Vehicle Tracking in Occlusion and Clutter

by

KURTIS NORMAN MCBRIDE

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Master of Applied Science
in
Systems Design Engineering

Waterloo, Ontario, Canada, 2007
(© Kurtis McBride 2007

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

i

Abstract

Vehicle tracking in environments containing occlusion and clutter is an active re-
search area. The problem of tracking vehicles through such environments presents a
variety of challenges. These challenges include vehicle track initialization, tracking
an unknown number of targets and the variations in real-world lighting, scene con-
ditions and camera vantage. Scene clutter and target occlusion present additional
challenges. A stochastic framework is proposed which allows for vehicles tracks to
be identified from a sequence of images. The work focuses on the identification of
vehicle tracks present in transportation scenes, namely, vehicle movements at in-
tersections. The framework combines background subtraction and motion history
based approaches to deal with the segmentation problem. The tracking problem is
solved using a Monte Carlo Markov Chain Data Association (MCMCDA) method.
The method includes a novel concept of including the notion of discrete, indepen-
dent regions in the MCMC scoring function. Results are presented which show that
the framework is capable of tracking vehicles in scenes containing multiple vehicles
that occlude one another, and that are occluded by foreground scene objects.

1ii

Acknowledgments

I would like to express my sincerest appreciation to Professor David Clausi and Pro-
fessor Paul Fieguth for their support and guidance in both scholastic and personal
matters over the course of my Masters research.

I would also like to acknowledge the support of the Ontario Centres of Excellence
(OCE), formerly Communications and Information Technology Ontario (CITO),
and BA Consulting Group for their financial support of this research.

v

Dedication

This thesis is dedicated to the belief that a person should be measured less by what
they have already achieved and more by what they aspire to become.

Contents

1 Introduction 1
1.1 Problem Context, 1
1.2 Problem Overview 2
1.3 Thesis Contribution and Organization 3

2 Background 4
2.1 General Multi-Target Tracking 4
2.2 Background Subtractiono 0oL 6
2.3 Motion Estimationo oo 9
2.4 Clustering Techniques 11

24.1 K-Means Clustering 11
2.4.2 Competitive Clustering 12
2.4.3 Nearest Neighbour 13
2.5 Connected Components Clustering 15
2.6 Mathematical Morphology 17
2.7 Density Propagation o000 18
2.7.1 The Kalman Filter 18
2.7.2 Conditional Density Propagation 19
2.8 Probabilistic Data Association 22
2.9 Conclusion 24

vi

3 Target Tracking Algorithm

3.1 Tracking Algorithm Overview
3.2 Tracking Algorithm Notation
3.2.1 Image Sequence
3.2.2 Image Feature Graph
3.23 Targets
3.24 Tracks
3.2.5 Notation Overview
3.3 Scale Space Feature Extraction
3.4 Hierarchical Motion Estimation
3.5 Delaunay Triangulation Clustering
3.6 Tracking Model
3.7 Monte Carlo Markov Chain Data Association
3.8 Conclusions

4 Experimental Results

4.1 Segmentation Lo
4.2 Tracking
4.3 Track Identification

5 Conclusion
5.1 Concluding Remarks

5.2 Future Research Directions

vil

25
25
28
28
29
30
30
30
31
33
35
37
43
46

47
48
ol
95

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3

Example Transportation Scenes 2
Potential Vehicle Movements at a T-Intersection 5
Histogram of Bush Blowing in the Wind 7
Competitive Clustering Results 14
Connected Components Clustering 16
Connected Components Clustering Result 16
Morphology Image Operation Result 18
Truncated Gaussian used in Observational Density 21
Sample Gating Example 000 23
Overview of Proposed Tracking Algorithm 26
Target-Track Structure 31
Motion Estimation Result 35
Delaunay Triangulation 36
Poisson Distribution L. 40
Binomial Distributiono 0oL 41
Hlustration of MCMC Moves 44
Proposed Modified Merge Move 46
Background Subtraction 000 49
Motion History 50
Vehicle Segmentation 0oL 50

4.4
4.5
4.6
4.7
4.8
4.9

5.1
2.2

MCMC Tracking Results 52

Transportation Scene Configuration User Interface 53
MCMC Region Map o 54
Real-World Tracking Results B}
Turning Movement Diagram 56
Track Split Errors 58
Left-Turn at an Intersection 62
Left-Turn at an Intersection 62

X

List of Tables

4.1 Bi-Directional Mid-Block Vehicle Counting Results

4.2 Roundabout Vehicle Counting Results

Glossary of Terms

i,J
i,J
Qi j
Tk,i,j
Mg
Ok,i,j
¢i,j
Ui,j

Wi, j)

current time index

total time window of interest

pixel indexes

Pixel-based Gaussian mixture background scene model at pixel 7,5
Number of modes in the Gaussian mixture model centered on pixel i,j
Weight of mode ¢ in the background model at pixel ¢,7

The mean of mode ¢ in the background model at pixel 7,5

The variance of mode ¢ in the background model at pixel 4,5
Discrete state (foreground/baground) of pixel 4,7

Velocity at pixel 1,7

Neighbourhood search window centred on pixel 7,j

Energy minimization function

Number of samples in k** cluster

n! sample in k™ cluster

Set of particles representing a time dynamic stochastic process
Single particle in the set T

Number of particles in the set T

Set of weights for each of the particles in the set T

Single weight in the set I"

Set of all images in an image sequence

Single image in the set Fr

Single pixel in the image F(t)

Set of all information region sets in the image sequence Fr
Set of information regions at time ¢

Single information region in the set S(¢)

Number of information regions in the set S()

Association between information regions

Set of all target sets in the image sequence Fr

Set of targets at time ¢

x1

Single target in the set R()

Number of targets in the set R(t)

Set of all target tracks in the set Fr
Single target track in the set Qp
Number of target tracks in the set Q)p
Number of new targets at time ¢
Number of terminated targets at time ¢
Number of detected targets at time ¢
Number of falsely identified targets at time ¢
Gaussian image kernel with variance o
Difference of Gaussian image pyramid
Number of levels in an image pyramid
Joint association between R; and (),
Set of all image regions in Fr

Single region in the set R

Discrete partition of selected from &;
Number of target tracks at time ¢
Probability of target track termination
Probability of target track detection
False target track detection rate
Target track birth rate

Sampler move selection probability

x1i

Chapter 1

Introduction

1.1 Problem Context

The work presented in this thesis was motivated in part by a need identified in the
urban transportation planning industry to reduce the cost of collecting transporta-
tion data by replacing manual methods with computer vision tracking algorithms.
In order to understand and investigate the operation of transportation networks,
the urban transportation planning industry engages in traffic monitoring activities.
These engagements involve manually capturing information about the operation of
a given transportation environment. Examples include intersections, drive-throughs
and highways, as shown in Figure 1.1. The use of computer vision tracking tech-
nology to address this identified need has the potential to greatly reduce the costs
traditionally associated with manual counting methods. In addition to the poten-
tial for cost savings which arise from using computer vision tracking technology
to collect traffic data, the technology is capable of providing more accurate traffic
data as compared to manual methods. The traffic engineering community gener-
ally recognizes that the long duration, high vehicle volumes and mundane nature
of manually collecting traffic data result in inconsistent and inaccurate data.

The objective of this thesis is to propose and develop a stochastic framework which
will allow target tracks to be identified from a sequence of images. The stochas-
tic framework is based on a data-oriented combinatorial optimization method for
solving the Monte Carlo Markov Chain data association problem [42] and Bayesian
recursion [47]. The method takes a deferred logic approach, meaning that the as-
sociation of targets between frames considers all available data for a given time

Figure 1.1: Example Transportation Scenes: (a) Highway, (b) Intersection, (c)
Drive-through.

period. This allows the initialization of a new track to be based on the entire his-
tory of observations for a given track. The framework presented is computationally
efficient, and the Monte Carlo nature lends itself to application in parallel com-
puting. In particular, this thesis will focus on the identification of tracks which
pertain to real-world transportation scenes. The framework was formulated to op-
erate under conditions where vehicles exist under conditions of occlusion and scene
clutter. Although the thesis will focus primarily on the identification of vehicle
movements, the stochastic framework presented is flexible enough to track a wide
range of visually identifiable events, such as people in urban and retail environments
[20].

1.2 Problem Overview

The topic of target tracking is one which has received a great deal of recent dis-
cussion in the computer vision literature. Popular methods include kernel-based
approaches [8], [10], [28], particle filtering based approaches [13], [15], [21] and ap-
proaches based on data association [1], [12], [41]. These methods are discussed in
more detail in Section 2.3, Section 2.5 and Section 2.6 respectively.

Kernel-based methods can be effective in relatively simple tracking applications;
however, they tend to break down when the object being tracked has a tendency to
deform rapidly between frames, or to become occluded over the course of the target’s
existence in a given scene. Depending on the type of kernel metric selected, the
effects of shadowing can also cause kernel based tracking methods to break down.

Particle-based tracking methods have the advantage that they can simultaneously

represent multiple hypotheses about a target’s state. Depending on the rate of de-
cay that is selected in the algorithm, particle methods also have the ability to keep
a memory about the evolving state of an object over subsequent images. This can
be useful for resolving targets through situations of occlusion. The disadvantage of
these methods is that they require relatively accurate target initialization and ter-
mination, which makes tracking an unknown number of targets in a complex scene
difficult. To approximate a number of possible hypotheses about a given target
location successfully, depending on the model used and method of parametrization,
these methods can require the use of many particles. This makes them computa-
tionally intense, meaning that real-time performance suffers.

Methods based on data association are effective at target tracking if the associa-
tions are performed over multiple image frames in sequence, although this can lead
to computational infeasibility if the association is conducted using a brute force
approach. These computational issues are further exacerbated as the number of
targets that are being tracked increases. Methods such as gating [11] can be em-
ployed in order to reduce the computational requirements. Methods based on a
Monte Carlo approaches to data association can also greatly reduce the computa-
tional requirements [33]. Monte Carlo data association will be the focus of the
tracking algorithm presented in this work.

1.3 Thesis Contribution and Organization

The primary contribution of this thesis is the presentation of a stochastic framework
for generalized vehicle tracking based on Monte Carlo Markov Chain Data Associ-
ation (MCMCDA). The framework can automatically initialize and terminate an
unknown number of tracks in scenes containing regions of occlusion and noise in the
form of scene clutter. Scene clutter can give rise to false alarms about the presence
of targets in a scene. The implementation that is discussed also utilizes scale-space
[24] and Delaunay clustering [35], which, together with MCMCDA, represent a
unique approach to vehicle tracking.

This thesis is organized into three main discussion chapters. First, a background
chapter (Section 2), provides insights into the various mathematical concepts that
contributed to the formulation of this thesis. Second, a tracking chapter (Section 3),
discusses the proposed tracking framework and its implementation considerations.
Finally, an application chapter (Section 4) highlights how the proposed framework
can be applied to vehicle tracking.

Chapter 2

Background

2.1 General Multi-Target Tracking

Multi-target object tracking is an important, unsolved problem in many areas of
computer vision. Object tracking has application in a range of industries and ap-
plications. Examples include surveillance [33], vehicle tracking [29] and pedestrian
tracking [43]. In this chapter, many of the concepts which are central to multi-target
tracking will be discussed.

The literature about target tracking focuses on two major areas: target detection
[14] and target-track association [32]. Target detection is generally conducted in one
of two ways — either using a physical model of the target of interest [5] or using some
notion to distinguish foreground from background [23]. Both approaches have their
own inherent advantages and disadvantages. Background subtraction is the focus
of Section 2.2. Motion estimation is discussed in Section 2.3. Various clustering
strategies are discussed in Section 2.4. Probability density propagation is the focus
of Section 2.5. Target-track data association methods are discussed in Section 2.6.

Methods based on physical models of a target can be effective; however, the models
are difficult to apply to generic target tracking problems as the specific size and
structure of the target being tracked may not be known. Additionally, since an
image in an image sequence is a two-dimensional projection of a scene that is
actually three-dimensional, it is often difficult to know which aspect of a given
physical model to employ to a segmentation of the given object. In environments
where the position and angle of the camera can be controlled or estimated, and

where the type of object being tracked is known, physical model-based methods are
effective as the computational complexity involved with matching target segments
to models can be constrained. In generalized target tracking applications, to assert
knowledge about the relative angle between the camera and the road plane, or the
specific structure of a given target being tracked is not always practical.

Once a target has been detected using either background subtraction or a physical
model-based approach, a feature vector can be generated about the detected target.
Feature vectors from subsequent frames can then be evaluated using a data asso-
ciation approach which chains together feature vectors to form tracks. A variety
of data association methods exist, such as JPDA [11] or Markov chain based data
association [16]. One of the difficulties faced with generalized object tracking is
that often the number of targets being tracked at any given time is not known.

Figure 2.1 illustrates the allowable vehicle movements that exist for a single vehicle
at a T-intersection. The figure illustrates a T-intersection where collecting infor-
mation about six of the possible vehicle movements is desired: left-out, right-out,
left-in, left-out and the two through movements. An understanding of the number
of times that each of these movements occurs is important when urban planners
are making operational design decisions about a given intersection. The various
movements that are illustrated show the vehicle tracks which are identified a priori,
and are desired to match against vehicle tracks that can be observed in the scene.

Figure 2.1: Potential Vehicle Movements at a T-Intersection: Left-out and right-
out movements are shown in red. Left-in and left-out movements are show in green.
The two possible through movements are shown in blue.

2.2 Background Subtraction

A key element of many target tracking algorithms is accurate background subtrac-
tion. Background subtraction [26] is used primarily to identify image regions that
contain foreground information. Foreground regions of an image include all regions
that are made up of non-static elements of the scene (i.e., vehicles). A key element
of background subtraction involves maintaining an accurate background model of
an image sequence, as the background in real-world scenes tends to be dynamic.
The background generally changes due to variation in lighting conditions, camera
vibration and environmental conditions. Depending on how a background model
is maintained, objects that persist in the scene can also change the background
model.

Background subtraction is a commonly used method for isolating pixels which cor-
respond to foreground objects of interest [52]. This inherently assumes that a
foreground object of interest is sufficiently different from the background. Assum-
ing that this assumption is valid and that an accurate notion of what makes up the
background elements in a scene can be maintained, isolating foreground elements
from the rest of the scene is possible. In the literature about background subtraction
there are two main approaches that are discussed: parametric approaches (typically
based on assumptions about the Gaussianity of the background at a given pixel [37])
and non-parametric approaches (typically based on nearest neighbor methods [19]).
In both cases, a pixel is considered to be part of the foreground if it is beyond a
certain threshold distance away from the model at any given time, as discussed in
[52]. The parameterized version of this concept is conveyed in (2.4).

A variety of challenges exist when trying to accurately maintain a model of the back-
ground in a sequence of images. For the purposes of this work, an assumption is
made that all image sequences are captured using a static camera position. In prac-
tical applications this may not always be the case; therefore, an ideal background
subtraction model should handle translation and rotation in camera position. In
addition, the background may consist of multiple scene elements at a particular
pixel, meaning that the background is not uni-modal. An example of this would be
a green bush blowing in the wind in front of a grey road. A background model that
is able to model multiple modes per pixel would result in both the grey and green
scene elements being considered background, while other coloured pixels would be
considered foreground. Finally, the ideal background model is dynamic and able to
handle slow variations in the background conditions, as well as be able to identify
when static background objects which may have been present at initialization are

removed from the scene. Figure 2.2 illustrates the histogram of a pixel centered
on a swaying bush taken over ten seconds of video. The small black boxes in frame
1 and frame 2 of the figure are centered on the pixel in question.

Blowing Bush Pixel Histogram (10 seconds)
20 T T T

Murmber of Occumrences
=
L

B0 a0 100 120 140 160 180 Frame 2
Fixel Intensity

Figure 2.2: Histogram of Bush Blowing in the Wind: The small black box in Frame
1 and Frame 2 is centers on the pixel that the histogram describes. The histogram
shows the pixel values present over a 10 second period of video.

To deal with the issue of multiple elements of background being present at a par-
ticular pixel, some have suggested the use of Gaussian mixture models [50]. The
remainder of this section is the formulation of a pixel-based background subtrac-
tion model based on assigning a Gaussian mixture model to each pixel in the scene.
Under the assumption that the camera view is non-translating and non-rotating,
the background model parameters can be estimated using a set of initial frames:

qi,5(

)
big(t) ~ Y Mg (DN (i j (1), 05 (1), (2.1)

k=1

subject to

qi,j (t)

Z Tij(t) =1V 4, j, (2.2)

where b; ;(t) represents the Gaussian mixture-based background model at time ¢,
centered on pixel (4, j), ¢; ;(t) is the number of modes in the mixture model, 7 ; ;(t)
is the weight of mode k in the model for pixel (,j), and N (my,;(t), 0% ;(t))
is the normalized pdf for background mode k, at pixel (i,j) and time ¢. The
mean of the model is represented by my; ;(t) and the variance is represented by
0k,,j(t). The combination of these parameters represents a robust way to model the
background of a scene when there is slight variation in the elements which make
up the background over time.

The number of modes, ¢; ;(t), in the mixture model can either be asserted by forcing
7445 (t) to be some value to effectively limit the number of modes, or alternatively,
can be estimated from the data using a method such as competitive clustering [13].

The conditional probability density function for the observed background is denoted
as follows:

qz]

P(fi5(£)]bi(Z Th,ig (ON (i ()M, (), 08,,5(2)), (2.3)

where f; ;(t) represents a pixel from the video frame at time ¢. Background subtrac-
tion will be used to indicate the presence of background or foreground at a particular
pixel. An experimentally determined threshold, T, is employed as follows:

background if min, (‘ff(?;mqﬂ> <T,
¢Zv]() - q,t,] , (24)
foreground else

where ¢; ;(t) represents the discrete state of the pixel f; j(¢) in the image at time ¢,
which describes whether the pixel is part of the foreground or background. Once
a model describing the background has been asserted, there are two stages that
must be considered to use the model: model initialization and model maintenance.
Initialization is the process of estimating the mixture model parameters for the
background when the algorithm is run the first time. Maintenance is used to ensure

that the model parameters that are selected in the initialization step remain valid
as the scene evolves over time.

Initialization of the model can be done in a variety of ways. An example of a
background initialization method is to use samples from a given number of frames
at the start of the image sequence to estimate the model parameters. Investigation
has shown that using a trimmed Gaussian [45] approach to background model
estimation has proven to be effective as it is able to remove the effect of statistical
outliers that arise from the presence of foreground objects in the model initialization
step.

Maintenance is necessary to keep the background model up-to-date and to account
for slow variations in scene conditions, such as lighting or the position of objects that
are stationary for long periods of time. A method discussed in [52] for conducting
model maintenance is to use the following update model:

A =a)bij(t—1)+afi;(t) for ¢;,(t) = background
bij(t) = { bjz-,j(t - 1) ’ for @]](t) = foreground } ' (2.5)

This update equation does not account for changes in the number of modes in the
model parameters. This could occur if, for example, the scene conditions change
from still to windy, meaning that a given pixel close to a swaying bush would
change from uni-modal to multi-modal. To deal with this case, one approach is to
periodically, or continuously, re-initialize the background model.

2.3 Motion Estimation

In this section the idea of block-based motion estimation is discussed. Motion
estimation is an important topic in tracking as it allows dynamic motion model
parameters to be accurately estimated. The advantages and disadvantages of this
method will be examined in this section. The purpose of the method is to obtain
information about the motion present in a given image sequence. Directly measured
process dynamics of an image can be included in the target tracking model.

Block-based motion estimation is discussed in the video compression literature [31].
The method is implemented such that a neighbourhood window of pixels in a given

image, centered on a specific pixel, is searched over a larger neighbourhood window
of pixels in the previous image, centered on the same pixel. The method makes
the assumption that from frame-to-frame in a video sequence pixel intensity values
do not change and that the video source is stationary. Using some choice of differ-
ence metric, commonly a squared or absolute difference approach, the displacement
which produces the minimum difference is deemed to be the motion vector for the
center pixel. One downside to this difference-based approach is that accurate mo-
tion measurements from homogenous regions of an image are difficult to obtain.

To conduct this motion estimation using a difference measure, either pixel intensity
can be used directly, as shown in (2.6), or a discrete notion of image segmentation,
such as that produced by background-foreground subtraction thresholds, can be
employed, as shown in (2.7). For the sake of this discussion, notation is presented
for both image intensity and pixel state. Pixel velocities can be found by minimizing
the following objectives between subsequent image frames, subject to the window
displacement, d:

vi,i(t) = argmin D M fw®) = furalt = DI, (2.6)
weW (2,5)

vl = argmin 3" 600 Ut — DI (2.7)
weW (4,7)

where W (i, 7) represents the neighbourhood search window over which to evaluate
the difference between the search kernel centered on w and offset by d.

Executing block-based motion estimation on each pixel in the image can be com-
putationally expensive since for each pixel in the image a search window must be
traversed to determine the displacement with the minimum difference. This oper-
ation yields a run time of O(n?-m? - k?) where n? is the size of the image, m? is
the size of the search window and k? is the size of the kernel window that is used
in the template match. To reduce the run time, the algorithm is run on a subset
of pixels in the image and the results are interpolated over the entire image. Using
this approach leaves room to use larger search windows. A larger search window
is advantageous to model more of the image structure, whereas a smaller search
windows increases match ambiguity. A problem that arises from a window that is

10

too large is that too much structure is included, and if the structure deforms too
much between images in sequence due to rotation and scaling an accurate match
cannot be made.

2.4 Clustering Techniques

In this section the problem of grouping related data, commonly referred to as clus-
tering, is examined. In the context of this thesis, clustering is used primarily in
model initialization and image segmentation. An important property of any cluster-
ing algorithm, specifically those used in target segmentation, is that the algorithm
produce consistent clusters between frames as the clusters tend to evolve organi-
cally. This is especially important in tracking applications, since the clusters found
in target segmentation are used directly in tracking and must produce consistent
parameterizations from frame to frame. Any clustering algorithm used for segmen-
tation should also be robust to noisy data.

In this section, two parametric clustering techniques will be examined: K-Means
and competitive clustering, as well as non-parametric K-Nearest Neighbor.

2.4.1 K-Means Clustering

The K-Means clustering algorithm [38], [44] is used to partition a set of samples
into disjoint subsets, known as classes, which contain samples such that the sum-
of-squares criterion (2.8) is minimized. The criterion is presented below:

K N

J = Z Z(fn,k - Uk)za (28)

k=1 n=1

where Z,, , represents one of N;, samples associated with class k, and ju;, is the mean
value of the Ny samples contained in class k. The major advantage of this algorithm
is the ease of implementation. K-Means requires that the number of classes, K,
be known. This property of the algorithm makes K-Means ill-suited for clustering
applications where K is not know a priori. Extensions to the algorithm, such as
competitive clustering [22], can be applied which aid in evaluating K from the data.
Competitive clustering is also sensitive to initialization conditions and as such does
not always converge to stable classes, especially if data points are in close proximity
or the number of classes is asserted incorrectly.

11

K-Means is implemented using a re-estimation procedure as follows. Initially, sam-
ples are assigned at random to the k classes and the mean of each class is computed.
When the algorithm iterates, each sample is assigned to the cluster with the mean
closest to that point based on the distance metric that is in use. A typical dis-
tance metric is Euclidian distance. With samples reassigned to classes, new means
are calculated. The algorithm then iterates until a designated stopping criterion
is met. A typical stopping criterion occurs when there is no further change in the
assignment of samples to clusters, meaning that the algorithm must be iterated a
minimum of two times.

2.4.2 Competitive Clustering

In this section, competitive clustering is discussed. Competitive clustering is a
clustering method based in part on concepts from fuzzy logic [49] and in part
on concepts from information theory [38]. The general principal of competitive
clustering involves iteratively minimizing the following objective function, subject
to a set of sample points denoted X = {zy,..x,}:

J = Jl -+ OCJQ, (29)

where the term J; is at a minimum when there are as many clusters as there are
points in X, and the term J; is at a minimum when all the samples in X are
contained in one cluster [22]. The term « controls the relative impact of each term
on the overall objective function. The value of « is initially set large to encourage
the formation of small clusters and is allowed to decay in subsequent iterations to
encourage clusters to merge with one another. At each iteration, points in X are
assigned to a cluster in a similar fashion to K-Means clustering. At each iteration,
empty clusters are removed from the set of clusters. This process is repeated until
the algorithm converges based on a stopping criterion.

k-Means Clustering Algorithm
Assign X = {x1,x9,...,zx} randomly to C' = {c1, ¢, ...,k }
t=20
Do
Bk = e Yoy En
Assign x,, to ¢ if argming |z, — g
t=t+1
Loop Until Cy = Cy_4

12

Many variations to the general form of the objective function presented above
exist in the literature. An example of a variation can be found in [13]. Some
variations present more robust implementations, but each involves minimizing the
objective function with respect to a cluster parameter vector © = {0y, ..., 0k }, where
K represents the number of clusters. The basic implementation of competitive
clustering follows:

WE

N K N 2
Z uz,ndz,n -« Z [Z uk,n] s (2.10)
k=1

1 n=1 n=1

B
Il

subject to

K
> ukn =1, forne{l,2,....N}, (2.11)
k=1

where NV is the total number of samples, wuy, ,, represents the degree of membership of
sample point z,, in prototype 0y, and dy,, is the distance between the point z,, and
the prototype ;. Variations of this form include objective functions which account
for the stochastic degree of membership, p(dy), of point x,, in cluster 6y in the first
term, and a measure of the fuzzy typicality, denoted f(uy,,) in the second term [22].
Figure 2.3 illustrates the first four iterations in a competitive clustering execution.

This algorithm functions well to find clusters under noisy data and is computation-
ally efficient. The major downside of this algorithm is similar to that of K-Means,
in that, due to the random nature of the initial conditions, the clusters produced by
the algorithm are not stable when the algorithm is executed repeatedly on the same
data set, nor are the results stable between images when slight variations in the
features of an image occur. This is due to the fact that the algorithm converges to
local minima based on the initial conditions. This makes the algorithm ill-suited for
tracking applications, where consistent target segmentation is critical for accurate
tracking.

2.4.3 Nearest Neighbour

The nearest neighbour algorithm [34] is known as a non-parametric algorithm since
samples are used directly in the class definition and sample membership assignment.
This is contrary to model based methods that fit predefined model parameters to
the samples. K-Nearest Neighbour [38] is a variation on the Nearest Neighbour

13

3-' 0] }f L]
B
5 | 3
4
1] , H:}
5—5 a 5 10 'IIS i 5 UD 2 4 [5} 0 12 14 1B 18
kA K
lteration 1 lteration 2

8 - 18

15 & . &

4 14

12 12
¥ 10 ¥ o0

8 B

& E

4 4

Aty) la

Dl:r 2 Il [8 10 12 14 16] UD 2 4 [8 10 iz 14 16 bl]

H ke
lteration 3 lteration 4

Figure 2.3: Competitive Clustering Results: Initial and Final Iteration of Com-
petitive Clustering. The first step (top-left) shows the large number of randomly
seeded clusters that is initially considered, and the final step (bottom-right) shows

the outcome of iterating the algorithm on the data until the convergence criterion
is met.

14

algorithm, where the k' nearest point is used to conduct class assignment. This
approach is more robust to noise as long as K is chosen to be sufficiently large and
there are sufficient data points in the class to support the choice of a large K.

Nearest Neighbour Clustering Algorithm

n=1

k=1

min = Dyrin

Assign x,, to ¢

Do
Select 41 = argmin; |z,eX — z,,|
If v, 1 — 2y > dpin Then bk =k +1
Assign x,, 1 to ¢
n=n+1

Loop Until n = N

The nearest neighbour clustering algorithm is fairly straightforward to implement
and converges rapidly. The algorithm works by iterating though the data and
performing the following steps: Assign data point x; to cluster Cy where k = 1.
Find the data point, z;eX that is closest to x;. If dist(x;,x;) < dyin, then assign
xj to Ck. dpmn is the heuristic minimum distance to consider two data points in
the same cluster. In the case where dist(z;,x;) > dyn a new class is created, by
setting & = & + 1, and point z; is assigned to that class. The algorithm is then
iterated until all sample points have been visited and the algorithm converges.

One advantage of this algorithm is that it can be implemented to perform in real-
time and is robust to noisy data. One drawback of this algorithm is that it requires
a heuristic minimum distant threshold to define the connectivity of a sample with a
class. In practical applications, this threshold may change as a function a position
in the scene, or as a function of time. This means global distance thresholds can
be ineffective.

2.5 Connected Components Clustering

Connected components clustering constructs an undirected graph by labeling the
pixels in an image based on pixel connectivity [27]. Different measures of connec-
tivity can be defined; however, the two most common structuring elements used

15

(a} (b}

Figure 2.4: Connected Components Clustering: (a) Illustrates four pixel connec-
tivity and (b), shows eight pixel connectivity.

to measure connectivity are four-pixel connectivity and eight-pixel connectivity.
Figure 2.4 shows the two types of structuring elements.

Two pixels are said to be part of the same connected component cluster if there ex-
ists a path between them. Allowable paths are defined by the structuring elements.
Typically, connected component labeling is performed on binary images, although
measures of connectivity involving grey scale and colour images are possible. In
the binary case, the connected components labeling algorithm traverses a row in
an image until a pixel is found where f; ; = 1. When this is found the neighbours
defined by the structuring element are evaluated. If all neighbors are 0, a new label
pij is assigned to the pixel. If pixel (4, j) only has one neighbor where f;; = 1,
assign p; ; = py . Finally, if more than one neighbor is equal to 1, we assign one
of the labels to p; ; and make note of the equivalences of the connected labels.

b}

Figure 2.5: Connected Components Clustering Result: Result (a) Shows a binary
image mask, and (b) shows the results of connected components clustering.

16

After completing the algorithm, the equivalent labels are sorted into clusters and
a unique label is assigned to each. Figure 2.5 illustrates the results of running the
connected components clustering algorithm. The different clusters are indicated
with different colours.

2.6 Mathematical Morphology

Mathematical morphology operators are derived from set theory. Morphology is
used in the analysis of binary and grey-level images and common usages include
edge detection, noise removal, image enhancement and image segmentation [40].

The two most basic operations in mathematical morphology are erosion (2.12) and
dilation (2.13). Both operators take two inputs: an image to be eroded or dilated,
denoted A, and a structuring element, denoted B,

A® B ={d|B,NA+0}, (2.12)

AG B ={d|By;C A}, (2.13)

where d is the offset of structuring element. Binary morphology can be considered a
special case of gray-level morphology, where the image only has two possible values.
For a gray-scale image, structuring elements are applied directly to pixel intensity
values. For binary images, f; ; = 1 is usually taken to represent foreground, while
fi; = 0 usually denotes background. Morphological structuring elements can be
defined arbitrarily and can be considered as a set of point coordinates. Typically,
the point coordinates are centered on the origin.

Erosion and dilation morphology operations work by applying the structuring el-
ement, B, at all points in the input image, A, where f; ; = 1, and examining the
intersection between the translated point coordinates of B and the coordinates of
A. For instance, in the case of dilation morphology, the resulting image will consist
of a new set of pixels comprised of the union of the structuring element and the
input image.

17

(b}

Figure 2.6: Result (a) shows the original binary image image (200x200 pixels),
(b) shows the results of applying a dilation operation with a 7x7 pixel structuring
element and (c) shows the results of applying a erosion operation with a 7x7 pixel
structuring element.

2.7 Density Propagation

In this section, the basic ideas behind particle filtering and Kalman filtering are dis-
cussed. The discussion is broken into two sections: a discussion about the Kalman
filter and a discussion about particle filtering based on conditional density propaga-
tion. In this work, Kalman filtering, discussed in Section 2.7.1, is used to estimate
the state of a given track over time; however, this could also be accomplished using
conditional density propagation, discussed in Section 2.7.2.

2.7.1 The Kalman Filter

The Kalman filter is a recursive solution to the discrete-time linear data filtering
problem [47]. It addresses the problem of trying to estimate the state of the dynamic
discrete-time process, z;, governed by the linear stochastic equation:

Tt = Al’t_l -+ But_l -+ Wy, (214)

where x;_; describes the state of the target at the previous discrete time, wu;_;
describes an input or control and w is the process noise. In addition, a measurement
process Z; is denoted:

i‘t = H.Tt + Ut, (215)

18

where v is the measurement noise.

The basic premise behind the Kalman filter is that at each discrete-time step a
predict and update process is employed. The predict step is a result of the known
dynamics of the system, whereas the update step is a result of the available mea-
surements from that step. The following set of equations describes the prediction
step of the Kalman filter:

:c; = Axy_1 + Bus_q (2.16)
P, = AP, AT +Q (2.17)
where () is the covariance of the process noise w and P, is the state covariance of

x;. The next set of equations illustrates the second stage, update, of the Kalman
filter:

K,=P H'(HP,H" + R)™* (2.18)
1 =z, + Ky(&, — Hx,) (2.19)
P,=(1—K.H)P, (2.20)

where K; is known as the Kalman gain. The recursive nature of the Kalman
filter makes it a much more attractive, feasible implementation of linear discrete
state estimation than the Wiener filter; however, like the Wiener filter, the basic
Kalman filter assumes the state variable obeys linear dynamics and is Gaussian.
This assumption may not always represent the underlying truth of an evolving
state, especially in real-world environments. The extended Kalman filter [39] aims
to address the issue of non-linear dynamics by first linearizing the problem.

2.7.2 Conditional Density Propagation

Another approach to state propagation is particle filtering [2]. Particle filtering is
a more general approach to state estimation and is based on conditional density
propagation. In this approach, the assumption about linear process dynamics and
Gaussian distributed state variables is not part of the particle filtering formulation.
The discussion that follows describes how particle filters work and contrasts the
method to the optimal Kalman filter.

19

The basic premise behind particle filtering and more specifically, the conditional
density propagation approach, is Bayesian recursion. Following the notation pre-
sented for the Kalman filter, Bayesian recursion can be denoted as follows:

) Pl X, X,
p($t|Xt) :P<5Ut’l’ta t 1)10(357&\ t 1)’ (2.21)

p(ft|Xt—1)

where z; is the state of the target at time t, Xt represents all observations of x;
over all time and 7; is the estimate of the state of the target at time ¢. As with the
Kalman filter, conditional density propagation can be implemented as an approxi-
mation to Bayesian recursion in a two step process, the first involving a prediction
step based on the process dynamics of the system, and the second involving an
update step which works by conditioning the model based on the observational
density. These two concepts are presented and discussed below. The main differ-
ence between the particle filtering method that is described and the Kalman filter
is that the particle filter represents a time-dynamic stochastic process with a set
of discrete particles, Ty = {vi1, .., vt Ny b Tt tends toward the distribution of x; as
Ny — o0, where Ny represents the number of particles in the set.

Process Dynamics: The process dynamic step in a conditional density propa-
gation implementation is meant to shift existing particles in T; to a new state.
In this formulation, the process dynamics of the scene do not necessarily have to
be linear. The process dynamic step of conditional density propagation can be
mathematically denoted as follows [30]:

t
pleel Xe) = / Pl)plee 1| Ko r)d (2.22)
t—1

The above notation can be considered as any time-dependent perturbation of a
stochastic system. In the case of a tracked target this perturbation is due to the
target’s physical dynamics.

Observational Density: Once the particles in T,_; have been predicted forward
they are denoted Y, ;. At this point the observational density step is conducted.
This step is meant to condition Y;_; based on the actual measured state, z;. A
variety of approaches for this conditioning are discussed in the literature. The
approaches vary depending on the particles used to represent the state that is being
propagated; however, if the particles which make up the state can be considered as
Gaussian, a common approach is to condition each particle based on a notion of

20

distance between the particle and the nearest measurement. Typically, a minimum
probability is set to account for cases of missing measurements. This minimum
probability approached is accomplished by truncating the probability measured
from the Gaussian distribution at an arbitrary minimum threshold, as illustrated
in Figure 2.7.

Truncated Gaussian

025r

Figure 2.7: Truncated Gaussian used in Observational Density

Once each particle in T; ; has been conditioned based on the measurements, a
set I'y = {V.1,.., 7.~y } results. This set represents the conditional probability of
each particle in T;_l and is used to re-sample T;. This results in particles with
strong likelihood to be more likely to survive re-sampling stage, while particles
with weaker likelihood are less likely to be propagated. The minimum probability,
illustrated in Figure 2.7, ensures that when the particles are re-sampled, particles
that are missing corresponding measurements still have a chance to propagate. The
conditional density step can be mathematically approximated under the Markov
assumption as follows:

pla|Xy) ~ p(@|z)p(e] Xi) (2.23)

A possible extension to conditional density propagation involved having new par-
ticles flow into the recursive implementation. In order to facilitate this, Ny — M~y
particles would be re-sampled in the observational density step, where Ny is the
total number of particles allowed to propagate, and M~ is the number of new par-
ticles injected into the model. This is a useful strategy when it is desired to have
new model characteristic flow into the density model. An example of this would be

21

if a new target appeared onto a scene and it was desired to add that target to the
scene model for tracking.

2.8 Probabilistic Data Association

Data association techniques are of great importance in tracking applications. A
variety of methods are discussed in this section. The two classes of data association
are sample based and model based. An example of a sample based filter is the
Nearest Neighbour Standard Filter [48]. An example of a model based filter is the
Probabilistic Data Association (PDA) filter [7]. Evaluating PDA involves assigning
a probability that a particular sample can be associated with a particular target.
This is accomplished by relating a sample to a prior model which describes a given
target based on some distance metric.

An extension of the PDA filter, called the Joint Probabilistic Data Association
(JPDA) filter [51], allows for observed samples to be considered jointly for associa-
tion with multiple targets. One of the major advantages of the JPDA is its ability
to track targets through occlusion and clutter due to its ability to simultaneously
represent all possible combinations of measurements. It is also able to handle tar-
gets which exist in close proximity to one another. JPDA will be discussed in detail
in this section. A major problem of JPDA is that it requires considerable compu-
tation to compute all possible associations. Methods have been proposed which
limit the computational complexity of evaluating the joint association. One such
method is called gating [17], which is illustrated in Figure 2.8.

The primary role of gating in data association problems is to reduce the overall
computational complexity. This is accomplished by drastically reducing the number
of measurements which must be considered for association with a particular class.
Gating is conducted by demanding that a measurement must fall within a minimum
distance of a given target. The example points x and y, shown in Figure 2.8 would
be associated against class A, and points y and z would be evaluated against class
B. In the case where classes are well separated in feature space, gating can greatly
reduce the required computation.

Since a given measurement is gated based on its distance to a target, an appropriate
distance measure must be defined. If it is assumed that the probability density
function of target can be represented as a Gaussian, then the distance can be

22

Figure 2.8: The points x and y would be associated against class A and points y
and z would be evaluated against class B.

computed as the Mahalanobis distance between measurement and target. The
Mahalanobis distance [38] can be expressed as:

dij = (zi =)25 (2 — p5)" (2.24)

where d; ; is the distance between the sample z; and the j™ target and p; and 3; are
the mean and covariance of class j. In order for a measurement to be considered
in the association problem of target j, the distance must be less than the gate
threshold, denoted as 7.

One of the shortcomings of using traditional JPDA is that its computation com-
plexity increases exponentially as either the number of targets or number of mea-
surements increases. This increased computational complexity is greatly mitigated
by the introduction of gating and under the assumption that targets are well sep-
arated in feature space. The literature also discusses methods to further reduce
the computation load of JPDA, for example by constructing feasibility matrices to
limit the number of evaluations that are required [18].

Another way to reduce the computational complexity of evaluating the likelihood
of the various feasible solutions would be to employ notions from dynamic program-
ming [4] and graph theory [9]. It is possible to use dynamic programming be-
cause the probabilities of the composite events which make up the joint associative
probabilities, are independent of their membership in a particular configuration of

23

measurement. As such, the probability of each composite configuration of measure-
ments must only be evaluated once, regardless of the number of times it appears.
This can be accomplished using a tree or graph structured implementation.

2.9 Conclusion

In this chapter, various topics that represent different aspects of common, end-
to-end tracking methods have been discussed. The algorithms that were covered
included foreground identification methods, use to isolate objects in a scene, motion
estimation methods, used to measure the dynamic aspect of an object in a scene,
clustering techniques that can be used to combine measured information about
objects in a scene, density propagation methods that can be used to propagate the
state of an object through time, and data association methods than can be used to
uniquely identify persistent objects in a scene.

Many of the methods that were discussed in this chapter provide the basis for the
work presented in the remainder of this work. The material that was covered,
provides an overview of the fundamental mathematical concepts required to under-
stand the next chapter. In the next chapter, a framework is proposed for represented
objects in a scene using a graph-based structure. A Monte Carlo Markov Chain
method for tracking is also developed that take advantage of this graph structure,
as well as many of the concepts presented in this chapter. The tracking method
also combines additional feature extraction and motion estimation methods.

24

Chapter 3

Target Tracking Algorithm

The objective of this chapter is to present the proposed target tracking algorithm in
some detail. A high level system model of the algorithm is initially presented which
aims to provide context to the remainder of the chapter. Discussion about various
features and methods of extraction that will be employed in the tracking algorithm
follows. The tracking framework that is described in this chapter has been designed
to function in environments containing an unknown number of target initializations
and terminations under conditions of occlusion and clutter.

This chapter is broken into six sections. Section 3.1 provides an overview and dis-
cussion about the tracking algorithm that has been developed in this thesis. Section
3.2 presents notation that is used to discuss the remainder of the chapter. Section
3.3 presents a method for identifying features and extracting information about
them. Section 3.4 discusses a method for estimating the motion of the identified
features. Section 3.5 deals with segmenting targets, Section 3.6 develops a tar-
get tracking model and suitable scoring function and Section 3.7 discusses how to
identify target tracks using data association.

3.1 Tracking Algorithm Overview

In this section a target tracking algorithm is developed to address the following
problem statement: It is desired to develop a multi-target tracking method for
determining the paths that vehicles take through an arbitrary transportation scenes.
In the scenes, the number of vehicles is not known a priori and is subject to change
over time. For this application, it can be assumed that the transportation scene in

25

question comes from a non-translating, non-rotating camera source. In addition,
vehicles in the scene can vary in size, speed of travel and orientation relative to the
camera.

The method that is developed in this chapter extracts the position of targets
from images in sequence, estimates the motion of these targets and finally combines
the located targets into tracks. The algorithm that is developed has particular ap-
plication to vehicle tracking but can be extended to other object tracking problems.
Figure 3.1 illustrates the system diagram for the algorithm. The algorithm that is
developed employs a method of scale-space extrema [25] localization and Delaunay
clustering [35] to achieve target segmentation. Motion estimation is achieved using a
hierarchical motion estimation approach. Target-track association is accomplished
using a MCMCDA [46] approach.

Delaunay

Feature Motion Trianaulation Track Traffic
Video Extraction Estimation Clusgterin Classification Count
(3.3) (3.4) 9 (4.3)

(3.5)

Figure 3.1: Overview of Proposed Tracking Algorithm. Section numbers are indi-
cated inside the brackets.

Feature extraction is used to extract information from a sequence of images that can
be used for tracking. In this work, we address feature extraction by first construct-
ing a scale space for the given image. We then identify scale-space extremum points
from the constructed scale space and use background subtraction to identify which
extremum from the image belong to foreground targets of interest. Background
subtraction is possible since the video sequence is known to be from a static (non-
translating, non-rotating) camera source. This work also employs feature based
motion estimation on scale space extrema points which have been identified as be-
longing to foreground. This combined motion history, background subtraction and
feature information provides the basis for target segmentation.

Upon completion of the feature extraction step, the scale space extrema points are
associated with one another into targets. These clusters represent the targets we
desire to track — in this case, vehicles. The clustering step presents a variety of
challenges. First, the number of clusters is not known for a given frame in the
image sequence, nor is the number of clusters necessarily a function of the number

26

of clusters present in the previous frame. Additionally, clusters can appear and
disappear due to occlusion, target creation, target termination and false alarms.
Due to the fact that vehicles can vary in shape, size and aspect relative to camera
position, the nature of the clusters in a given image is also unknown. Clusters do
not necessary adhere to a particular size or shape. Finally, clusters can exist in
close proximity to one another and can split and merge from frame to frame.

A good clustering algorithm for this application should be able to identify an un-
known number of clusters, of unknown shape and size which exist in close proximity
to one another. It is also desirable to have this algorithm operate on low informa-
tion content, and to be robust to clutter in an image. The algorithm should also
produce stable clusters when executed repeatedly on a single image and should
converge to similar clusters between images in sequence if information in the scene
evolves organically — that is they change only slightly in terms of size, shape and
orientation between frames.

The final step in the tracking algorithm is to determine the various tracks that a
particular object takes through a scene. This step, known as the data association
step, must be able to ascertain a single track that is indicative of each of the targets
from the multiple measurements that have been taken over time in the scene. A
well-suited algorithm for the identification of vehicle tracks will be able to perform
effectively under conditions of strong occlusion, in which case measurements may
be missing from the track, as well as under conditions of clutter, meaning there
will be environmental and camera noise present in the scene. Given the application
domain, the algorithm should also be able to function in as near real-time as possi-
ble. Another advantageous property of the tracking algorithm is that it should be
stochastically based. This will allow for multiple hypotheses to be stored about a
given track, increasing the probability that over time the correct vehicle tracks will
be identified.

While developing this tracking algorithm, two criteria were used to guide the choice
of algorithmic approach and implementation strategy. These were real time perfor-
mance and the ability to implement the algorithms in parallel. Although these two
topics will not be a considerable focus of this thesis they are important factors to
consider in the event the algorithm is used in a commercial application.

27

3.2 Tracking Algorithm Notation

In this section, the mathematical notation used throughout the remainder of this
chapter is presented. The notation is meant to provide the foundation upon which
the tracking algorithm is based. A solid understanding of this notation and what
it is aiming to represent is therefore vital to a firm understanding of the remaining
aspects of this work.

3.2.1 Image Sequence

The image sequence Fr, contains a set of images:

Fr = {F(0),F(1),...,F(T)}, (3.1)

where F(t) denotes the image at time ¢ € {0,1,..,T}. A specific pixel in F(¢) can
be defined as f;;(t). The term f;;(¢) is a vector, representing the various colour
channels that exist for a given pixel. Under the assumption that the sequence of
frames is in the RGB colour space then:

ri (1)
fii@®) =1 gi;() |- (3.2)
bi (1)

This notation could be extended to include a three-dimensional representation of an
image. Three-dimensional image modeling would reduce the potential for occlusions
to be present in the scene. This type of image representation would be denoted by
fijk(t); however, for the remainder of this work two-dimensional image notation
will be employed. For the purposes of this work certain assertions about Fr will
be made, although these assertions are not explicitly required. The main assertion
is that Fr is derived from a non-translating, non-rotating image sequence (i.e. the
camera generating the image sequence is stationary). In addition, the size of the
objects being tracked are smaller than the entire field of the image sequence is
asserted. Finally, the assertion is made that the background present in the image
sequence changes slowly over time. The preceding assertions are all indicative of an
outdoor scene being filmed from a stationary camera at a distance, such as those
found permanently mounted at intersections.

To facilitate discussion about the implementation of this algorithm, a corresponding
measurement set is also defined:

28

Fp = {F(O),F(l), ...,F(T)}, (3.3)

where F(t) = F(t) + Wg(t), Wg(t) being the measurement noise. Similarly, there
exists a pixel based measurement representation, defined as f; ;(t) = fi ;(t) +w; ;(t)

3.2.2 Image Feature Graph

To greatly reduce the computational requirements of this implementation, a change
of basis is proposed which abstracts information content found at the pixel scale
into features, known from this point on as information regions. To accomplish this
change of basis the information in Fr is clustered and measured. Techniques for
this clustering will be discussed in Section 3.5.

Information regions can be thought of as components of the targets being tracked,
meaning a set of these information regions constitutes a target. A time-series of
the sets of information regions is defined as

Sr = {S(0),S(1),...S(T)}. (3.4)

As with the pixel based notation, a corresponding measurement set Sr is also
defined. At every discrete time step of the tracking algorithm, the information
regions can be denoted

S(t) = {517527“'751\75(,5)}7 (35)

where the information region is distributed as sy ~ N (ux(t), Xk (t)) and Ng is the
number of information regions in the set. The time index is not included unless
ambiguity exists, in which case the sub-targets are denoted as s (t). Corresponding
measurement notation is also defined as S(t) = {4y, 4, ..., 8Ng(}-

In addition to the set describing the information regions, a set is introduced which
describes the associations between information regions within a given image:

U(t) = {tsit),5) (3.6)
where 7wbsi(t),s]-(t) = p(‘sl(t) - 5j<t)|)7 h,j=1., NS(t) and 7 7£ J-

29

3.2.3 Targets

Given the set of information regions Sr, there exists a set of targets Ry (i.e. vehi-
cles),
Rr ={R(0),R(1),...,R(T)}, (3.7)

where the set R(t) represents the targets that are present at time ¢, and can be
expressed

R(t) = {Tlu T2y .. 7TNR(t)}7 (38)

where 7, is the state vector that describes a given target and Ng(, denotes the
total number of targets present at time ¢ € {0,1,...,7}. The connection between
Sr and Ry can be thought of as {s; U sy U.. U SNS(t)} ={ruUru..u T’NR(t)}.

3.2.4 Tracks

Given the set of targets, Ry, there exists a set of target tracks Qr (e.g. vehicle
trajectory over time) that describes all target tracks for t =0,1,...,T"

QT:{7—177_27"'77—NT}7 (39)

where N, denotes the total number of target tracks over all time. Each target in
R arrives on the scene at time ¢, and exits the scene at time t;; therefore, track ¢
can be expressed in terms of targets as

7 =A{r;(ta), i (tas1), - 7 (ts) }, (3.10)

where ¢, <, <T. N, is the number of new targets at time ¢, N, is the number
of terminated targets, Ny, is the number of detected targets and Ny, is the number
of falsely identified targets.

3.2.5 Notation Overview
The notation that has been defined in this section defines a structure that can be

used to construct targets and tracks. Figure 3.2 illustrates the structure that has
been defined in this section.

30

sat-1) Waes s(t1)

sty Wear sy

Figure 3.2: Target-Track Structure: The structure illustrated is meant to show how
all the terms defined in Section 3.2 relate to one another.

3.3 Scale Space Feature Extraction

To implement a successful vehicle tracking algorithm, the ability to produce stable,
consistent image features in successive frames of an image sequence is of paramount
importance. In essence, the objective of this step of the algorithm is to segment
a given image in an image sequence and represent those segments stochastically.
Put succinctly, an appropriate method for image feature localization must have the
following two properties: (1) the method must be able to consistently parameterize
features and (2) the method must generate parameters that are stable and robust
to slight variation in scale, rotation and aspect. Throughout the investigative ef-
forts conducted as part of this work, a variety of methods for identifying stable
image features were examined. These methods included K-Means clustering [44],
expectation maximization (EM) [6] and competitive clustering [13].

Each of these methods presented unique challenges that made them unsuitable for
use in the image feature extraction step of object tracking. K-Means clustering
was initially examined as a means to construct information regions, Sp. This
method demanded that the number of clusters be known a priori. This method was
abandoned early as an option, due to the fact that the number of image features
is not known. EM and modified K-Means methods, such as competitive clustering,
were also abandoned since these methods were unable to converge to stable clusters
when run repeatedly on a single image, and moreover the methods were unable to
converge to stable clusters when executed on successive images in a video sequence.
The major reason for these shortcomings is that both EM and competitive clustering
are data-oriented stochastic methods and the problem we wish to solve involves

31

identifying features which are often made up of only a small number of data points
(i.e. pixels). This meant that the parameters produced by these methods were
unstable.

Upon the realization that data oriented clustering methods would not yield con-
sistent, stable image features it was decided to examine a method based on the
identification of scale space extrema points. This concept is covered extensively in
[24] and [25]. Scale space extrema points are capable of representing image features
in a stable and consistent fashion. For the purpose of this work, the method will
be used to localize image features S7, in the image sequence Fr, which will then
subsequently be used for target segmentation, Ry.

To facilitate searching for scale space extrema points, a scale-space must be con-
structed. A scale space is constructed by applying a continuous function, L(o), to
an image, which results in a structure that is capable of simultaneously represent-
ing features of an image across all scales. In order to construct a scale space in
a computationally efficient manner, the scale space is discretized and a cascading
filtering approach is employed to build a difference-of-Gaussian structure. In this
application a cascading filter is accomplished by iteratively applying a Gaussian
blur to an initial candidate image, based on a scale parameter ¢. This difference
of Gaussian structure is built by first convolving a Gaussian kernel with an input
image, F(t), to produce

L(t,0) = G(o) x F(t), (3.11)

where o is varied over all desired scales in the discretized space and G(o) is the
two-dimensional Gaussian kernel function:

1 —(22442) /252
G(U‘(l‘7y)) = 27-[-0-26 (+y)/2 , (312)

where (z,y) are the image coordinates. The next step in identifying scale space
extremum is to evaluate the difference-of-Gaussian, computed as the difference be-
tween adjacent scales of L. A scaling factor kel is introduced to describe the
difference in standard deviation used between these scales. The difference of Gaus-
sian is computed as:

D(t,0) = L(t, ko) — L(t,0). (3.13)

32

Once the set of difference-of-Gaussian images has been constructed, the second
step in the identification of scale space extremum points is extremum localization.
Scale-space extremum points are defined as points in space that either have a higher
or lower value than all the points within a defined local radius for both the scale
of the point and the scales directly above and below the point. Extremum points
with a low scale space response can be removed from the set by evaluating the
local image gradient that surrounds an extremum point. To reduce the computa-
tional complexity only points that are extremum in one scale are evaluated against
corresponding points in scales above and below.

After an extremum point has been localized, and the points which do not meet a
local gradient threshold are removed, the set S(¢) is initialized from the remaining
points. The set S(t) comprises {s;}, constituting information regions. Each feature
point s; is made up of information about its position, local image intensity and
process dynamics (motion gradient of the image feature). Initially, only the position
and local image intensity information of the element are set, based on the identified
scale-space extremum points and corresponding information.

3.4 Hierarchical Motion Estimation

Upon identification of image extremum points and subsequent construction of in-
formation regions, S(t), the next step in the proposed target tracking algorithm is
to estimate the motion of the information regions. This motion information can be
used to estimate the dynamics of the targets. Motion estimation is a very impor-
tant topic in target tracking. The most common approach to motion estimation is
block-based matching using a sum of absolute difference criterion:

SAD =) |fu(t) = fusalt = 1)), (3.14)

weW (z,y)

where f,,(t) and f,+a(t—1) are regions of successive images in an image sequence, W
is the area from which all search window are selected and (z,y) is the pixel index
of the centroid of a given search window. In this work the use of a hierarchical
approach to motion estimation is proposed. This approach can be thought of as
an efficient approach to narrowing the search for the block which minimizes the
sum of absolute difference criterion. A hierarchical approach to motion estimation
is approached by first constructing two image pyramids for each of the two image

33

regions that it is desired to determine a matching region. Here, the image pyramid
approach is especially attractive since the pyramid structure constructed previously
for the identification of scale space extremum points can be reused.

The hierarchical motion estimation algorithm that was used for this work follows:

1) For a given s;, in S(t), construct an image pyramid, A; from the pixels that
parameterize s;. To accomplish this pyramid construction efficiently the same down
sampling rate is used as the pyramid constructed for the identification of scale
space extremum. This means the pyramid structure constructed in this step can
be reused.

2) For a given s;, construct a set of pyramids from the pixels centered on the feature
point and found within a defined search window W)y, denoted Ay ;. As with the
previous step, the down sampling rate is selected such that previously constructed
pyramids can be reused.

3) For the first iteration m = Na, where Nu is the number of levels in the image
pyramid and m is the pyramid level index. w4,, denotes where the minimum
absolute difference search will be centred when the algorithm iterates to m = m+1,
ie.,

?A,m—i-l = arg m{}n(A@m — AA,i+d,m)- (315)

4) Step 3 is repeated until the bottom level of the pyramid, m = 1 is reached. The
final result is denoted 7', and represents the position of the minimum difference
between A; and A, ; at pyramid level m = 1.

Results are presented in Figure 3.3 which demonstration the effectiveness of the mo-
tion estimation approach in transportation images. Motion vectors are illustrated
with red lines. The length of lines indicated the relative magnitude of the motion
vector. One downside of the method is that targets that lack sufficient texture, or
are too small relative to the image resolution, generate erroneous motion estimates.

Upon successful execution of this algorithm, the dynamics of S(¢) are included in the
information regions. The next step of the algorithm is to assemble the information
regions into targets using the information about the position, colour and dynamics
of the feature.

34

Figure 3.3: Results in (a) and (b) show two sample frames from a transportation
scene with corresponding motion estimates.

3.5 Delaunay Triangulation Clustering

In this step of the tracking algorithm grouping information regions from S(t) in such
a way as to create targets, denoted R(t), is desired. An ideal clustering algorithm
must be able to create clusters when the number of such clusters is unknown. An
ideal algorithm must also be able to produce clusters that are repeatable given a
set of data. The algorithm should also be have the potential to run in realtime.
In this work the use of a clustering algorithm based on Delaunay Triangulation is
proposed.

Delaunay Triangulation is the dual of the Voronoi Diagram [3] which partitions a
set of points in space into cells, one cell for each point. The cells are selected in such
a way that the area contained in each cell is closer to the point contained in the cell
than any other point in the space. In a Delaunay diagram the edges in the graph
connect two points that have Voronoi cells sharing a common boundary. Under
the assumption that information regions that make up targets are connected to one
another, assume that feature points that are closest to one another are the only
points that need be considered as part of the same object is reasonable. Figure 3.4
illustrates the resulting Delaunay graph constructed from S(t).

A clustering algorithm based on Delaunay Triangulation is used [35] which is com-
prised of the following steps:

1) Construct the Delaunay graph out of the position components of S(t).

2) For each vertex in the Delaunay graph, which can also be thought of as each
information region in the image, the average length of the incident edges (i.e. the
connections between graph vertices) is calculated, subject to

35

1
l’l’si = N Z |¢Si7$j|7 (316)

where N, is the number of incident edges that exist at the point s; and s, s; 18 the
association along the given edge.

3) Next the standard deviation of the incident edges is calculated subject to

N,

K3

1
Os; = N Z(:U'sz' - |¢5iysj|)2' (317)

Si

Jj=1

4) To consider both the local and global edge effects in the formulation, consider
the global average standard deviation of the edge association,

Ly (3.18)
o5 =— Y 0. .
° NS i=1

5) The next step in the clustering algorithm is to remove all incident edges from
the Delaunay graph which do not conform to the following criterion:

36

Vsis; > (s, +08). (3.19)

Once this removal step has been completed, the vertices that are still connected to
one another along incident edges can be considered part of the same object.

6) The last step in the clustering algorithm is to compute the mean and covariance
of all state values for all information regions in the graph that remain connected.
The targets, denoted R(t) are then filled with these mean values.

This data driven clustering algorithm was found to be effective at identifying targets
in S(t) when the targets are not in close proximity to one another. When targets do
appear in close proximity, the method’s effectiveness is diminished. This diminished
performance can be improved by taking additional feature vector information into
account when evaluating the distance along an incident edge. An example of an
effective feature vector to include is the motion of the information regions in S(t),
since the information regions making up a target tend to have highly correlated
motion.

3.6 Tracking Model

In this section, the problem of tracking an unknown number of targets is considered.
Targets can appear and disappear at random and the scene can contain noisy
measurements as well as an arbitrary number of target births, target terminations,
false alarms and undetected targets. Each target’s motion is defined by dynamic
and measurement models:

ry = AAtthl + Atwt, (320)

re = Hry + vy, (3.21)

where w; and v; are Gaussian noise with zero mean and where A is the state
transition model, and H is the observation model which maps the state space into
the observation space. Two versions of the motion model are presented. The first
model would be appropriate for tracking moving vehicles since vehicles tend to
travel in predictable straight line paths over a small number of frames. For the first
model, a target’s state can be described as

37

Ty

_ Yt
ry = 5z, | (3.22)

0yy

More complicated models which take into consideration the colour and structure of
an object could also be considered. The motion model is as follows,

10 At 0 aAt 0 00
01 0 At 0 aAt 0 0

=000 1 0o || 0 o par o | (3.23)
00 0 1 0 0 0 BAt

where o and (3 represent the noise components for position and velocity respectively.
a and 3 can be selected based on the properties of the moving objects in a scene.
Relatively higher values of o and 3 are used as the uncertainty about the dynamic
behavior of a target increases. The second is a random walk model, which would
be better suited to tracking pedestrians since pedestrians have a tendency to travel
in unpredictable erratic paths as compared to vehicles. For this model a target’s
state can be described as,

n:l“}, (3.24)

Yt

and the motion model is as follows,

10 aAt 0
7"7:+1:{0 1}7}4—{ 0 ozAt}wt' (3.25)

Now that the motion model for the targets has been defined, a formulation for
target track prior that will be used for the scene is derived.

Assume that the scene given at time ¢ is denoted by &. &; represents the joint
probability distribution between all targets in R; and tracks in €2;. This relationship
can be mathematically denoted as

5t = Rt @ Qt- (326)

38

In addition, assert that & can be subdivided into multiple regions, R = {ry, rs,..,Tn, }.
Each region, r in R is also assumed to be independent. In a scene comprised of a
single camera, this subdivision can be accomplished by dividing a given image into
multiple sections. This concept can also be extended to scenes constructed from
multiple cameras views as well. Next, we define notation for a specific discrete
partition that is selected from the joint association distribution, &, which defines
the track-target associations as w. Given the independence assumption, it can be
stated that:

plwr) = [[plwrs)- (3.27)

Next, given that an arbitrary scene can be represented completely by knowing
whether a given object point is detected or not, a false alarm or not, and either
a birth, continuation or death, it can be asserted that the posterior for the scene
can be represented as the product of the following probabilities: (1) the probability
that Ny, measurements from time ¢, region r and partition w; do not originate
from targets, (2) the probability that Nz, measurements do originate from de-
tected targets (3) the probability that N, , new targets are identified at time ¢ in
region r, and (4) the probability that N, targets terminate. If we assume that
all hypotheses about the values of Ny, ., Ny, ., N, and N, are equally likely
given the number of targets and the number of measurements, it is appropriate to
divide the aforementioned product of probabilities by the total number of possible

partitions in Er to yield the likelihood of a particular partition.

pwer) = p(wr Nay Nay Nz, Ny, Ky)
= p(wt,T|Nd7Na7szNfaKt)p(NdaNa7NzavaKt) (328)

p(Nd7NaaNzaNf’Kt) = p(Nd7NaaNzaNf|Kt)p(Kt>
p(Nd’Kt>p(Na|Kt)p(Nz’Kt>p(Nf|Kt)p(Kt)
= p(Na|Kt)p(No)p(N-|Ki)p(Ny) (3.29)

In the interest of conciseness, the subscripts ¢, are removed from the remaining
formulation, but should be considered in any implementation. Next, it is necessary
to propose models to describe each of the probabilities mentioned previously. For
our formulation it is proposed that a discrete Poisson distribution be used to model

39

the arrival rate of new targets on the scene for each region, as well as for the rate
of false alarm in the measurements for a given region. A Poisson distribution is
proposed for these two scene properties because both occurrences happen indepen-
dently of the number of previous occurrences in a transportation scene. Each of
these models can be formulated as follows,

p(Na) = (%) , (3.30)
p(Ny) = (%) : (3.31)

where), is the arrival rate of targets per unit area (volume in the 3D case) of a
region, per unit time, and Ay is the false alarm rate for measurements per unit area
of a region, per unit time. Figure 3.5 illustrates the Poisson Distribution that is
used to model the target birth and target false alarm rates as the rate is varied.

Effect of Changing Birth and False Alarm Rates

[1R:)

0.3

N

0.8

—Rate =01
——Rate =0.25

Rate =1
0.5

—FRate =2

—— Rate =4
0.4

——Rate =10

Poisson Distribution Value

——Rate =25

| e

03

BAVEN

a B 10 15 20 25

Occurances | Volume / Time

Figure 3.5: Poisson Distribution: Poisson distribution showing the effect of varying
the birth and false alarm rates.

40

The rate of measurement detection and rate of target termination can be described
by the discrete binomial distribution. A binomial distribution is appropriate for
these scene properties because the likelihood of occurrence is a function of the
number of targets in the scene:

K 1! _

Pl = (B)R,)
Kt! Ny Ki—Nyg

puli) = (e Y e e 3:33)

where K, is the number of targets present in a region at time ¢, pg represents the
probability that a target is detected for a given region and p, represents the proba-
bility that a target terminates for a given region. Figure 3.6 illustrates the binomial
distribution that is used to model the target detection and target termination prob-
abilities as the probabilities are varied from 0 to 1.

03 \ == -
- \ f ——Probablliy=0.1
N\ P / —— Probabllity=10.2

_\ P ':y\ B 7 Pmbah\l\lyf 0.3
Iy s N Probablility= 0.4

]
i
il

N . —— Prabability= 0.5
: 7 —— Probabllity= 0.6
_,/ / Probability= 0.7
/! N / N, —— Prabability=10.8
s I ‘_\ Prabability= 0.9

=
i
|~

Binomial Distribution Value

o
n

01

Figure 3.6: Binomial distribution: Binomial Distribution showing the effect of
varying the detection and termination probabilities.

Expressed combinatorially, and under the assumption that all partitions in & are
uniformly likely, the total number of possible associations found in &r given the
region configuration, can be shown to be

41

(N; + Ny)! K, KN\
N4, Ny, N,, N¢, K;) =
p(wt,r’ dyiVas LVzy LV S, t) ((Nf'Nd' (Kt_Nd)!Na! Nz')

(3.34)

where K; — N; = N, is the number of undetected targets at time ¢. When all of
these models are combined the posterior for a given partition can be expressed as

() e ()\f A) (1)Kt—Nd N. (1)K 1—N.)\ N,)\ Nf (3 35)
r P 2) T A . .

Next, it is desired to integrate the prior into an appropriate likelihood function
that can be used in evaluation by a sequential Bayesian estimator. We begin with
Bayes’ rule:

plw|R) = % (3.36)

which is equivalent to

p(w|R) o p(w)p(Rlw). (3.37)

The subscripts t and r are reintroduced and it is shown that the posterior we must
maximize in order to determine the path that a set of targets has taken in a given
scene over time:

>‘ftr+)‘at ’!‘) Ny
t,r 1_ Kt,r*thy.p
=TT (g,) e

teT reR

Xpay (1 = pay,)t Newr N Nawr \ . N I1 H/\/ DIE D). (3.38)

TeE\{10} =1

To maximize the posterior presented, it is necessary to develop a method of eval-
uation that negates the need to exhaustively evaluate all the possible partitions
p(w|R) for wer, as this would represent a computational infeasibility for realtime
operation. Monte Carlo methods afford an attractive option as they can operate
in real time and they are parallelizable across multiple CPUs. Such a method is
discussed in some detail in Section 3.7.

42

3.7 Monte Carlo Markov Chain Data Association

In this section, a Markov Chain Monte Carlo (MCMC) [46] sampler for solving
the multiple-target, multi-region tracking formulation is presented. The MCMC
approach that is discussed employs a combinatorial optimization approach in order
to determine an ideal partition, w, from the joint association &r. A partition can
be thought of as the discrete state that defines a possible scene. Further discussion
about the method can be found in [16] and [42]. A more generic name for MCMC
is simulated annealing. MCMC is a general method for generating samples from
a distribution p(w|Rr) by constructing a Markov chain whose state is w. In order
to determine the maximum likelihood for the distribution, we evaluate the current
partition, w, against a proposed partition, w’. The proposed partition is accepted
with probability A(w,w’) if

P(£|Sr)

A(E,EN) =min |1, -
P(&'5r)

) > U(0,1), (3.39)

where > U(0,1) defines a uniform random number between zero and one. If the
proposed partition is rejected, the sampler stays at w. As long as we ensure that
the Markov chain is irreducible, meaning it is possible to get to any state from any
state, and aperiodic, meaning that it is always possible to move from one state to
another in one step, then the solution will converge due to the ergodic theorem.

To make the algorithm more efficient, two additional assumptions are made: (1) the
maximum velocity of a given target is less than © and (2) the number of consecutive
missing observations of any track is less than d. Both assumptions can be asserted
reasonably for a given scene. Using these two assumptions, a structure is presented
that can be used in formulation of the partition moves. The structure, Ly,
represents all targets in Rp, over all time, that fall within a radial distance of
|7 () — TAt+dH < v*d.

To generate partitions which can be evaluated against the posterior, a move pro-
posal distribution, &, consisting of eight types of moves is employed. Figure 3.7
illustrates the eight moves that are described [42].

1) Track Birth (&;): For a birth move we increase the number of tracks in the
proposed partition from K; to K, = K; + 1. Next we select a time, t, uniform at
random from the observation window that is used as the start of the track. We

43

Birth

O000O O-O-O0-00

Death

00000 —— 00000

OO0O00 — o-OO000

Reduction

OOEQO e —C}O@S}O

o DOO0OO
o0 O OO0 00

Figure 3.7: Hlustration of MCMC Moves

select a target measurement point, 7y, from 7;,. The proposed move is rejected if
7o either belongs to another track or does not have any neighboring points within
L.,. If the move is accepted we add 7y to 7k, select ; uniform at random from L.
and add 7, to the track 7x,. This process is repeated with termination probability
¢ for subsequent ~;, or until L., is empty.

2) Track Death (&;): For a delete move we select a track, 7, at random from €
and remove it, assuming that there is at least one track in w, otherwise the move
is rejected.

3) Track Split (&3): For a split move, we select a track, 7, uniform at random
from €. If 7, has fewer than four points, the move is rejected. We next select a
point from 7, and split the selected track into two tracks, 7, and 73,, with the
constraint that both tracks must contain at least two measurements.

4) Track Merge (&4): For a merge move, two tracks, 7, and 7y,, are selected at
random from the set 2. We define v; as the end point for 7, and -, as the start
point for 73,. The move is rejected if 7, is not contained in the structure L., and
accepted otherwise.

5) Track Extend (&;): For an extend move we select a track, 75, uniform at
random from £ and assign new measurements to the track in the same fashion as
described in the birth move.

44

6) Track Reduce (&): For the reduce move, a track, 7, is selected uniform at
random from §2. The move is rejected if the track is less than three points long.
Next, a time, t, is selected from 2, ...,|7x| — 1, and all points in 7 after ¢, are
removed.

7) Track Update (&;): The track update move is a track reduction move, followed
by a track extend move.

8) Track Switch (&): For a track switch move, two tracks, 7, and 7y,, are selected
uniform at random from 2. We select vy from 74, and v, from 7,. The move is
rejected if v is not contained in the structure L., and accepted otherwise. If the
move is accepted all points in 7, that fall after v, are added to 7,, and all points
in 7, that fall after v, are added to 7,.

Each of these moves can either be selected uniformly at random or can be assigned
prior probabilities subject to priori information about the scene, subject to

8

> p&) =1 (3.40)

i=1

In order to optimize the execution of an implementation, constraints can be applied
to the moves in terms of when they are allowed to occur. In the case where no
targets or tracks are present, only the birth move may occur. In the case where
only a single track exists all moves except track merge and switch moves may occur.

In order to extend this method to support real-time tracking a sliding window
approach is proposed. The sliding window approach works by allowing the MCMC
moves to be performed iteratively on the measurements in the most recent Ny
images. The measurements just prior to the leading edge of the sliding window are
taken to be truth and the remaining measurements are allowed to be iteratively put
into different partitions until convergence is met. This process is then repeated at
the next discrete time step with the leading edge of the sliding window incremented
by one.

In this section a method for computing discrete-time target associations has been
discussed. The framework described in this chapter can track an unknown number
of targets which initiate and terminate at random. In Chapter 4, results will be
shown that illustrate the method to be robust under conditions of occlusion and
clutter since the scoring function (3.38) that was developed can incorporate false

45

alarms and undetected targets under association. In addition, the model will be
shown to be flexible due to its ability to incorporate information scene specific
information as well as define different model parameters per region of the scene. The
Monte Carlo nature of the algorithm makes it an ideal candidate for parallelization
in cluster computing environments.

3.8 Conclusions

In this chapter a detailed overview of the tracking algorithm developed over the
course of this work. A high level system model was presented and was followed by
discussions about the algorithm notation, the feature extraction method, the object
segmentation method and the target-track association algorithm. The framework
is suitable for tracking targets that vary in scale and orientation due to the use
of Scale-Space, and provides the basis for the application of object models to the
results of the Delaunay clustering step.

Throughout the course of investigation a number of areas were identified where
future research could be conducted. One such area for future consideration would
be the addition of the capability to model a non-stationary background. This
would be of value in considering cases where either the camera moves do to wind,
is bumped, or where the camera is mounted on a moving object such as a car.
This addition would occur prior to the feature extraction step and the remaining
methods presented in this thesis would still apply.

Finally, an area that was identified for further investigation was the addition of
scene specific MCMC moves. An example of a move that was considered involved
modification of the merge move to provide for the ability to merge a track that was
contained within another track into a single track. A graphical representation of
this concept is presented in Figure 3.8.

QKBOOO . 00000

Figure 3.8: Proposed Modified Merge Move

46

Chapter 4

Experimental Results

In this chapter the stochastic framework that was proposed and discussed in Chap-
ter 3 is applied to an intersection monitoring application. The application involves
monitoring and counting the vehicle movements that can occur at an intersection.
Examples of typical types of movements that can occur at an intersection include:
"Northbound Left Turn’, "Westbound Through’, "Eastbound Right Turn’.

The main users of this type of transportation data are city transportation and public
works departments. Currently, these organizations predominantly collect turning
movement volume information manually, using either paper and pen based method
or using low-tech counting equipment. The ability to collect turning movement vol-
ume information using computer vision algorithms represents a considerably more
cost effective method of collecting traffic data as compared with existing manual
methods. The data also provide much more information than manual methods
(i.e. speed, position, time-stamped event). The city transportation planning de-
partments use the turning movement volume information as a means of optimizing
intersection signal timings, and for deciding when roadways must be upgraded to
meet mandated quality of service levels.

This chapter is broken into three sections. First, the problem of vehicle segmen-
tation in transportation scenes is discussed. A discussion about the challenges
inherent with conducting segmentation in different types of transportation scenes
is also included in this section. Second, the problem of tracking the segmented vehi-
cles using the stochastic framework presented in the preceding chapter is discussed.
Results are presented which show the method to be robust to false detections (false
alarms), missing measurements (occlusion), and tracks which exist in close prox-
imity to one another. Finally, a method for classifying and counting the detected

47

tracks is discussed. Results are presented which show that the method is robust to
similar tracks.

4.1 Segmentation

The segmentation approach employed in this work involves combining information
obtained from evaluating the motion history, as well as the background-foreground
characteristics of a given video frame. Background subtraction and motion history
each present a number of challenges; however, when combined these challenges can
be mitigated. These challenges, and their impact on the segmentation of vehicles
from a transportation scene, will be the focus of discussion later in this chapter.
Results are presented which show that combining background subtraction results
with motion history results will improve segmentation. Once these two methods
have been combined, a global Otsu threshold [36] is applied to the results in order
to produce a binary segmented image. The Otsu method was selected because it
assumes an image is bimodel (i.e. background/foreground) and finds the optimal
threshold by minimizing the interclass variance. The final step that is employed
involves labeling the objects in the scene using a connected components clustering
approach.

Background subtraction, discussed in Section 2.2, presents two primary challenges
when used as a segmentation method. The first occurs when the pixels which make
up a foreground object are similar in pixel intensity to the background. This simi-
larity results in the difference between the background model and the pixels making
up the foreground object negligible. Under this circumstance, object segmentation
is not possible. The second challenge that can arise from background subtraction
deals with model initialization. If a foreground object persists in the same location
in the scene during the period when the background model is being initialized, a
false foreground artifact will appear at such a time as the persistent object moves,
or leaves the scene. Dynamically updating the background model can mitigate this
issue. Figure 4.1 shows the results of a background subtraction, where the differ-
ence between the current frame of a video is compared to a reference background
scene model.

The next step in the proposed segmentation method is to evaluate the motion
history of the current frame. As with background subtraction, motion history can
present some challenges when it is used for segmentation. The first challenge is due
to the fact that motion history is evaluated by subtracting subsequent image frames

48

(a) (b {c}

Figure 4.1: Background Subtraction: (a) Video frame taken of a highway overpass,
(b) Background model obtained by taking the average pixel value over 100 frames,
and (c) Absolute pixel difference between (a) and (b).

in a video sequence. As a result, the speed in which vehicles in the scene are moving
will impact the results of evaluating the motion history. Slow moving vehicles leave
a limited motion history signature, whereas rapidly moving vehicles can produce a
shadowing or streaking effect. The issue is especially prevalent when vehicles are
moving at different speeds in the transportation scene, and as a results a global
optimal frame rate for conducting motion history cannot be used. Figure 4.2 shows
the results of a motion history image set. Each image in the set shows the absolute
pixel difference between the current frame and the frames at incremental units of
time previous to the current frame.

Upon completion of the background subtraction step and the motion history step,
the final step in the segmentation method involves combining the previous results
and applying a threshold in order to produce a binary image. For this work a
global Otsu threshold is applied to the combined motion history and background
subtraction results. Once a binary image, ¢(t), is produced, a method which labels
the connected components of an image is employed in order to segment the vehicles
in the scene. Figure 4.3 shows the results of combining the background subtraction
results with the motion history results. By means of Otsu global threshold and
connected components clustering, the vehicles, R(t), are subsequently identified.

Once the segmentation step has been completed, an additional layer of logic is
applied. Using feedback about the location, size and motion of the vehicles present
in the previous frame, the vehicles found in the segmentation step are either split,
merged or left alone. This additional step improves the vehicle segmentation results,
which in turn improves the tracking results.

49

Figure 4.2: Motion History: (a) Frame difference between frame t and t-1, (b)
Frame difference between frame t and t-2 | (c¢) Frame difference between frame t
and t-3, and (d) Frame difference between frame t and t-4.

(a) b} {c}

Figure 4.3: Vehicle Segmentation: (a) sum of background difference and first order
motion history, (b) global Otsu threshold image with dilation morphology applied,
and (c) connected components clustering.

20

4.2 Tracking

The next step in the vehicle counting process involves assembling the segmented
vehicles found in sequential video frames into tracks (Discussed in Section 3.7). The
discussion begins by presenting results from some generated data sets, and follows
with illustrated, real world tracking examples. A potential user interface for collect-
ing information that can be used in the tracking step is described and illustrated.
Currently, video-based traffic counting technology is available which employs back-
ground subtraction methods to indicate when a vehicle is located in a detection
zone. This traffic counting technology does not provide for the ability to relate de-
tections to one another; therefore, conducting an intersection or roundabout count
is not possible. Examples of firms that provide this technology are Iteris, Trafficon
and Autoscope. The practical application of the tracking capability discussed in
this section involves using cameras to conduct intersection counts. This capability
represents a significant improvement over existing video-based traffic data collection
technologies.

To address the solution of vehicle tracking at intersections and roundabouts, the
Monte Carlo Markov Chain (MCMC), discussed in Section 3.7, method is used.
The stochastic method was shown to perform well in scenes containing false mea-
surements and in scenes containing missing measurements, also known as occlu-
sions. The method also performs well when multiple tracks are in proximity to one
another. Figure 4.4 shows the performance of MCMC under various conditions,
including (a) only the true object positions, (b) the addition of ten percent false
alarms, (c) in the presence of ten percent missing measurements and (d) a combina-
tion of (b) and (c¢). Target points in the figures are coloured the same if they belong
to the same track. False alarms are indicated using white. There is no relationship
between the colours selected for a given track in each of the four figures.

As discussed in Section 3.6, to construct a suitable scoring function, an under-
standing about prior statistics about the regions of the image which make up the
transportation scene is beneficial. To obtain this prior information assumptions
about the scene must be made. One of the primary motivations for the inclusion of
regions in the MCMC scoring function was to facilitate an intuitive user interface
for the input of prior information. The objective in breaking the scene into regions
is to identify areas of the scene which have different birth rates, false alarm rates,
termination probabilities and detection probabilities as described in section. In
application terms, identifying areas of the transportation scene where vehicles are

o1

(d

Figure 4.4: MCMC Tracking Results: This plot shows the results obtained with
MCMC from contrived object data. (a) Shows tracking results with no false alarms
and no missing measurements, and (b) tracking results with 10% false alarms and no
missing measurements, (c) tracking results with no false alarms and 10% missing
measurements, and (d) tracking results with 10% false alarms and 10% missing
measurements.

52

more likely to emerge and leave from the scene, more likely to be occluded by fore-
ground objects, or where vehicles are likely to be observed, is valuable. Figure 4.5
shows an example user interface that could be used for capturing information about
the regions of a transportation scene. Information about road location, the location
of potential foreground occlusions and the location of the intersection approaches
are noted in the user interface.

{a) ib)

{c) ()

Figure 4.5: Transportation Scene Configuration User Interface: (a) Original round-
about scene image, (b) Road Location (ROI), (c¢) Location of potential occlusions
and (d) Location of roundabout approach entrances/exits.

Once the regions of a transportation scene have been identified, termination prob-
abilities, detection probabilities, birth rates and false alarms can be assigned to
each region. To build a set of regions for a transportation scene, the three inputs
from Figure 4.5 can be used, along with expert knowledge about the transportation
scene. Under the assumption that vehicles can only enter/exit the scene from the
edge of the image a region map can be constructed. Figure 4.6 shows the result of
applying information gathered from the user interface with prior knowledge about
the configuration of the transportation scene. The figure shows regions with higher
assumed birth rates and termination probabilities in red. Regions that have rela-
tively higher occlusion probabilities are shown in yellow and regions containing low

93

termination probability and high detection probability are shown in gray. Regions
that are not colored are assigned a high false alarm rate.

Figure 4.6: MCMC Region Map: Figure shows the location of birth/death regions
(red), occlusion regions (yellow) and track continuation regions (gray). False alarm
regions are represented by the area containing the original image.

To evaluate the posterior term of the scoring function (3.38), the observed vehicle
positions must be scord against the estimated vehicle position. To accomplish
this, a Kalman filter is used to smooth vehicle position using both the observed
vehicle position and observed motion estimates. The observed vehicle position is
then scored against the estimated vehicle position found using the Kalman filter.
An important aspect of the Kalman filter, and by extension the evaluation of the
MCMC scoring function (3.38), is the motion model that is used to update the
vehicle’s state. For this work, a first order linear motion model is used. Motion
estimation is conducted using a hierarchical motion estimation method. The last
step in the tracking approach is to iteratively apply the MCMC algorithm. At
each iteration the proposed partition is scored against the current partition. The
partition which scores the highest is passed onto the next iteration. This process is
repeated until a stopping criterion is met. The stopping criterion was determined
experimentally to be 500 iterations. The proposed tracking algorithms is then
applied on each frame in the video sequence, resulting in vehicles being tracked
through the transportation scene. Figure 4.7 shows the results of applying the
aforementioned steps against a medium volume traffic circle. Results are shown
that illustrate tracking through occlusion in proximity to other vehicles. Various
intersection movements are shown in the figure.

o4

{a) b}

Figure 4.7: Real World Tracking Results: Figure shows tracking results of a round-
about. Each colored track represents a different vehicle.

The tracking method that is presented performs well in most transportation scenes.
The primary scenario which presents challenges for this method occurs when two
vehicles emerge on the scene connected to each other, persist in the scene connected
to each other, and finally depart the scene connected to each other. This issue is
caused as a result of deficiencies in the vehicle segmentation step, rather than the
tracking method.

The segmentation method described in this chapter is essentially only extracting
blobs from the image. No implicit notion of a vehicle is asserted in segmentation.
As a result, when multiple objects emerge, persist and exit the scene together
there is no way to differentiate them as separate vehicles. One potential solution
to this problem would be to add the concept of a physical vehicle model to the
segmentation step. Another approach that can be adopted is to ensure that a
suitably high camera vantage is used when recording a transportation scene. This
vantage ensures that there is sufficient spacing between the vehicles to segment
them as individual entities.

4.3 Track Identification

The final step that is required to extract a full turning movement count from a
video collected at a transportation scene, such as an intersection or a roundabout,
is to determine how many of the tracks found in the scene, such as those shown

95

in Figure 4.7, crossed the approach entrance/exits, shown in Figure 4.5(d). In the
case of an intersection a track must cross two of the approach entrance/exits to
be counted. For example, if a track crosses the south approach and then the west
approach, the vehicle will be counted as a northbound left turn. If a track crosses
the north approach and then the west approach, the vehicle will be counted as a
southbound right turn. Typically, in a transportation application, these counts are
presented in fifteen minute time slices and the data are used to determine which
hour of the study contains the peak vehicle volume for a given intersection. Fig-
ure 4.8 shows a typical turning movement output diagram that is used by municipal
transportation planning agencies. The diagram shows vehicle volumes broken down
into the twelve possible movements that can occur at an intersection.

Morth Street [N]
Out In Total
24 32 56
24 32 56
e m— —
a 28 0 4
0 28] 4
Right | Thru Lef| | Peds
[T
-5 Tiz.-
EE i : "I 7
=|2 = E
Bl o 05/2412007 04:20 PM + uls ;
=[] Ending At ™~ 213
E - ;E“ 05/24/2007 04:35 PM Tlele E
= = ~ 1 Car ; = e
HEE - - “le|g
o|% |4~
o @
6« t+ P
Left Thru Right Peds
a 20 1 0
0 20 1 0
I_I_I_I_I
28 21 49
28 21 49
Cut In Total
South Street [S]

Turning Movement Data Plot

Figure 4.8: Turning Movement Diagram: Figure shows the typical output format
that traffic planners and engineers use to present their manual and video-based
intersection counts.

The intersection count diagram shown in Figure 4.8 was generated from data that
were obtained by processing video of an intersection. In addition to intersections,

o6

roundabouts and bi-directional counts are also of interest to transportation planning
organizations. Results are presented in Table 4.1 that show the performance of the
method when counting bi-directional vehicle movements from video taken from
a highway overpass. The result was obtained from a five minute video clip of a
highway overpass and compared to ground truth which was collected manually.
Data sets for this work were provided by Miovision Technologies Incorporated and
can be made available upon request (researchvideos@miovision.com). The method
performs very well in this scenario, missing only one vehicle in each direction. Both
missed detections were caused when two vehicles entered, persisted and exited the
scene merged together.

Table 4.1: Bi-Directional Mid-Block Vehicle Counting Results

Correctly Counted | Undetected | Error Rate

From North Through 38 1 2.6%
From South Through 29 1 3.4%
Total 67 2 3.0%

The counting of intersections by transportation planning organizations requires the
use of field staff. The counting of roundabouts, also known as traffic circles, is also
done using manual counting methods; however, unlike a traditional intersection,
when vehicles enter a roundabout, it is unclear immediately as to which exit they
will take. This makes roundabouts, especially high volume roundabouts, a more
difficult transportation scene to count. A typical manual roundabout count requires
approximately three times as many field staff hours to count as compared to a
manual intersection count. Table 4.2 shows the results of applying the vehicle
counting method to a medium volume roundabout.

Although the algorithm is able to track the majority of the objects through the
occluded regions of the transportation scene, the movements that have to pass
through at least one occlusion, shown in Figure 4.5(c) (From South Left, From
South Through, From West Left) show the highest error rate. The cause of the
errors in track classification were as follows: 56% of the errors where caused by
occlusion and 44% of the errors were caused by vehicle segmentation issues, such as
splitting and merging of objects. The majority of the incorrectly classified tracks
only had a single break in the vehicle track. Figure 4.9 shows an example of this
mode of failure.

A break in the track meant that one portion of the track crossed one of the approach
lines, while the other portion of the track crossed the second approach line. Ap-

27

Table 4.2: Roundabout Vehicle Counting Results

Correctly Counted | Undetected | Error Rate

From North Through 118 9 7.1%
From North Right 9 0 0.0%
From South Left 44 10 18.5%
From South Through 66 15 18.5%
From West Right 52 1 1.9%
From West Left 7 2 22.2%
Total 296 37 11.1%

Figure 4.9: Track Split Errors: This figure illustrates an example of a type of
tracking error that causes a vehicle to not be counted.

o8

proach lines are shown in Figure 4.5(d). This means that, even though the majority
of the vehicle track was accurate, the vehicles were counted incorrectly. To correct
for this issue, a heuristic measure could be added to the track results to correct for
situations where a vehicle track terminated in an area of the image where this was
an unlikely event.

29

Chapter 5

Conclusion

5.1 Concluding Remarks

The work presented in this thesis was motivated in large part by a practical need
identified in the transportation planning industry to collect volume information
from transportation scenes in an accurate and cost effective manor. The introduc-
tion of a computer vision based tracking approach for conducting this type of vehicle
volume data collection represents a significant improvement over current manual
data collection methods. Current manual methods are expensive, due to the labor
involved, and plagued by inaccuracies caused by fatigue. The data which can be
readily obtained using the methods described in this work will assist transportation
planning organizations in building better transportation networks, reduce the costs
involved with collection and improve data integrity.

The major contribution of this work was the presentation of a stochastic method
for conducting vehicle tracking in scenes containing occlusion and the potential
for false detections. The method uses a deferred logic approach based on a data
oriented combinatorial optimization approach to solving Monte Carlo Markov Chain
(MCMC) data association problems. The result of applying this method to the
problem of vehicle tracking is the ability to track an unknown number of vehicles
in a transportation scene, while requiring a minimal amount of prior information
about the scene. The method is computationally efficient and lends itself toward
large scale computational parallelization.

The development of a scoring function, presented in Section 4.2, that is able to
account for local changes in detection and termination probabilities of the images

60

making up a video sequence is a novel approach in the literature. The primary
motivation for the addition of the concept of regions to the scoring function, was to
facilitate the construction of an intuitive user interface that can be used to provide
relevant prior information about real-world transportation scenes. Results were
presented in this work which show that the tracking method is robust in scenes
containing false vehicle detections, as well as missing vehicle detections. Results
were also presented which show that the segmentation method, tracking method
and track classification method are effective at detecting vehicle movements and
resulting counts in transportation scenes.

An area of research that has the potential to dramatically improve the results
presented in this work, would be to integrate the vehicle segmentation step with
the MCMC data association step. This would afford a unified stochastic model
for both segmentation and tracking. The main focus of this work would involve
determining a scoring function and a set of linear optimization moves that could
simultaneously evaluate the fitness of all possible object segmentations and a track
association over the entire life of an object, given a base set of local image descriptors
(regions of an image with similar chromatic characteristics).

If for example, an object, such as a vehicle, could be described as being made
up of a set of local image descriptors, then it would be possible to extend the
moves in MCMC to included adding and removing objects from an image frame,
adding and removing image descriptors from a object and splitting and merging
objects present in the scene. The scoring function of MCMC would also have to
be modified to account for the associations between image descriptors in a single
frame, as well as the object associations between frames. This would affectively
defer the segmentation of objects, similarly to the way the track association logic is
deferred in this work. One obvious downside of this extension is that it would have
the effect of greatly increasing the computational load of evaluating the scoring
function.

5.2 Future Research Directions

A potential direction for future research is to modify the observation model to in-
clude prior information about the location of possible tracks in a transportation
scene. If this approach is adopted, the advantage is that a built-in exclusion prin-
cipal for associating targets to tracks is included in the observation model. In

61

addition, a dimensional reduction from 2-D to 1-D is achieved which has advan-
tages in terms of computational performance. Figure 5.1 illustrates this concept by

o

showing a left turn at an intersection.

Figure 5.1: Left-Turn at an Intersection

A measurement model for the given track can be defined as X = {1, xs,..,zx}. As
an object moves through along the track, the observation model will show a strong
response in the location of the vehicle. Figure 5.2 illustrates a trivial example of a
single vehicle moving along the track.

=1 /\

X4 Xy
=2 A

X, X,
=3 ﬂ

% X

Figure 5.2: Left-Turn at an Intersection

Another advantage of this approach to modeling vehicle tracks in transportation
scenes is that the model is well suited for the active contours tracking framework

62

presented in [2]. This framework has shown excellent performance in the tracking
literature.

63

Bibliography

1]

K. M. Alexiev and P. D. Konstantinova. Hypothesis pruning in JPDA algo-
rithm for multiple target tracking in clutter. Bulgarian Ministry of Education
and Science, 1997.

M. I. Andrew Blake. Active Contours: The Application of Techniques from
Graphics, Vision, Control Theory and Statistics to Visual Tracking of Shapes
in Motion. Springer, 2000.

F. Aurenhammer and R. Klein. Voronoi diagrams. Institut f’ur Grundlagen
der Informationsverarbeitung Technische Universit at Graz, September 1994.

D. P. Bertsekas. Dynamic Programming and Optimal Control. 2nd ed. Athena
Scientific, Belmont, MA, 2000.

D. Bullock and J. Zelek. Towards real-time 3-d monocular visual tracking of
human limbs in unconstrained environments. [IEEE Transactions on Image
Processing, Volume 13, NO. 6:836-847, June 2004.

H. G. J. M. C. Carson, S. Belongie. Blobworld: image segmentation us-
ing expectation-maximization and its application to image querying. IEEE
Transactions on Pattern Analysis and Machine Intelligence, Volume 24, Issue
8:1026-1038, August 2002.

G. H. C. Rasmussen. Probabilistic data association methods for tracking com-
plex visual objects. [FEE Transactions on Pattern Analysis and Machine
Intelligence, Volume 23, Issue 6:560-576, 2001.

A. E. Changjiang Yang, Ramani Duraiswami and L. Davis. Real time kernel
based tracking in joint feature spatial spaces. Perceptual Interface and Reality
Labouratory, University of Maryland, 2004.

R. Diestel. Graph Theory, Electronic Edition 2005. Springer-Verlag Heidelberg,
New York, 2005.

64

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[18]

[19]

[20]

V. R. Dorin Comaniciu and P. Meer. Kernel-based object tracking. [IFEE
Transactions on Pattern Analysis and Machine Intelligence, Volume 25, No.
2:564-577, May 2003.

J. L. Fisher and D. P. Casasent. Fast JPDA multitarget tracking algorithm.
Carnegie Mellon University, Department of Electrical and Computer Engineer-
ing, May 1987.

R. Frezza and A. Chiuso. Learning and exploting invariants for multi-target
tracking and data association. Department of Information Engineering, Uni-
versity of Padova, March 2005.

H. Frigui. A robust clustering algorithm based on competitive agglomeration
and soft rejection of outliers. [EFEE Transactions on Pattern Analysis and
Machine Intelligence, Volume 21, NO. 5:450-465, May 1999.

C. Gentile. Segmentation for robust tracking in the presence of severe occlu-
sion. IEEFE Transactions on Image Processing, Volume 13, NO. 2:166-178,
February 2004.

M. Isard and A. Blake. A mixed-state condensation tracker with automatic
model-switching. University of Oxford, Ozford, 1995.

S. J. G. Jaco Vermaak and P. Perez. Monte-Carlo filtering for multi-target
tracking and data association. Signal Processing Laboratory, Cambridge Uni-
versity Engineering Department, 2004.

J. U. J.B. Collins. Efficient gating in data association with multivariate gaus-
sian distributed states. IEFE Transactions on Aerospace and Electronic Sys-
tems, Volume 28, Issue 3:909-916, 1992.

W. M. Y. Z. Z. R. Z. Jianzhou. A pruning technique of feasible matrixes of
jpda algorithm. Proceedings of the 3rd World Congress on Intelligent Control
and Automation, Volume 28:291-293, 2000.

T. Kato and T. Wada. Integration between background subtraction and color
detection based on nearest neighbor classifier: Instance based multimodal in-
formation integration. Information Processing Socierty of Japan Transactions
on Computer Vision and Image Media, Volume 45, No.13:110-117, 2004.

D. F. Kiam Choo. People tracking using hybrid Monte Carlo filtering. Pro-
ceedings Figth IEEE International Conference on Computer Vision, Volume
2:321-328, 2001.

65

[21]

[22]

23]

[24]

[25]

[26]

[27]

[32]

E. B. Koller-Meier and F. Ade. Tracking mulitple objects using the condensa-
tion algorithm. Communication Technology Lab, Image Science, Swiss Federal
Institute of Technology, 2000.

R. Krishnapuram and J. M. Keller. A possibilistic approach to clustering.
IEEE Transactions on Fuzzy Systems, Volume 1:98-101, May 1993.

L. S. Laurent Isenegger and N. Garcia. Moving objects segmentation based on
automatic foreground/background identification of static elements. Grupo de
Tratamiento de Imagenes E.T.S. Ingenieros de Telecommunicacion, University
Politecnica de Madrid Spain, 2004.

T. Lindenburg. Scale-space: A framework for handling image structures at
multiple scales. Proc. CERN School of Computing, Egmond aan Zee, The
Netherlands, September 1996.

D. G. Lowe. Distinctive image features from scale-invariant keypoints. Inter-
national Journal of Computer Vision, 2004.

H. F. K. S. M. Seki, T. Wada. Background detection based on the cooccurrence
of image variations. Proceedings of CVPR, Volume 2:65-72, 2003.

K. Mehlhorn and S. Naher. LEDA: A Platform for Combinatorial and Geo-
metric Computing. Cambridge University Press, November 1999.

H. T. Mei Han, Wei Xu and Y. Gong. An algorithm for multiple object
trajectory tracking. NEC Laboratories America, Cupertino, 2004.

E. B. Meier and F. Ade. Tracking cars in range images using the condensation
algorithm. Communications Technology Lab, Image Science, Swiss Federal
Institute of Technology, 1999.

A. B. Michael Isard. Condensation conditional density propagation for visual
tracking. International Journal of Computer Vision, Volume 29, No. 1:5-28,
1998.

J. M. S. Min Tan and H. J. Siegel. Parallel implementations of block-based
motion vector estimation for video compression on four parallel processing
systems. International Journal of Parallel Programming, Volume 27, Number
3:195-225, 1999.

S. Oh and S. Sastry. A polynomial time approximation algorithm for joint prob-
abilistic data association. Department of Electrical Engineering and Computer
Science, University of California, 2005.

66

[33]

[34]

[35]

[38]

[39]

[40]

[41]

J. G. Oliver Frank, Juan Nieto and S. Scheding. Multiple target tracking using
sequential Monte Carlo methods and statistical data association. Swiss Federal
Institute of Technology Zurich, Switzerland, 2001.

L. A. O.T. Ydz and H. Akn. Fast nearest neighbour testing algorithm for small
feature sizes. Electronics Letters, Volume 40 No. 3, February 2004.

Y. R. Padmavathi Mundur and Y. Yesha. Keyframe-based video summariza-
tion using Delaunay clustering. Department of Computer Science and Electrical
Engineering, University of Maryland Baltimore County, 2004.

P.-C. C. Ping-Sung Liao, Tse-Shend Chen. A fast algorithm for multi-
level thresholding. Journal of Information Science and Engineering, Volume
17:1713-727, 2001.

M. P. R. Cucchiara, C. Grana and A. Prati. Detecting moving objects, ghosts
and shadows in video streams. IFEE Transactions on Pattern Analysis and
Machine Intelligence, Volume 25 No. 10:1337-1342, October 2003.

D. G. S. R. O. Duda, P. E. Hart. Pattern Classification (2nd Edition). Wiley-

Interscience, 2000.

M. I. Ribeiro. Kalman and extended kalman filters: Concept, derivation and
properties. Institute for Systems and Robotics, Lisboa Portugal, february 2004.

J. Serra. Image Analysis and Mathematical Morphology. Academic Press,
March 1984.

I. H. Songhwai Oh, Shankar Sastry and K. Roy. A fully au-
tomated distributed multiple-target tracking and identity man-
agement algorithm. Unwversity of California, Berkeley, 2005.
http://www.eecs.berkeley.edu/ sho/papers/aiaa05dmtim.pdf.

S. R. Songhwai Oh and S. Sastry. Markov Chain Monte Carlo data associa-
tion for general multiple target tracking problems. Department of FElectrical
Engineering and Computer Science, University of California, 2004.

J. W. D. Stephen S. Intille and A. F. Bobick. Real-time closed-world tracking.
Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 697-703, June 1997.

67

[44]

[49]

[50]

[51]

[52]

N. S. N. C. D. P. R. S. Tapas Kanungo, David M. Mount and A. Y. Wu. An
efficient k-means clustering algorithm: Analysis and implementation. [EEE
Transactions on Pattern Analysis and Machine Intelligence, Volume. 24, NO.
7:881-892, July 2002.

P. Torr. An assessment of information criteria for motion model selection.
Computer Vision and Pattern Recognition, Issue 17-19:47-52, 1997.

J.S. W. W. S. Kendall, F. Liang. Markov Chain Monte Carlo: Innovations
and Applications. World Scientific, November 2005.

G. Welch and G. Bishop. An Introduction to the Kalman Filter. UNC-Chapel
Hill, April 2004.

F. Yan, A. Kostin, W. Christmas, and J. Kittler. A novel data association al-
gorithm for object tracking in clutter with application to tennis video analysis.
cvpr, Volume 1:634—641, 2006.

J. Yen and R. Langari. The Textbook on Fuzzy Logic, Intelligent Control, and
Fuzzy Information Systems. Prentice Hall, 1999.

J. Zhang. Nonlinear prediction for Gaussian mixture image models. [EFEFE
Transactions on Image Processing, Volume 13, NO. 6:836-847, June 2004.

W. M.-H. P. Y.-N. Y. Zhi-Sheng. Improved joint probabilistic data association
algorithm. Proceedings of the Fifth International Conference on Information
Fusion, Volume 2:1602-1604, 2002.

7. Zivkovic. Motion Detection and Object Tracking. PhD thesis, University of
Twente, The Netherlands, 2003.

68

