β3 − β1)u3 + (4β4 − β2)u2 − β3u− β4

In the general case, we have

X(z)
E(z)

=
up

c0(u− s1) . . . (u− sp)

=
p∑

k=1

sk
p−1

D′(sk)
1

1− sk(z + z−1)

=
p∑

k=1

sk
p−1

D′(sk)
1 + rk

2

1− rk
2

1− rk
2

1 + rk
2 − rk(z + z−1)

(21.19)

where for each rk, rk/(1 + rk
2) = sk and |rk| < 1. The moving average equivalent is then

x(t) =
p∑

k=1

sk
p−1

D′(sk)
1 + rk

2

1− rk
2


e(t) +

∞∑

j=1

rk
j [e(t− j) + e(t + j)]


 (21.20)

As for the autocovariance, let

X(z)
E(z)

=
p∑

k=1

sk
p−1

D′(sk)
1 + rk

2

1 + rk
2 − rk(z + z−1)

=
p∑

k=1

dk

1 + rk
2 − rk(z + z−1)

, dk =
sk

p−1(1 + rk
2)

D′(sk)
(21.21)
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Then the corresponding discrete spectral density is
∣∣∣∣
X(z)
E(z)

∣∣∣∣
2

=
∑

k

[
dk

1 + rk
2 − rk(z + z−1)

]2

+

2
∑

k

∑

j 6=k

dkdj

[1 + rk
2 − rk(z + z−1)][1 + rj

2 − rj(z + z−1)]
(21.22)

Performing the inverse discrete Fourier transform, and making use of equations (6.8) and
(21.13), gives the following autocovariance:

γ(n)
σ2

=
∑

k

(
dk

1− rk
2

)2

rk
|n|

[
1 + rk

2

1− rk
2

+ |n|
]

2
∑

k

∑

j 6=k

djdk

(rj − rk)(1− rjrk)

[
rj
|n|+1

1− rj
2
− rk

|n|+1

1− rk
2

]
(21.23)

22 Maximum likelihood estimates for a simultaneous AR(p)
series

I will develop this argument in 1D for simplicity and clarity. Autoregressive series di-
vide into two camps: the conditional (one-sided) and the simultaneous (two-sided). A
conditional autoregressive AR(1) model with Gaussian innovations would have

[y(t)− µ] = r[y(t− 1)− µ] + e(t) i.e. x(t) = rx(t− 1) + e(t) (22.1)

where y(t) is the observed series, x(t) = y(t)−µ is the mean-reduced series, µ is the series
mean, and e(t) ∼ N(0, σ2) are the innovations. Letting X(z) and E(z) be the z-transforms
of x(t) and e(t) respectively, we have

X(z) = (1− rz−1)−1E(z)
= (1 + rz−1 + r2z−2 + . . .)E(z) (|r| < 1)

→ x(t) = e(t) + re(t− 1) + r2e(t− 2) + . . .

→ var[x(t)] = (1 + r2 + r4 + . . .)σ2

= σ2/(1− r2) (22.2)

Thus the marginal series variance is σ2/(1 − r2). If we select a group of n successive
variates from the series, starting at index t + 1, then the first will have an apparent
marginal probability density of N(µ, σ2/(1 − r2)). Collecting the mean-reduced sample
{x(t+1), x(t+2), . . . x(t+n)} and corresponding innovations {e(t+1), e(t+2), . . . e(t+n)}
into vectors ~x and ~e respectively, their relation is




√
1− r2 0 · · · 0 0
−r 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −r 1







x1

x2
...

xn


 =




e1

e2
...

en


 i.e. L~x = ~e (22.3)
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and the corresponding probability density is

p(~e) =
1

(2π)n/2σn
exp(−1

2
~eT~e)

p(~x) =
1

(2π)n/2σn

√
| detQ| exp(−1

2
~xT Q~x) (22.4)

where Q = LT L is the precision matrix. Forming the maximum likelihood equation for
the autoregressive parameter r, we get (see section [9] above)

0 =
∂

∂r


(1− r2)−1/n


(1− r2)x1

2 +
n∑

j=2

(xj − rxj−1)2





 (22.5)

So the usual residual sum of squares is modified by two effects of order 1/n: the Jacobean
factor (1− r2)−1/n and the edge term (1− r2)x1

2. If n À 1 and |r| < 1− 1/
√

n, then we
can drop both factors and get the usual estimator

r̂ = [
n−1∑

j=1

xj+1xj ]/[
n−1∑

j=1

xj
2] (22.6)

For simultaneous autoregressions, things are not so simple: the Jacobean factor is no
longer of order 1/n. To illustrate this, suppose we have a simultaneous AR(1) model of
the form

y(t)− µ = β[y(t + 1)− µ] + β[y(t− 1)− µ] + e(t) (22.7)

where x(t) = y(t) − µ is the mean-reduced series and e(t) ∼ N(0, σ2). Furthermore, we
will make the circulant approximation so that for a finite sample of n successive variates,
we have




1 −β 0 · · · 0 −β
−β 1 −β · · · 0 0
...

...
...

. . .
...

...
−β 0 0 · · · −β 1







x1

x2
...

xn


 =




e1

e2
...

en


 i.e. S~x = ~e (22.8)

The corresponding probability density is

p(~x) =
1

(2π)n/2σn

√
| detQ| exp(−1

2
~xT Q~x) (22.9)

where the precision matrix is now Q = S2. As for detQ, first note that if

L =




1 0 · · · 0 −r
−r 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −r 1


 (n rows) (22.10)

then detL = 1− rn, and

LT L =




1 + r2 −r 0 · · · 0 −r
−r 1 + r2 −r · · · 0 0
...

...
...

. . .
...

...
−r 0 0 · · · −r 1 + r2


 (n rows) (22.11)
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So setting β = r/(1 + r2), we get

detLT L = (1− rn)2 = (1 + r2)n detS

→
√

det Q = detS =
(1− rn)2

(1 + r2)n
(22.12)

and putting that in terms of β gives

√
det Q =

[
1− [(1−

√
1− 4β2)/(2β)]n

]2

[
1 + [(1−

√
1− 4β2)/(2β)]2

]n (22.13)

Now when we form the maximum likelihood equation for β, the Jacobean factor is

(detQ)−1/n =

[
1− [(1−

√
1− 4β2)/(2β)]n

]−4/n

[
1 + [(1−

√
1− 4β2)/(2β)]2

]−2 (22.14)

which is now of order 1 in β, not of order 1/n, so we can’t drop it.
What to do? We’ll reformulate the problem. Suppose first that the precision matrix

Q corresponding to a simultaneous AR(p) system is circulant with base

~q = [b0,−b1, . . .− bp, 0, . . . 0,−bp, . . .− b1] (22.15)

That gives us one extra unknown, so we must eventually impose one constraint on {b0, . . . bp}.
The precision matrix is then diagonalized by the discrete Fourier transform:

[F ]km =
1√
n

exp(−2πj
km

n
), 0 ≤ k, m ≤ n− 1

Q = FΛFH , FH = F−1

Λ =
√

n diag(F~q) (22.16)

Our probability density was

p(~x) =
1

(2π)n/2σn

√
| detQ| exp(−1

2
~xT Q~x) (22.17)

Here we have to note that

~xT Q~x = ~xT (FΛFH)~x = (FH~x)HΛ(FH~x)

=
n−1∑

k=0

λ(k)|[FH~x]k|2 =
n−1∑

k=0

λ(k)In(k) (22.18)

which is the inner product of the eigenvalue sequence of Q and the n-point periodogram of
~x. Here λ(k) =

√
n[F~q]k. The determinant of the precision matrix Q is the product of its

eigenvalues, so if we can hold that product constant while minimizing
∑

λ(k)|[FH~x]k|2,
we’re home-free!
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So here’s the battle plan: the periodogram {In(k), 0 ≤ k ≤ n− 1} does not depend on
the precision base {b0,−b1,−b2, . . .− b2,−b1}, so we may scale it arbitrarily. We will scale
it so that the average logarithm is zero (i.e. the geometric mean is one):

Ĩn(k) = [scale factor]In(k) = CGNIn(k)
n−1∏

k=0

Ĩn(k) = 1,
n−1∑

k=0

log Ĩn(k) = 0 (22.19)

In this case, I say that the sequence Ĩn(k) is geometrically normalized. We will constrain
the eigenvalue sequence of Q, namely λ(k) =

√
n[F~q]k, to be geometrically normalized

also. Let m be our Lagrange multiplier; then the minimization target is

T =
n−1∑

k=0

λ(k)Ĩn(k)−m

n−1∑

k=0

log λ(k) (22.20)

If we estimate all possible autoregressive parameters {b0, b1, . . .}, then we merely accom-
plish a change of basis between the precision matrix base ~q and its Fourier transform
λ(k) =

√
n[F~q]k, so we can minimize the target with respect to the eigenvalue sequence

{λ(k)} as opposed to the base ~q. Doing so gives the normal equations

∂T

∂m
= 0 →

n−1∑

k=0

log λ(k) = 0

∂T

∂λ(k)
= 0 → Ĩn(k)− m

λ(k)
= 0 (22.21)

hence Ĩn(k)λ(k) = m. But the product of two geometrically normalized sequences is also
geometrically normalized, so

0 =
n−1∑

k=0

log[Ĩn(k)λ(k)]

→ 0 = n log m, m = 1, λ(k) =
1

Ĩn(k)
(22.22)

Expressing that in words: the maximum likelihood estimate of the precision matrix base
is obtained by fitting a cosine series to the inverse of the geometrically normalized sample
periodogram. Expressing that as another equation:

√
n[F~q]k = C−1

GN |[FH~x]k|−2 (22.23)

where CGN is the scale factor needed to geometrically normalize the sample periodogram
In(k) = |[FH~x]k|2.

For a simultaneous autoregressive model, the observation and innovation vectors are
related by a symmetric matrix S:

S~x = ~e → ~eT~e = ~xT S2~x, Q = S2 (22.24)

Applying the circulant approximation to both the model matrix S and the precision matrix
Q, we find that √

n[F~s]k = [Ĩn(k)]−1/2 (~s = base of S) (22.25)
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which means that the maximum likelihood estimate of the model matrix base is obtained
by fitting a cosine series to the inverse square root of the geometrically normalized sample
periodogram.

23 Conditional AR(2) propagator

Let’s start with the general form of the conditional AR(2) transfer function, namely

X(z)
E(z)

=
1

1− r1z−1

1
1− r2z−1

(23.1)

where X(z) and E(z) are the discrete z-transforms of the mean-reduced series and inno-
vation series, respectively. The corresponding spectral density and autocovariance are

∣∣∣∣
X(ω)
E(ω)

∣∣∣∣
2

=
1

1 + r1
2 − 2r1 cosω

1
1 + r2

2 − 2r2 cosω
(23.2)

=
1

(r1 − r2)(1− r1r2)

[
r1

1 + r1
2 − 2r1 cosω

− r2

1 + r2
2 − 2r2 cosω

]

1
σ2

γ(s) =
1

(r1 − r2)(1− r1r2)

[
r1

s+1

1− r1
2
− r2

s+1

1− r2
2

]
= D1r1

s + D2r2
s [integral s]

where σ2 is the innovation variance, and without loss of generality we will assume that
r1 > r2. Let’s also assume that the continuous propagator g(v) is real-valued and causal
in nature. Then

1
σ2

γ(u) =
1

(r1 − r2)(1− r1r2)

[
r1

u+1

1− r1
2
− r2

u+1

1− r2
2

]
= D1r1

u + D2r2
u [real u]

γ(u) =
∫ ∞

0
g(v)g(v + u)dv (23.3)

1
σ

g(v) = A1r1
v + A2r2

v

→ 1
σ2

γ(u) =
∫ ∞

0
(A1r1

v + A2r2
v)(A1r1

v+u + A2r2
v+u)dv

and the corresponding equations for A1 and A2 are

A1
2

2p1
+

A1A2

p1 + p2
= D1 =

r1

(r1 − r2)(1− r1r2)(1− r1
2)

A1A2

p1 + p2
+

A2
2

2p2
= D2 =

−r2

(r1 − r2)(1− r1r2)(1− r2
2)

p1 = − log r1, p2 = − log r2, p1 < p2 (23.4)

Now set A1 = R cos(Ψ/2), A2 = R sin(Ψ/2), and m = 2/R2. Then the equation for the
{Ψ,m} pair is
[

1/(2p1) 1/(p1 + p2)
−1/(2p2) 1/(p1 + p2)

] [
cosΨ
sinΨ

]
= m

[
D1

D2

]
−

[
1/(2p1)
1/(2p2)

]

→
[

cosΨ
sinΨ

]
= m

[
2p1p2(D1 −D2)/(p1 + p2)

p1D1 + p2D2

]
+

[
(p1 − p2)/(p1 + p2)

−1

]

= m~a +~b (23.5)
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(cosψ, sinψ)b

1

Conditional AR(2) propagator:  two real roots

case r2≈r1
(-1,-1)

x

case r2≈0y

Figure 64: Geometric interpretation of the quantities involved in forming a conditional
AR(2) propagator.

where ~a and ~b depend on r1 and r2 only. This equation has a geometric interpretation,
which I have illustrated in figure 64.

The algorithm for calculating the AR(2) propagator is then:

(1) − compute ~a,~b from r1, r2

(2) − m+ = larger root of |m~a +~b| = 1

(3) − solve
[

cosΨ
sinΨ

]
= m+~a +~b for Ψ

(4) − g(v) = σ

√
2

m+
(r1

v cos
Ψ
2

+ r2
v sin

Ψ
2

)

Now let’s consider the case in which the two autoregressive roots form a conjugate
pair, i.e. r1 = re+jθ, r2 = re−jθ, and 0 ≤ θ ≤ π. Then the autocovariance is

1
σ2

γ(u) =
1

1− r2

ru

1− 2r2 cos 2θ + r4

[
sin(u + 1)θ − r2 sin(u− 1)θ

sin θ

]
(23.6)

Now define the pair {R, Ψ0} so that

R cos Ψ0 = (1 + r2) sin θ, R sin Ψ0 = (1− r2) cos θ

→ R2 = 1− 2r2 cos 2θ + r4 = (1 + 2r cos θ + r2)(1− 2r cos θ + r2)

→ 1
σ2

γ(u) =
1

1− r2

ru

R sin θ
cos(uθ −Ψ0) (23.7)

Now, suppose that the continuous propagator g(v) is real-valued and causal in nature:

1
σ

g(v) = rv(A cos vθ + B sin vθ) (23.8)

→ 1
σ2

γ(u) =
∫ ∞

0
rv(A cos vθ + B sin vθ) •

rv+u[A cos(v + u)θ + B sin(v + u)θ]dv
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θ
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p
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2

θ
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1 =

A
2
 +
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2

ψ1

A=   R1 cos ψ1/2

ψ2

ψ0

Conditional AR(2) propagator:  triangular relationships

B=   R1 sin ψ1/2

Figure 65: Definition and relationships of quantities entering into the calculation of the
conditional AR(2) propagator for the case of conjugate roots.

We will transform the pair {A,B} into the pair {R1, Ψ1} and define an additional angle
Ψ2 as illustrated in figure 65. With these definitions, we have

1
1− r2

1
R sin θ

[
cosΨ0

sinΨ0

]
=

R1

4p

[
1 + cos Ψ2 cos(Ψ1 −Ψ2)

cosΨ2 sin(Ψ1 −Ψ2)

]
(23.9)

where p = − log r. This also has a geometric interpretation, which I have illustrated in
figure 66.

From figure 66, we can calculate that

0 = R0
2 − 2R0 cosΨ0 + sin2 Ψ2

→ R0 = cos Ψ0 +
√

cos2 Ψ0 − sin2 Ψ2 (23.10)

The algorithm for constructing g(v) is then:

(1) − solve R cosΨ0 = (1 + r2) sin θ and R sinΨ0 = (1− r2) cos θ for R and Ψ0

(2) − solve tanΨ2 =
θ

(− log r)
for Ψ2

(3) − solve tanΨ0 =
cos Ψ2 sin(Ψ1 −Ψ2)

1 + cosΨ2 cos(Ψ1 −Ψ2)
for Ψ1

(4) − R0 = cos Ψ0 +
√

cos2 Ψ0 − sin2 Ψ2

(5) − R1 =
4(− log r)

R0

1
1− r2

1
R sin θ

(6) − 1
σ

g(v) =
√

R1r
v cos(vθ − Ψ1

2
)

Now that we have a continuous propagator, it’s time to put it to use. In particular, we
will use this function to interpolate into a conditional AR(2) random field. The version that
interests me here is the last one, in which the autoregressive roots are complex conjugates.
The propagator takes the form

g(v) = [const]rv cos(vθ − φ) = [const]e−pv cos(vθ − φ) (23.11)
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Conditional AR(2) propagator: conjugate geometry

Figure 66: Geometric interpretation of the quantities involved in forming a conditional
AR(2) propagator in the case of conjugate roots.

where p = − log r, φ = Ψ1/2, the autoregressive roots are r exp(jθ) and r exp(−jθ), and
Ψ1 is defined as in the previous discussion. Let’s say that we know x(t) and x(t + 1), and
wish to create a field value x(t+α) in between them which preserves the process statistics.
Figure 67 illustrates the interpolation problem.

Suppose now that we wish to choose the linear combination of the envelopes rt cos(tθ−
φ) and rt+1 cos(tθ + θ−φ) that best matches the envelope rt+α cos(tθ + αθ−φ) for t < 0.
Then we would need to have the following equation identically satisfied:

g0r
t cos(tθ − φ) + g1r

t+1 cos(tθ + θ − φ) = rt+α cos(tθ + αθ − φ), t < 0 (23.12)

Equating coefficients of cos(tθ − φ) and sin(tθ − φ) gives

g0 + g1r cos θ = rα cos(αθ)
−g1r sin θ = −rα sin(αθ) (23.13)

and the solution is [
g0

rg1

]
=

rα

sin θ

[
sin(1− α)θ

sinαθ

]
(23.14)

Armed with these equations, we can now give a geometrical interpretation of the series
variance and interpolation variance in terms of envelope functions, which I have illustrated
in figure 68.

An important case is that in which p = − log r and θ are both near zero, i.e. the
random field is highly correlated. In this case we get

1
σ

g(v) =
1
θ
r−v sin(−vθ) (v <= 0) (23.15)

1
σ2

γ(u) =
1

4pθ

r|u|

p2 + θ2
(θ cos |u|θ + p sin |u|θ)
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Conditional AR(2) interpolation: continuous envelopes

envelope 
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Figure 67: Setting up the interpolation problem for a conditional AR(2) random field.
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t-1 t
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Conditional AR(2) envelopes: conjugate root case, small θ

Figure 68: A sketch of the innovation variance for the conditional AR(2) interpolation
problem when θ < π/2.
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Figure 69: In the case of conjugate autoregressive roots, the conditional AR(2) propagator
may not exist. Here I have sketched the limiting case.

and the second-order expansions for g0 and g1 are

g0 = (1− α)
[
1− αp +

1
2
α2p2 +

1
6
θ2[1− (1− α)2]

]

g1 = α

[
1 + (1− α)p +

1
2
(1− α)2p2 +

1
6
θ2(1− α2)

]
(23.16)

Before leaving the conditional AR(2) propagator, we must consider whether it always
exists. In particular, when the roots form a conjugate pair, there is indeed a limiting case,
which figure 69 illustrates.

Here we have Ψ0 + Ψ2 = π/2, tan Ψ0 tanΨ2 = 1, and consequently

θ

p
=

(1 + r2) sin θ

(1− r2) cos θ
=

1 + r2

1− r2
tan θ (p = − log r)

→ 1
(− log r)

1− r2

1 + r2
=

1
p

tanh p =
1
θ

tan θ (23.17)

For a solution to exist, we need

Ψ0 <
π

2
−Ψ2 → 1

p
tanh p <

1
θ

tan θ (23.18)

So we’re okay for θ ≤ π/2, but larger values of θ are problematic. Suppose that we
attempt to solve the interpolation problem in the manner described above, in other words
by postulating an interpolant of the form

x(t + α) = g0x(t) + g1x(t + 1) + e(t, α) (23.19)

where x(t) and x(t + 1) are successive reduced observations from the conditional AR(2)
series under study, and e(t, α) is a quantity whose variance we would like to minimize.
The solution obtained above was

[
g0

rg1

]
=

rα

sin θ

[
sin(1− α)θ

sinαθ

]
(23.20)
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Figure 70: For the case of conjugate roots, the conditional AR(2) interpolant may have
an innovation variance greater than that of the original series if θ > π/2.

which is innocuous enough for small values of θ, as figure 68 shows. However, the approxi-
mation definitely gets problematic for π/2 < θ < π. Figure 70 is a chart showing one such
case, where the variance of the interpolation appears to be greater than that of the series
itself.

In fact, if we plot out the continuous autocovariance as specified by equation (23.6), as
I have done in figure 71, we see that the function becomes non-physical when θ approaches
π. The values at integral u are fine, but those in between are suspect. The bottom line
is simple: we can use this method of interpolating the series with confidence only when
θ < π/2.

24 The skew-separable Fourier transform

The aim of this section is to demonstrate that the 2D Fourier transform retains its form
under a shear transformation of the coordinate axes, a fact that I use in section [16]. First,
let’s define the quantities of interest. I imagine a linear transform that takes the usual
(x, y) coordinates into coordinates (x1, x2), where the new axes are at angles θ1 and θ2

with respect to the original x axis. Figure 72 illustrates this state of affairs.
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Figure 71: The continuous autocovariance that we assumed for a conditional AR(2) series
in equation (23.6) leads to non-physical result when θ is close to π.
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Skew-separable coordinates: spatial transform

Figure 72: A geometric description of skewed coordinates in two dimensions.
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The corresponding coordinate transformations are
[

x
y

]
=

[
cos θ1 cos θ2

sin θ1 sin θ2

] [
x1

x2

]

[
x1

x2

]
=

1
sin(θ2 − θ1)

[
sin θ2 − cos θ2

− sin θ1 cos θ1

] [
x
y

]

=

√
x2 + y2

sin(θ2 − θ1)

[
sin(θ2 − θ)
sin(θ − θ1)

]
(24.1)

Suppose now that our target function is separable in the sheared coordinate system, i.e.

f(x, y) = p1(x1)p2(x2) (24.2)

Then the standard 2D Fourier transform is:

F (ωx, ωy) =
∫ ∞

−∞

∫ ∞

−∞
p1(x1)p2(x2) exp[−j(xωx + yωy)]dxdy (24.3)

and if we set [
ω1

ω2

]
=

[
cos θ1 sin θ1

cos θ2 sin θ2

] [
ωx

ωy

]
(24.4)

then we get

F (ωx, ωy) = sin(θ2 − θ1)
∫ ∞

−∞

∫ ∞

−∞
p1(x1)p2(x2) exp[−j(x1ω1 + x2ω2)]dx1dx2

= sin(θ2 − θ1)P1(ω1)P2(ω2) (24.5)

where P1(ω1) and P2(ω2) are the standard 1D Fourier transforms of p1(x1) and p2(x2)
respectively. Taking the inverse Fourier transform reproduces our starting point, namely
that f(x, y) = p1(x1)p2(x2). The bottom line: a separable spectral density implies a
separable autocovariance, even if the coordinate axes are skewed. Why is that possible?
In short, because the shear transforms that we developed preserve both dot products and
phase space volume elements. To see this more clearly, consider the basic 2D Fourier
transform set:

f(~x) =
∫

f(~s)δ2(~x− ~s)d2~s (24.6)

=
1

4π2

∫ ∫
f(~s) exp[j~ωT (~x− ~s)]d2~ωd2~s

=
1

4π2

∫ [∫
f(~s) exp(−j~ωT~s)d2~s

]
exp(+j~ωT~x)d2~ω

Any transform that preserves dot products ~ωT~x and phase space elements d2~ωd2~s will
leave the Fourier transform untouched. In particular, if we have x̄ = L~x, ω̄ = G~ω, and
GT L = I2 where I2 is the 2 by 2 identity matrix, then we have

f(x̄) =
1

4π2

∫ [∫
f(s̄) exp(−jω̄T s̄)d2s̄

]
exp(+jω̄T x̄)d2ω̄ (24.7)
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Figure 73: A geometric description of the skewed frequency coordinates that correspond
to the skewed spatial coordinates described in equation (24.1).

In the case of the shear transform mentioned earlier, we had

GT L =
[

cos θ1 cos θ2

sin θ1 sin θ2

]
1

sin(θ2 − θ1)

[
sin θ2 − cos θ2

− sin θ1 cos θ1

]
= I2 (24.8)

and so the 2D Fourier transform is valid in the skewed coordinate system. One thing I
should point out is that under these transformations, the (x1, x2) and (ω1, ω2) coordinate
systems do not necessarily overlap each other. Indeed, the frequency transform is a shear
followed by a contraction. Figure 73 summarizes this state of affairs.

[
ω1

ω2

]
=

[
cos θ1 sin θ1

cos θ2 sin θ2

] [
ωx

ωy

]
(24.9)

[
ωx

ωy

]
=

1
sin(θ2 − θ1)

[
sin θ2 − sin θ1

cos θ2 cos θ1

] [
ω1

ω2

]

=
1

sin(θ2 − θ1)

[
cos(θ2 − π

2 ) cos(θ1 + π
2 )

sin(θ2 − π
2 ) sin(θ1 + π

2 )

] [
ω1

ω2

]
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