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Abstract

Five image processing algorithms are proposed to measure the average orientation, ec-

centricity and size of cells in images of biological tissue. These properties, which can be

embodied by an elliptical ‘composite cell’, are crucial for biomechanical tissue models.

To automatically determine these properties is challenging due to the diverse nature of

the image data, with tremendous and unpredictable variability in illumination, cell pig-

mentation, cell shape and cell boundary visibility. One proposed algorithm estimates the

composite cell properties directly from the input tissue image, while four others estimate

the properties from frequency domain data. The accuracy and stability of the algorithms

are quantitatively compared through application to a wide variety of real images. Based

on these results, the best algorithm is selected.
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Chapter 1

Introduction

This thesis addresses a novel computer vision problem: to estimate the average orientation,

eccentricity and size of cells in an image of biological tissue (Fig. 1.1a). Recent studies of

embryonic tissues have shown that these geometric features are relevant to the mechanics

of embryonic development [10] [7] [11].

These features can be embodied by an elliptical ‘composite cell’ as introduced by Brod-

land and Veldhuis [9]. This composite cell represents the most typical, or average, cell in

the image. The composite cell is defined by its orientation α from the horizontal and major

and minor axes Lmajor and Lminor, respectively (Fig. 1.1b). The aspect ratio κ and the

area A of the ellipse correspond to the eccentricity and size of the composite cell and can

be calculated from the axis lengths:

κ =
Lmajor

Lminor

(1.1a)

A =
π

4
LmajorLminor. (1.1b)
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Introduction 2

(a) (b)

Figure 1.1: (a) An image of an embryonic epithelium. (b) The composite cell is defined by
its orientation α and its major and minor axes, Lmajor and Lminor.

The objective of the present work is to develop an algorithm that can estimate α, κ

and A and is robust to unpredictable image characteristics, such as variations in illumi-

nation, cell pigmentation, cell boundary visibility and cell orientation and shape. This

thesis proposes and evaluates five such algorithms: one which estimates the composite cell

parameters directly from the raw image, and four others which estimate the parameters

from frequency domain data. The frequency domain algorithms are: least squares ellipse

fitting, area moments, correlation and axes searching, and Gabor filters. All methods are

quantitatively compared through application to a wide variety of real images.

This thesis is organised as follows. Chapter 2 provides background information on

this research, including the project context and related research. The five methods are

described in Chapter 3 and their performance is evaluated in Chapter 4. Conclusions are

made in Chapter 5.



Chapter 2

Background

2.1 Research context

This research is in support of biomechanical modelling of embryonic development [6], the

purpose of which is to understand the mechanics of embryogenesis and the mechanical basis

of birth defects such as spina bifida and cardiac septum defects. Slight irregularities in the

stresses occurring in the embryonic epithelia, of which embryos are largely composed, are

believed to cause these conditions. It has been shown that these stresses are related to the

orientation, eccentricity and size of the epithelium cells as characterized by α, κ and A

respectively [10] [7] [11]. Thus, to understand embryo development, it is crucial to measure

these properties.

The tissue images considered in this thesis were taken from intact developing axolotl

(amphibian) embryos using a custom microscope setup [35] and from excised pieces of

embryonic tissue placed in a novel instrument that can apply a tensile stress to them [37].

The variability of the image characteristics make it difficult to design a robust algorithm.

Substantial variability is found in illumination, cell pigmentation, cell boundary visibility

3



Background 4

and cell orientation and shape (Fig. 2.1). Finally, cell mitosis can cause dark spots

to appear between newly forming cells, which can be mistaken as individual cells. An

algorithm that is insensitive to these variations is desired.

The need to automate this process rather than relying on human measurement is two-

fold. First, the large number of images that must be analyzed makes human measurement

impractical. Second, avoiding human bias is preferred, and this can only be guaranteed

with an automated method. Algorithmic bias must also be avoided, an issue addressed in

Section 4.3.6.

2.2 Related research

To the best of the author’s knowledge, the specific problem of estimating the average orien-

tation, eccentricity and size of cells in images of biological tissue has not been addressed in

the research literature. However, many image processing techniques have been developed

for the general analysis of biological cells. These include methods for cell counting [1] [14]

[31], individual cell analysis and tracking [26] [29] and multiple cell analysis and tracking

[22] [38] [25]. Of these, the multiple cell analysis and tracking methods are relevant to this

research. These methods, however, are either designed for images in which the cells do

not touch (as in [25]), images with very high contrast (as in [38]) or images with total cell

boundary visibility (as in [22], [38] and [25]). These methods are therefore inappropriate

for the images considered in this thesis in which the cells are always touching and often

have low-contrast, partly visible boundaries.

The problem considered here could also be approached from a texture analysis stand-

point. The embryonic tissue can be thought of as a texture, having a certain average

‘texture element’ orientation, eccentricity and size.
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(a) (b)

(c) (d)

Figure 2.1: Variation in image characteristics: (a) illumination, (b) cell pigmentation, (c)
cell boundary visibility and (d) cell shape and orientation.
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Many methods have been developed to specifically estimate texture orientation. Vaidyanathan

and Lynch [34] analyzed the directionality of detected edges, while Sourice et al. [32] pro-

posed computing autocorrelation of pixel intensities to find texture orientation. These two

methods were only recognised to be applicable for images containing roughly parallel lines,

and hence are not appropriate for complex cellular images.

Others have focused on computing texture orientation by exploiting patterns in the

frequency domain. These techniques are based on the concept that the energy in the

frequency magnitude response image (|F |) is concentrated along an axis perpendicular to

the texture orientation. Bigün et al. [2] propose a method to find an axis of symmetry in

the |F | image in order to estimate orientation. Kass and Witkin [20] use an orientation-

selective bandpass filter and find the orientation yielding the greatest response. These

two methods gave inspiration for the orientation estimation components of the frequency

methods proposed in this thesis.

A ‘package solution’, however, was desirable: a single algorithm that could elegantly

estimate all three composite cell parameters. To this end, methods were investigated

that perform a structural analysis of texture. These methods attempt to detect regularly

occurring texture elements arranged according to a ‘placement rule’. The placement rule

consists of two dominant orientations with corresponding frequencies (Fig. 2.2) from which

the three composite cell parameters can be derived. Matsuyama et al. [24] automatically

find the placement rule through analysis of the frequency domain while others use co-

occurrence matrix features to perform this task [21] [33]. There are three issues with these

methods. First, they are meant for use with simple, regularly repeating texture images (as

in Fig. 2.2a). The embryonic tissue images do not match this description since they can

have large variations in cell size and placement. Second, the embryonic cells are tightly

packed which makes it impossible to isolate a single cell in a parallelogram-shaped window
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(a) (b)

Figure 2.2: Placement rule defining texture element positions. (a) Regularly-repeating
texture image [4]. (b) Placement rule grid lines defined by two orientations and two
frequencies.

(as in Fig. 2.2b). Finally, in this thesis, the orientation of the cells themselves must be

be detected, rather than the orientation of the placement pattern of the cells. The vertical

orientation of the elements in Fig. 2.2a is not captured in the given placement rule. A

placement rule could be used to find κ and A, but as described, these algorithms are not

suited to the embryonic tissue images.

Novel methods were then developed because of the inability of the methods described

above to estimated all three composite cell parameters. The frequency-based algorithms

mentioned above motivated the development of the four frequency domain algorithms

proposed in this thesis. The area moments method extends the Bigün et al. method to

allow for the estimation of κ and A. The Gabor filters method extends the Kass and

Witkin method by searching over a range of frequencies to again allow for the estimation

of κ and A. The least squares ellipse fitting and correlation and axes searching methods

were developed due to their attractive simplicity. For completeness, and given the unique
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images considered in this thesis, a spatial domain method was also developed.



Chapter 3

Methods

Five methods to estimate α, κ and A are introduced in this section: one spatial domain

method, and four frequency domain methods. Initial versions of the four frequency domain

methods were developed by Puddister [28] and are improved upon in this thesis. Please

note that these algorithms process images with an intensity range of [0, 1].

3.1 Method #1: Spatial domain (SD)

The spatial domain method attempts to segment the image into cells, and then average

the segment measurements to determine α, κ and A. There are three main stages to

this method. First, local contrast is enhanced through the application of a new contrast

enhancement routine. Next, an iterative watershed segmentation technique is used to

detect individual cells. Finally, a segment analysis routine is applied to calculate the

composite cell parameters. The spatial domain method is summarised in Tab. 3.1. The

optimal algorithm parameters (for the test images introduced in Section 4.1) are given in

Table 3.2.

9



Methods 10

Table 3.1: Spatial domain method summary.
Step Description Parameters
1 Local contrast enhancement
1.1 Calculate local averages r
1.2 Apply local sigmoidal transfer fcns m
2 Iterative watershed segmentation
2.1 Take image complement

loop
2.2 Apply extended-minima transform d
2.3 Apply imposed-minima transform
2.4 Perform watershed segmentation
2.5 Decrement d ddec

2.6 exit if min # segments found nmin

end loop
2.7 Remove boundary segments
3 Segment analysis
3.1 Find centroid of each cell
3.2 Find median 16 ray directions
3.3 Fit ellipse to find α, Lmajor and Lminor

Table 3.2: Optimal spatial domain method parameter values for test images (introduced
in Section 4.1.)

r m d ddec nmin

15 10 0.55 0.04 25
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Figure 3.1: Sigmoid transfer functions for average local intensities of 0.3, 0.5 and 0.7
(m = 10).

3.1.1 Local contrast enhancement

The purpose of this step is to increase the local contrast of the input image, fin(x, y), to

make the image appropriate for watershed segmentation. A local contrast enhancement

algorithm was developed that is computationally inexpensive, is easily adjustable and does

not saturate the pixel intensity range.

First, the local average is calculated. This is done by filtering the input image, fin(x, y),

with a uniform circular local-averaging mask, hr(m,n), where r is the mask radius in pixels.

The resulting image is:

favg(x, y) = hr(m,n) ∗ fin(x, y). (3.1)

Given the local average, a point operation enhances the local contrast using a sliding
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(a) (b)

Figure 3.2: An embryonic tissue image before and after adaptive contrast enhancement
(m = 10; r = 15). (a) Original image (b) Local contrast enhanced image.

sigmoidal function. For each pixel, a sigmoidal transfer function is created which is centred

on the local average (Fig. 3.1). When a maximum slope of m > 1 is used, this expands

the pixel intensity range around the local average, increasing the local contrast. The

contrast-enhanced image (Fig. 3.2b) is:

fout(x, y) =
1

1 + e4m[favg(x,y)−fin(x,y)]
. (3.2)

The sigmoidal function was chosen for three reasons. It is monotonically increasing

(to provide a sensible pixel intensity mapping), the maximum slope can be set as a single

parameter and the output intensity does not saturate the pixel intensity range.
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3.1.2 Iterative watershed segmentation

This step attempts to segment the image into cells so that each cell can be analysed in

isolation. The proposed iterative watershed method segments the contrast-enhanced image,

fout(x, y), into the individual cells wherever possible. The watershed segmentation method

is used for this application because it is fast and does not require a priori information of

the number of segments.

The classic watershed segmentation method treats an image as a three-dimensional

landscape (where pixel intensity is elevation) and segments it into its component watershed

areas [36]. Every point in a given watershed area can be thought of as draining into a

common ‘drainage area’, just as every point in the Lake Superior watershed drains into

Lake Superior. The algorithm developer must choose the most appropriate set of drainage

areas for the image. In this context, fout(x, y) contains round hills (the cells) surrounded

by a network of narrow valleys (the cell boundaries).

The first step is to find the image complement, (fcompl), of fout(x, y) so that the cells

become valleys and the boundaries become ridges. This is done so that the watershed

segmentation method can recognise the cells as individual watershed areas.

There are three further steps that are iterated over until the number of segments de-

tected exceeds a user-defined threshold, nmin. Each step uses an 8-connected (3×3) neigh-

bourhood:

1. Create binary map of drainage areas : The extended-minima transform (‘imextended-

min’ function in MATLAB r©) is applied to fcompl to produce a binary image where

groups of zeros indicate drainage areas. Pixels in a drainage area are a minimum

depth d below (darker than) their neighbours [23]. The drainage areas should be

located in the interiors of each cell in the image. The minimum depth (d) parameter

is used to make this step robust against minor intensity variations.
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2. Transform fcompl using drainage area map: The imposed-minima transform (‘imim-

posemin’ function in MATLAB r©) then transforms fcompl using the binary drainage

area map to create a new grey-level image that has local minima located only at the

drainage areas [23].

3. Watershed segmentation: The classic watershed segmentation method is applied to

the transformed fcompl from the previous step. This determines the shape of the wa-

tershed segments (cells) that ‘drain’ into the detected drainage areas (local minima).

Each iteration decrements the minimum depth threshold, d, by ddec starting from do,

resulting in an increasing number of drainage areas. Therefore, the number of segments

detected also increases over each iteration (Fig. 3.3). A large do is initially chosen which

results in only a few cells being detected for most types of input images. When the number

of cells detected, n, is greater than the user-defined nmin, the iterations stop. An image

with well-defined cell boundaries requires few iterations since the intensity depressions are

already deep. An image with poorly-defined cell boundaries requires more iterations.

These iterations remove the necessity of setting d as a hard threshold, making the

segmentation more robust to different input image types. The threshold nmin is a more

intuitive parameter and can be more easily set by the user than d. The parameter nmin

represents the number of cells that must be detected to be confident in the results.

A single additional step is then performed on the segmentation result. Any cell that

touches an edge of the image is removed. This is done because the overall shape of these

cells is unknown, and hence should not be used in the calculation of the composite cell.
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(a) (b) (c)

Figure 3.3: Example iterations of proposed segmentation method show increasing number
of detected cells. Boundary cells are removed. The effects of large and small cells are
minimised through median measure used in composite cell parameter calculation. (a)
d = 0.65, (b) d = 0.57, (c) d = 0.51.

3.1.3 Segment analysis

Average cell measurements are now made using the segmented image. Finding the ‘average

shape’ of the individual cells is not, however, a straightforward task. This task was done

by quantifying each cell by taking ray measurements in 16 directions from its centroid to

its edge (Fig. 3.4). The medians of these measurements were then found over all n cells.

The 16 ray measurements define a sixteen-sided polygon that represents the composite cell.

A best-fit ellipse (in the least squares sense) is calculated from this polygon [17] and α,

Lmajor and Lminor are measured directly. Finally, κ and A can then be calculated using

Eqs. (1.1a) and (1.1b).

The median measure was chosen over the mean due to its robust nature. The median

measure prevents spuriously detected cells (both large and small) from having a major

impact on the final result.
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Figure 3.4: 16 ray measurements taken from centroid to edge of cell

3.2 Frequency domain methods

Four frequency domain methods are introduced in this section: least squares ellipse fitting,

area moments, correlation and axes searching, and Gabor filters. These methods all take

as input the frequency magnitude response image, |F |, generated using a two-dimensional

fast Fourier transform (FFT) [16].

First, an explanation of how the |F | image captures desired characteristics of the tissue

image is given. This is followed by a description of three preprocessing steps that are

shared by the four methods. The subsections following this describe the four proposed

methods.

3.2.1 Estimating spatial patterns in the frequency domain

An image is converted into the frequency domain using a two-dimensional FFT. The re-

sulting |F | image can then be plotted on the horizontal u and vertical v axes, in pixel

units of cycles per image (c.p.i.) with the origin of |F | shifted to the center of the image

to follow convention.
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To illustrate how the composite cell parameters can be measured in the frequency

domain, first consider the synthetic (Voronoi tessellation) cell image (Fig. 3.5a) [13] and

its corresponding |F | image (Fig. 3.5b). Note the obvious elliptical shape of the energy

distribution.

The composite cell parameters can be derived from an ellipse fit to the energy distribu-

tion in |F | (Fig. 3.5b). The strong high-frequency response shown in the vertical direction

(along the v axis) in the |F | image corresponds to the minor axis of the composite cell, and

can be seen visually in the spatial domain as the high frequency of cell edges encountered

in the vertical direction. The relatively weaker low-frequency response in the horizontal

direction (along the u axis) corresponds to the major axis of the composite cell, and can be

seen in the spatial domain as the lower frequency of cell edges encountered in the horizontal

direction. Note that the strongest response in the |F | image corresponds to the minor axis

of the composite cell because the number of repetitions of the minor axis in the image is

greater than that of the major axis. The orientation, α, is simply perpendicular to the

major orientation of the ellipse in the |F | image. The axis lengths of the ellipse in the |F |
image can be converted from c.p.i. to spatial pixels, allowing κ and A of the composite

cell to be calculated using Eqs. (1.1a) and (1.1b) respectively.

The benefit of using the frequency domain is that the FFT has the effect of averaging

spatial variation of cell properties in the tissue. In the context of this research, the strongest

responses in the |F | image reveal the average cell orientation and axis lengths. This

effect makes the frequency domain methods robust to spatial variations in cell shape,

orientation and cell edge visibility. The other image characteristic issues, illumination

and pigmentation variation are addressed in the preprocessing steps outlined in the next

section.

The difficulty in using a frequency approach is achieving an accurate fit of an ellipse to
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(a) (b)

Figure 3.5: A cellular image and its corresponding FFT magnitude response image, |F |
. (a) A synthetic 350×350 cellular image with α = 0◦, κ = 1.8, A = 24 pixels. The
composite cell is drawn in black. (b) FFT magnitude response image, |F |, in pixel units
of cycles per image. Transform of composite cell is shown as white ellipse. A square root
point operator has been applied to enhance visibility.
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the |F | energy distribution. As shown in the next section, images of real axolotl embryonic

epithelia do not typically produce |F | images as clean as that shown in Fig. 3.5b. The four

methods attempt to achieve this ellipse fitting in different ways. A summary of how the

composite cell parameters are found for each of the frequency domain methods is shown

in Fig. 3.6.

Stationarity of the geometric statistics of the cells (α, κ and A) is assumed. If these

statistics varied from one part of the image to another, this would create multiple patterns

in the |F | image. This would not be appropriate input data for the proposed methods.

3.2.2 Preprocessing

Three preprocessing steps are applied before each of the four methods to prepare the raw

image for processing:

1. Find image gradient magnitude: This is performed on the spatial domain image to

detect cell boundaries and remove the effect of cell pigmentation. The combined

magnitude image produced by the horizontal and vertical Sobel operators was used

[12] but any other fundamental gradient operator could also be used. The FFT is

applied after this step.

2. Set low-frequency components to zero: Frequency components at or below Flow = 4

cycles per image are set to zero since these components represent spatial patterns

too large to be individual cells. The image data will not be captured at such cell

resolutions. This also removes low-frequency illumination variation.

3. Threshold |F |: The |F | image is first normalised to [0, 1] and then thresholded by

setting to zero components below Fthresh = 0.30 in order to remove low-energy noise.

This threshold was a robust choice for all the methods.
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Figure 3.6: Summary of frequency domain methods for finding composite cell parameters
α, κ and A from the preprocessed |F | image.
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3.2.3 Method #2: Least squares ellipse fitting (LSEF)

A direct way to fit an ellipse to the |F | image data is to find the best-fit ellipse in a

least squares sense. Numerous methods have been developed for this purpose, many of

which fit data points to a general conic cross-section and use a constraint to force the

solution into an ellipse. Fitzgibbon et al. [17] present a direct least squares based ellipse

specific method that is robust and computationally inexpensive. As with most other least

squares ellipse fitting algorithms, this algorithm uses a form of ‘algebraic distance’ [30]

which approximates the perpendicular distance from a data point to the ellipse and is

much simpler to compute. This algorithm is applied to the |F | image.

The |F | image data is converted into a set of data points in the following manner: a

data point at pixel column x and row y is created for each 0.1 pixel intensity value. Thus

a pixel with an intensity of 0.4 would be converted into four data points. Such a bin value

was chosen to create sufficient points to characterise the |F | image. Once the ellipse is fit

to this data, α, Lmajor and Lminor can be calculated directly, and κ and A can then be

calculated using Eqs. (1.1a) and (1.1b), respectively.

The values of κ were found to be biased high for this algorithm. This is because

the energy corresponding to Lminor in the |F | image was greater than that corresponding

to Lmajor (because there are more Lminor repetitions in the tissue image). The fitted

ellipse would therefore consistently be ‘stretched’ in the Lminor (the long axis in the |F |
image) direction, resulting in a greater κ value. A linear corrector function was empirically

determined (using test images, as described in Chapter 4) that minimised the least-squared

error of κ:

κ = κ′ −mκ(κ
′ − 1) (3.3)
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Figure 3.7: Example least squares ellipse fitting [28].

where mκ = 0.29 and κ′ is the biased estimate of the true aspect ratio. Note that this

function does not adjust κ′ = 1, since the aforementioned bias would not have an effect in

this case because Lminor = Lmajor.

3.2.4 Method #3: Area moments (AM)

The second frequency domain method uses the concept of area moments to estimate α and

κ. An ellipse, constrained by these two parameters, is then found that contains a certain

percentage of energy in the |F | image. The size of this ellipse yields the estimate for A.

Area moments provide a measure of the resistance of an object to angular acceleration

about an axis. The ellipse in |F | can be thought of as a two-dimensional object of varying

density (pixel intensities) centered at the origin. The idea of using area moments in the |F |
image to find texture orientation was suggested by Bigün et al. [2]; their method actually

solves a matrix eigenvalue problem in the spatial domain.

The proposed method implements this concept completely in the magnitude frequency

domain, where all three composite cell parameters can be determined. First, the moments

about the u and v axes (Iu, Iv) and product of inertia (Iuv) of the |F | image can be found

as follows [18]:
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Iu =
rows∑
v=1

cols∑
u=1

|F (u, v)| · v2 (3.4a)

Iv =
rows∑
v=1

cols∑
u=1

|F (u, v)| · u2 (3.4b)

Iuv =
rows∑
v=1

cols∑
u=1

|F (u, v)| · u · v (3.4c)

After computing these inertial measures, α can be computed as:

α = arctan

(
2Iuv

Iu − Iv

)
(3.5a)

provided Iu 6= Iv. In the case that Iu = Iv,

α =





π/4 if Iuv > 0

0 if Iuv = 0

−π/4 if Iuv < 0.

(3.5b)

Using Mohr’s circle [18], |F | can be rotated by α to set Iuv to zero, resulting in only two

moments:

I1 =
Iu + Iv

2
+

√(
Iu − Iv

2

)2

+ I2
uv (3.6a)

I2 = Iu + Iv − I1. (3.6b)

κ can then be calculated directly as a ratio of the roots of these moments [5]:
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Figure 3.8: Relation of AM area error, ζA (See Chapter 4 for description of error metrics),
to true minor axis frequency. (a) Original results show positive correlation. (b) Results
using F ′

low show smaller correlation. Dashed lines show best-fit lines in the least squares
sense.

κ =
max(

√
I2,
√

I1)

min(
√

I2,
√

I1)
. (3.7)

For the same reason as the least squares ellipse fitting method, the κ values for this

method were biased high. The corrector function in Eq. (3.3) is applied again here, using

mκ = 0.38 calculated to minimise the least-squared error.

The composite cell area, A, was estimated by finding an ellipse constrained to the

estimated α and κ which contained a fraction Ffrac of the energy in the |F | image. The

fraction that minimised the error for the test images was empirically found to be Ffrac =

0.28 (See Chapter 4 for a description of the test images and error metrics).

The resulting area error, however, was found to be correlated with the number of true

minor axis cycles per image (Fig. 3.8a). The reason for this correlation was that as

the minor axis frequency became larger, a greater amount of lower frequency noise also
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Figure 3.9: Relationship between average c.p.i. response and ζA. (a) Original results show
positive correlation. (b) Correlation is removed by using F ′

low. Dashed lines show best-fit
lines in the least squares sense.

appeared. This caused the detected ellipse to be too small in the |F | image, and hence

cause the estimated composite cell to be too large. The opposite effect occurred when the

minor axis frequency was too small.

The true minor axis frequency value is unknown from the point of view of the algorithm,

and hence could not be used to remove the correlation. However, the average c.p.i. in the

|F | image could be found which demonstrated a similar correlation with the area error

(Fig. 3.9a). This value was used to increase the ‘low frequency’ threshold defined in Step 2

of the preprocessing. This means that as the average c.p.i. increases, the greater the range

of noisy low frequency components that are set to zero. The new low frequency threshold

was set to:

F ′
low =

(average c.p.i.)

3
(3.8)

which removed the correlation between the average c.p.i. and the area error (Fig. 3.9b).
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This, in turn lessened the correlation between the true minor axis frequency and the area

error (Fig. 3.8b).

In summary, to estimate A, the AM method first increased the low frequency threshold

Flow to F ′
low using the average c.p.i. in the |F | image. Second, an ellipse constrained to

the estimated α and κ was found that contained a fraction Ffrac = 0.28 of the energy in

the |F | image.

3.2.5 Method #4: Correlation and axes searching (CAS)

The third frequency domain method estimates α by finding the angle of a line of symmetry

in the |F | image. The axis lengths are found by searching for maxima along two rays in

the |F | image: one parallel and one perpendicular to the line of symmetry.

The correlation coefficient, −1 < ρ < 1, is used to find the axis of symmetry, and is

defined for two data vectors, a and b as:

ρ =
E[(a− µa)(b− µb)]√

var(a)var(b)
(3.9)

where E[.] is the expectation operator and var(.) is the sample variance operator. The

sample means for a and b are µa and µb respectively. If ρ = 1, then the elements in a and

b have a positive linear relationship. If ρ = −1, there is a negative linear relationship. If

ρ = 0, there is no relationship.

To determine the orientation of the ellipse in the |F | image, a new image is created by

rotating |F | by single degrees through 1◦ < α < 90◦. In creating the rotated |F | images,

only a circular area (with a diameter equal to the width and height of the image) in the

|F | image is considered. After each rotation, the image is “folded” along the vertical v

axis, and ρ is measured between corresponding pixel intensities using Eq. 3.9. This is
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(a) (b)

(c)

Figure 3.10: Estimating orientation using correlation method. (a) Input image with cells
rotated at 60◦ to the horizontal; (b) corresponding preprocessed |F | image; (c) ρ vs. angular
rotation shows a well-defined maximum at 60◦. This angle corresponds to either the major
or minor axis of the ellipse in the |F | image.
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done by arranging the pixels in the left and right halves of the image into vectors a and

b respectively. When the |F | ellipse is aligned (either horizontally or vertically) with the

u and v axes, ρ is at a maximum (Fig. 3.10). The angle of rotation used to produce the

maximum ρ therefore corresponds to either the major or minor axis of the composite cell.

The maximum responses along the u and v axes are now found. A narrow 3-pixel-

wide band along each axis is considered to account for any small errors in the orientation

estimation. Of the two detected maxima, the response found at the higher frequency

corresponds to Lminor while the response found at the lower frequency corresponds to

Lmajor. Gaussian smoothing with σ = 1 is applied along the narrow bands to minimise the

effect of noise. Now α is known and κ and A can be calculated from the measured axis

lengths using Eqs. (1.1a) and (1.1b), respectively.

3.2.6 Method #5: Gabor filters (GF)

The final frequency domain method searches for the orientation and frequency yielding

the maximum Gabor filter response. The maximum response is then found along an axis

perpendicular to the axis of the global maximum. The parameters α, κ and A are derived

from these two maxima. This is an extension of the Kass and Witkin method [20] described

earlier which used an orientation-selective bandpass filter to detect orientation only.

Gabor filters are filters that can decompose an image into frequency- and orientation-

specific texture features [3] [15]. This means that a Gabor filter can be designed to be

sensitive to specific frequencies and orientations. The Gabor filter response at a location

(u, v) in the frequency domain is defined as:

H(u, v) = exp [−2π2{(u− F)2σ2
x + v2σ2

y}] (3.10)
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(a) (b)

Figure 3.11: Frequency responses for Gabor filters (BF = one octave, Bθ = 30◦): (a) 16
c.p.i. oriented at −45◦ and (b) 64 c.p.i. oriented at 30◦.

where F is the frequency, and σx and σy are the standard deviations in frequency and

orientation, respectively [19]:

σx =

√
ln 2(2BF + 1)√
2πF(2BF − 1)

(3.11)

σy =

√
ln 2√

2πF tan(Bθ

2
)
. (3.12)

Clausi and Jernigan [15] argued that the frequency bandwidth, BF and the angular band-

width, Bθ should be set to one octave and 30◦ respectively in order to best model the

human visual system. Two examples of Gabor filters with these bandwidths are presented

in Fig. 3.11.

This method first searches for the Gabor filter parameters (frequency and orientation)

that produce the strongest filter response in the |F | image. Frequencies are tested at every

second cycle per image, and orientations at every third degree. The orientation of the
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Gabor filter with the strongest response is associated with the orientation of the composite

cell. The frequency of the strongest response corresponds to either Lmajor or Lminor.

A ray perpendicular to the detected orientation is then searched to find a local max-

imum. This corresponds to the other axis length of the composite cell. The axis with

the higher frequency corresponds to Lminor, while the axis with the lower frequency cor-

responds to Lmajor. The orientation is then associated with the major axis. As before, κ

and A can then be found using Eqs. (1.1a) and (1.1b), respectively.

In initial testing, Gabor filters were found to be satisfactory only for very regular celluar

images with very strong patterns in the |F | energy distribution [28]. They did not work well

for typical cell images and hence are not included in the following section. The maximum

Gabor filter responses were consistently being ‘pulled’ to frequencies that were too high,

apparently because of the larger filter bandwidth associated with the higher frequency

Gabor filters when implemented using a pseudo-wavelet format [15].



Chapter 4

Evaluation of Algorithms

The four methods – spatial domain (SD), least squares ellipse fitting (LSEF), area moments

(AM) and correlation and axes searching (CAS) – were evaluated using images of real

embryonic epithelia. The Gabor filter method results are not reported due to its inferior

performance. This chapter first describes the test images and a technique for measuring

the ‘true’ composite cell parameters. The experimental results are then presented and

discussed. Finally, estimation confidence measures are described for the chosen method.

4.1 Test images

The methods were evaluated using 19 individual images of embryonic epithelia and a set of

11 time-lapse images in which a patch of embryo tissue was stretched. These test images

and their corresponding gradient magnitude and preprocessed |F | images (used only by the

frequency domain methods) are shown in Appendix A (Figs. A.1-3, A.5-7). The images

demonstrate a wide variety of image characteristics. An example test image, its gradient

magnitude image and preprocessed |F | image are shown in Figs. 4.1a-c.

31
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(a) (b)

(c) (d)

Figure 4.1: Example (a) test image and corresponding (b) gradient magnitude image, (c)
preprocessed |F | image (concentric circles show 25 and 50 c.p.i.) and (d) hand segmentation
(truth) image.
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4.2 True measurements

In order to measure the performance of the algorithms, the true values of α, κ and A

(α̂, κ̂ and Â respectively) for each test image must be known. These values were found

by hand-segmenting the test images and applying a variation of the AM method. This

method, and the associated errors in finding the true measurements are described in the

next two subsections. The hand-segmented images are shown in Appendix A (Figs. A.2,

A.6). An example hand-segmented image is shown in Fig. 4.1d.

Manually fitting an ellipse in the |F | image was also considered as a way to find the

true parameter values. However, the lack of definite peaks in the |F | images made this

approach highly subjective.

4.2.1 Methodology

First, the tissue images were hand-segmented. This process was difficult because many cells

in the test images did not have completely visible boundaries. To maximise the information

captured by the segmentation, cells with roughly 75% visible boundaries were segmented

(the position of the invisible edge sections were estimated).

Given the segmented image, α̂ and κ̂ were found by calculating the moments of inertia,

Iu and Iv, and product of inertia, Iuv, for each cell segment. These values were then

averaged over all cells and Eqs. (3.4)-(3.7) were applied. Note that κ̂ is therefore the

average cell aspect ratio in the direction of α̂. For Â, the segmented cell areas were simply

averaged. This method was validated by applying it to synthetic Voronoi tessellations with

known α̂, κ̂ and Â values, and comparing these values to the measured ones.

Standard deviations of α̂, κ̂ and Â over all cells (σα̂, σκ̂ and σÂ respectively) were also

measured. If σα̂, σκ̂ or σÂ were large, the performance of the algorithms was expected to
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Figure 4.2: This cell, with interior denoted by 0s and edges denoted by 1s, measures 6
pixels by 3 pixels. Each edge is only considered half a pixel thick.

be degraded.

4.2.2 Errors in true measurements

There are three types of errors in the true measurements. These are due to hand segmen-

tation of the input image, the appearance model chosen for the cells and the digitisation

of the cells.

The first error was a result of the hand segmentation. The segmentation process is

subjective and its error cannot be quantified, but it is a necessary step to find the best

estimate of α̂, κ̂ and Â.

The second error was due to the cell appearance model chosen. A cell was defined

as being composed of its interior region and half the thickness of its edges (Fig. 4.2) to

prevent any overlap among cells, since all cell boundaries are shared. This definition also

agrees with how the FFT captures the image information. This definition is difficult to

follow when hand segmenting cells because the cell edges would have to be made of ‘half

pixels’.

Two methods were designed to solve this problem. First, the pixels at the cell edges were

given half the weight (intensity) of the interior cell pixels in the area moments calculation.
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Second, the cell segment was doubled in size (using bilinear interpolation) and was dilated

by one pixel. This doubling has no affect on the resulting α̂ and κ̂ measurements, and

the Â measurement would simply be divided by 22 = 4. The errors for each of the two

methods were quantified by applying them to synthetic Voronoi tessellations with known

parameters.

The second method was found to produce a more exact solution. The error in the

detected κ̂, for example, lessened as the cell segment grew in size, and was about 1% for

a 15×30 pixel cell. Rarely were the segmented cells smaller than this size and hence the

resulting errors were considered insignificant.

The third error was due to the digitisation (i.e. into pixels) of the cells. This digitisation

affects the calculated Iu and Iv values. However, this effect also lessened with increased

cell sizes. This error was measured by hand-calculating the moments for a continuous cell

and comparing it to the moments of the digitised cell. For a 14×7 pixel cell the error in

both moments was about 1%. This error is less than the error described above and is hence

also considered insignificant.

4.3 Experimental results

This section first introduces a performance objective, followed by the presentation and

discussion of the experimental results for the 19 test images. A Student’s T test was then

applied to check for bias in the results, and a time-lapse test with a different set of 11

images was done to measure stability of the results. Based on these results, the most

accurate and stable method is chosen. Finally, confidence measures for the chosen method

are described.

The results for the four methods when applied to the 19 test images are presented in
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Table 4.1: Distance from α̂ for each method in degrees (εα = α−α̂) and number of standard
deviations (ζα = εα/σα̂) for test images. Best results shown in bold.

Image: α̂, σα̂ SD LSEF AM CAS
εα (ζα) εα (ζα) εα (ζα) εα (ζα)

a: 36.8, 49.2 −18.1 (−0.37) +29.2 (+0.59) +21.4 (+0.43) +15.2 (+0.31)
b:173.1, 16.1 +8.6 (+0.53) −3.7 (−0.23) +1.7 (+0.11) +2.9 (+0.18)
c: 85.9, 17.6 +5.1 (+0.29) −1.1 (−0.06) +0.1 (+0.01) +0.1 (+0.01)
d:141.0, 33.1 +9.8 (+0.30) −3.6 (−0.11) −3.7 (−0.11) −5.0 (−0.15)
e:119.4, 27.6 −8.5 (−0.31) +2.6 (+0.09) +1.6 (+0.06) −2.4 (−0.09)
f: 87.8, 21.6 +0.9 (+0.04) −7.0 (−0.32) −7.5 (−0.35) −0.8 (−0.04)
g: 52.4, 17.3 +5.1 (+0.29) −1.9 (−0.11) −2.9 (−0.17) −3.4 (−0.20)
h: 11.3, 34.3 −9.8 (−0.29) +0.8 (+0.02) +1.1 (+0.03) +2.7 (+0.08)
i: 75.5, 40.2 −14.2 (−0.35) −2.8 (−0.07) −1.3 (−0.03) +5.5 (+0.14)
j:128.4, 45.4 −13.4 (−0.30) −32.2 (−0.71) −21.5 (−0.47) −20.4 (−0.45)
k: 8.9, 33.5 −4.0 (−0.12) +2.3 (+0.07) +2.3 (+0.07) +8.1 (+0.24)
l: 22.7, 25.7 −3.0 (−0.12) −1.4 (−0.05) −1.7 (−0.07) −2.7 (−0.11)
m: 91.1, 38.8 +0.6 (+0.02) −23.1 (−0.60) −14.9 (−0.38) +21.9 (+0.56)
n: 53.3, 35.2 −2.0 (−0.06) +3.1 (+0.09) +0.9 (+0.03) +2.7 (+0.08)
o:155.2, 39.5 +24.6 (+0.62) +18.9 (+0.48) +17.4 (+0.44) +15.8 (+0.40)
p: 82.3, 51.2 −13.0 (−0.25) −22.6 (−0.44) −27.0 (−0.53) −49.3 (−0.96)
q: 75.2, 44.9 −49.1 (−1.09) −2.5 (+0.06) −3.2 (−0.07) +9.8 (+0.22)
r:177.7, 46.1 +4.8 (+0.10) +10.5 (+0.23) +12.5 (+0.27) +8.3 (+0.19)
s: 86.4, 26.0 +8.3 (+0.32) +8.8 (+0.34) +3.2 (+0.12) +3.6 (+0.14)
Average
absolute 10.7 (0.30) 9.4 (0.25) 7.7 (0.20) 9.5 (0.24)

Tables 4.1-4.3. The true composite cell values as well as their standard deviations are

given. The distance of the measured α from α̂ is given in degrees (εα = α − α̂) and

number of true standard deviations (ζα = εα/σα̂). The distance of the measured κ from κ̂

is given in dimensionless units (εκ = κ− κ̂) and also in number of true standard deviations

(ζκ = εκ/σκ̂). Finally, the distance of the measured A from Â is given in pixels (εA = A−Â)

and also in number of true standard deviations (ζA = εA/σÂ). A graphical comparison of

the results is shown in Fig. 4.3-4.5.
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Table 4.2: Distance from κ̂; for each method in dimensionless units (εκ = κ − κ̂) and
number of standard deviations (ζκ = εκ/σκ̂) for test images. Best results shown in bold.

Image: κ̂, σκ̂ SD LSEF AM CAS
εκ (ζκ) εκ (ζκ) εκ (ζκ) εκ (ζκ)

a: 1.05, 0.44 +0.08 (+0.18) +0.07 (+0.16) +0.05 (+0.11) +0.38 (+0.86)
b: 1.76, 0.56 +0.11 (+0.20) −0.44 (−0.79) −0.28 (−0.50) +0.95 (+1.70)
c: 2.28, 0.67 −0.58 (−0.87) −0.15 (−0.22) −0.18 (−0.27) −0.78 (−1.16)
d: 1.50, 0.60 −0.22 (−0.37) +0.10 (+0.17) +0.19 (+0.32) −0.07 (−0.12)
e: 1.69, 0.54 −0.19 (−0.35) +0.00 (−0.00) −0.01 (−0.02) −0.26 (−0.48)
f: 1.51, 0.36 −0.06 (−0.17) −0.05 (−0.14) −0.10 (−0.28) −0.08 (−0.04)
g: 1.85, 0.56 −0.26 (−0.46) −0.08 (−0.14) +0.02 (+0.04) −0.02 (−0.26)
h: 1.33, 0.54 +0.04 (+0.07) +0.12 (+0.22) +0.14 (+0.26) −0.23 (−0.43)
i: 1.26, 0.44 −0.09 (−0.20) +0.18 (+0.41) +0.12 (+0.27) −0.09 (−0.20)
j: 1.10, 0.32 +0.13 (+0.41) +0.04 (+0.12) +0.00 (+0.00) −0.10 (−0.31)
k: 1.37, 0.42 +0.13 (+0.31) +0.02 (+0.05) +0.05 (+0.12) −0.20 (−0.48)
l: 1.64, 0.47 +0.14 (+0.30) +0.06 (+0.13) −0.04 (−0.09) −0.53 (−1.13)
m: 1.27, 0.57 −0.09 (−0.16) +0.09 (+0.16) −0.01 (−0.02) +0.16 (+0.28)
n: 1.48, 0.67 −0.12 (−0.18) −0.13 (−0.19) −0.12 (−0.18) +0.35 (+0.52)
o: 1.33, 0.33 −0.04 (−0.12) +0.11 (+0.33) +0.17 (+0.52) +0.34 (+1.03)
p: 1.22, 0.58 −0.07 (−0.12) −0.08 (−0.14) −0.09 (−0.16) +0.07 (+0.12)
q: 1.11, 0.36 +0.20 (+0.56) −0.01 (−0.03) −0.02 (−0.06) +0.32 (+0.89)
r: 1.15, 0.41 −0.02 (−0.05) +0.05 (+0.12) +0.07 (+0.17) +0.68 (+1.66)
s: 1.46, 0.47 −0.02 (−0.04) −0.25 (−0.53) −0.24 (−0.51) −0.03 (−0.06)
Average
absolute 0.14 (0.27) 0.11 (0.21) 0.10 (0.20) 0.30 (0.62)
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Table 4.3: Distance from Â; in pixels (εA = A-Â) and number of standard deviations
(ζA = εA/σÂ) for test images. Best results shown in bold.

Image: Â, σÂ SD LSEF AM CAS
εA (ζA) εA (ζA) εA (ζA) εA (ζA)

a: 2744, 1267 −627 (−0.49) −2135 (−1.69) −1119 (−0.88) −180 (−0.14)
b: 2027, 708 −344 (−0.49) −871 (−1.23) +15 (+0.02) +624 (+0.88)
c: 479, 200 −129 (−0.65) −206 (−1.03) +76 (+0.38) +1272 (+6.36)
d: 619, 222 +298 (+1.34) −440 (−1.98) −176 (−0.79) +1027 (+4.63)
e: 504, 224 +317 (+1.42) −220 (−0.98) +161 (+0.72) +602 (+2.69)
f: 1010, 395 −290 (−0.73) +461 (−1.17) +262 (+0.66) +2700 (+6.84)
g: 658, 264 −148 (−0.56) −352 (−1.33) −113 (−0.43) −123 (−0.47)
h: 297, 144 +228 (+1.58) −160 (−1.11) +16 (+0.11) +81 (+0.56)
i: 472, 259 +250 (+0.97) −289 (−1.12) −51 (−0.20) +578 (+2.23)
j: 452, 243 +308 (+1.27) −308 (−1.27) −120 (−0.49) +433 (+1.78)
k: 502, 205 +444 (+2.17) −292 (−1.42) −18 (−0.09) +2114 (+10.31)
l: 476, 189 +389 (+2.06) −297 (−1.57) −79 (−0.42) +320 (+1.69)
m: 412, 204 +348 (+1.71) −223 (−1.09) +63 (+0.31) +240 (+1.18)
n: 373, 158 +215 (+1.36) −219 (−1.39) −36 (−0.23) +262 (+1.66)
o: 203, 79 +70 (+0.89) −92 (−1.16) +52 (+0.66) +141 (+1.78)
p: 507, 276 +308 (+1.12) −304 (−1.10) +12 (+0.04) +541 (+1.96)
q: 208, 82 +527 (+6.43) −76 (−0.93) +77 (+0.94) +1287 (+15.70)
r: 211, 74 +583 (+7.88) −101 (−1.36) +11 (+0.15) +1008 (+13.62)
s: 1243, 560 −19 (−0.03) −1004 (−1.79 −594 (−1.06) +1225 (+2.19)
Average
absolute 307 (1.74) 424 (1.30) 161 (0.45) 777 (4.03)
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(a) SD
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(b) LSEF
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(c) AM
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(d) CAS

Figure 4.3: α estimation results for 19 test images for each of the four methods.
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(b) LSEF
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(c) AM
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(d) CAS

Figure 4.4: κ estimation results for 19 test images for each of the four methods.
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Figure 4.5: A estimation results for test 19 images for each of the four methods.
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4.3.1 Performance objective

When the errors are measured in standard deviations, the natural variability of the cells

are taken into account. These measures therefore provide the most complete information

on the performance of a method. The performance objective decided by the author is for

the estimated α, κ and A values to consistently lie within a distance of one true standard

deviation from their true values (i.e. |ζα| < 1, |ζκ| < 1 and |ζA| < 1) for all image types.

4.3.2 Orientation discussion

All methods estimated α̂ with similar accuracy and achieved the performance objective

of |ζα| < 1 for all 19 test images. The AM method was most accurate, with the lowest

average |ζα| (0.20) and the lowest maximum |ζα| (0.53 for image (p)). All methods had

some difficulty with images (a) and (j) because for both cases κ̂ ≤ 1.1; meaning that the

composite cell is almost circular and hence α̂ is difficult to detect, even visually. In contrast,

the orientations in images (c) and (g) are easily detected by all the methods because in

both cases κ̂ ≥ 1.8. The SD method yielded the least accurate overall results due to the

difficulty in correctly segmenting the individual cells because of inconsistent cell boundary

visibility.

4.3.3 Aspect ratio discussion

The AM and LSEF methods were the most accurate in estimating κ̂. The AM method had

the lowest average |ζκ| (0.20) and the lowest maximum |ζκ| (0.52 for image (o)). The LSEF

method performed almost identically as it also achieved the performance objective and had

an average |ζκ| = 0.21. This was not surprising given the similarity of these methods: both

these methods use every response value in the |F | image to estimate κ̂.
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The SD and CAS methods were less accurate. The SD method achieved |ζκ| = 0.27,

but was again affected by inconsistent cell boundary visibility. The CAS method had large

errors in estimating κ̂ for a number of the images because the |F | images often did not

have well-defined peaks in the major and minor axes directions.

Each method underestimated κ̂ for images with inconsistent cell boundary visibility

such as (f) and (s). This can be explained by noting that the methods would estimate

κ = 1 (the lowest possible value) if cell boundaries in an image were completely obscured.

4.3.4 Area discussion

The AM method was most accurate for estimating Â. This method had an average |ζA| =
0.45 and also achieved the performance objective for all test images except image (s). This

error was due to the inconsistent boundary visibility in this image. As mentioned earlier,

however, there remained a correlation between the error in A and the true minor axis

frequency (Fig. 3.8b). This was addressed by enforcing a minor axis range (to the user) of

10-22 c.p.i., in which the average |ζκ| < 0.5. This excludes images (a) and (q) which both

yielded poor results. This minor axis frequency range is large enough to be easily followed

by the user during manual selection of the analysis window.

The SD method performed less accurately and tended to overestimate the cell area.

This is because the watershed-detected cells were often bigger than the actual cells due

to incomplete cell boundary visibility, such as in images (k) and (l). This caused the cell

segments to ‘spill over’ into other cell segments. The large errors in images (p) and (q)

are due to another problem: because of the large number of cells in these images, the

minimum-cells threshold (nmin = 25) was not large enough to sufficiently characterise the

image. This demonstrates a weakness in the SD method: the need to define five individual

parameters.
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Both the LSEF and CAS methods performed much more poorly. The LSEF method

consistently underestimated Â due to its squared distance measure. This caused high-

frequency energy to overly affect the fitted ellipse and pull it outwards. The CAS on

average overestimated Â. This method would often mistakenly identify peaks in the |F |
image that were too low in frequency that were present because of low-frequency noise.

4.3.5 Algorithmic complexity

Each of the four tested algorithms has similar complexity: O(N2) where N × N are the

dimensions of the input image. For the SD method, each step has an O(N2) complexity:

the local contrast enhancement step performs a fixed task on each of the N2 pixels, the

watershed method does the same [36] and the segment analysis step processes each N2 pixel

to find the centroid of each cell segment. The LSEF method requires O(N2) steps to build

the N2×6 ‘design matrix’ [17] and the AM method requires O(N2) steps to calculate Iu, Iu

and Iuv. The CAS method requires O(N2) steps to calculate the correlation at each image

rotation. Interestingly, the Gabor filter method, which showed the poorest accuracy, also

has the highest complexity: O(N3) since N2 multiplications have to be done to calculate

the filter response at each O(N) frequencies.

The average computation times for the 19 test images (in MATLAB r© 6 on a Pentium

4 @2.4GHz) were also similar (Table 4.4). The LSEF method had the smallest average

computation time at 3.3 seconds.

Table 4.4: Average computation times for test images for each method in MATLAB r© 6
on a Pentium 4 computer at 2.4 GHz. Preprocessing time (including performing FFT) is
included for frequency domain methods.

SD LSEF AM CAS
Time (s) 4.9 3.3 6.1 6.6
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Table 4.5: Paired T-test results for test images for each method at a 5% confidence level.
Associated probability given in parentheses.

Parameter SD LSEF AM CAS
α Pass (0.32) Pass (0.68) Pass (0.68) Pass (0.85)
κ Pass (0.26) Pass (0.59) Pass (0.63) Pass (0.63)
A Pass (0.07) FAIL (<0.01) Pass (0.25) FAIL (<0.01)

4.3.6 Bias test

A paired Student’s T-test was applied to the results to determine whether any method

was biased in its calculation of any of the composite cell parameters. The employed test

determined whether the means of the calculated and true measurements were statistically

different at a confidence level of 5% (Tab. 4.5).

As shown, all measurements were unbiased except the Â estimations for the LSEF

and CAS methods. As discussed earlier, the LSEF method consistently underestimated

A because the fitted ellipse was being pulled outwards by high-frequency energy in the

|F | image due to its squared-distance measure. The CAS method would often mistakenly

identify peaks in the |F | image that were too low in frequency that were present because

of low-frequency noise. This resulted in an average overestimation of Â.

4.3.7 Time-lapse testing

To further test the accuracy while also testing the stability of the four methods, each was

applied to set of 11 time-lapse images in which a patch of embryo tissue was stretched. Two

example images are shown here (Fig. 4.6), and the entire set is shown in Appendix A (Fig.

A.5). Plots were produced that show the true and estimated composite cell parameters for

each method over all 11 images (Fig. 4.7).

The time-lapse images used for this test were sub-images cut manually from a set of
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(a) (b)

Figure 4.6: (a) First and (b) last images in the time-lapse image series.

larger images. The sub-images were selected to track roughly the same patch of cells. An

automated window-selection method would make future time-lapse tests more meaningful.

A method has already been developed to track a patch of cells [8], but it is recommended

that this be expanded to allow for the automatic selection of a square window.

The orientation results show that each method performed similarly accurately. All

methods had difficulty estimating the orientation for the first six images. This was ex-

pected, however, given the low κ̂ for the first six images (Fig. 4.7b), and the instability

of the true orientation. Each method became stable and accurate as κ̂ increased over the

last few images.

The aspect ratio results demonstrate the stability and accuracy of the LSEF and AM

methods and the instability of the SD and CAS methods. The similarity in the LSEF and

AM κ̂ estimations is expected given the similarity of these methods.

The area results show that the AM method alone yields stability and accuracy. The

CAS method method was unstable and overestimated Â, because it mistakenly identified



Evaluation of Algorithms 47

2 4 6 8 10
−10

0

10

20

30

40

50

60

70

80

Image # (time −−>)

O
rie

nt
at

io
n 

(d
eg

re
es

)

SD
LSEF
AM
CAS
True

(a) α

2 4 6 8 10
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Image # (time −−>)

A
sp

ec
t R

at
io

SD
LSEF
AM
CAS
True

(b) κ

2 4 6 8 10
0

100

200

300

400

500

600

700

800

900

1000

Image # (time −−>)

A
re

a 
(p

ix
el

s)

SD
LSEF
AM
CAS
True

(c) A

Figure 4.7: Composite cell parameter estimations and truths for time-lapse images.
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peaks in the |F | image at low frequencies. The LSEF method was stable but underesti-

mated Â due to its squared distance measure. The SD method is smooth, but overestimated

Â due to the lack of consistent boundary visibility.

These results demonstrate that the LSEF and AM methods give the most stable esti-

mations of the composite cell parameters. The AM method alone, however, showed the

highest accuracy.

4.3.8 Method of choice

The AM method achieved the most accurate results in estimating each composite cell

parameter. The AM results were also not biased and were stable. The AM method also

had a similar complexity and computation time as the other methods. For these reasons,

the AM method was chosen as the preferred method to estimate α̂, κ̂ and Â.

4.4 Confidence measures

The user of this algorithm should be alerted if the results for a particular image were

expected to be poor. An attempt was made to construct ‘confidence measures’ to add to

the AM method for each of the composite cell parameters.

It was first thought that if the standard deviations of each composite cell parameter

(σα̂, σκ̂ and σÂ) could be estimated, then this would allow a measure of confidence to be

assigned to each parameter result. The standard deviations, however, could not be easily

estimated due to their combined effect on the |F | image. Each parameter variation would

just add to the overall blurriness of the |F | image (Fig. 4.8). Adding to this problem was

the net blurring effect of variation in cell edge visibility, irregular cell shapes and noise in

the spatial image.
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(a) (b) (c)

Figure 4.8: Affect on ellipse in |F | image due to variation in composite cell parameters (
(a) α, (b) κ, (c) A ). There is not enough information in the |F | image to individually
measure these variations.

Two features were then found that had a relationship with the AM parameter estima-

tion errors. The estimated aspect ratio, κ was found to be correlated with the absolute

orientation error, |ζα|, and the local image contrast was found to be correlated with the

absolute aspect ratio error, |ζκ|. The average c.p.i. was originally correlated with the area

error, but this correlation was removed to improve the accuracy of the area estimation, as

described in Section 3.2.4.

4.4.1 Orientation confidence measure

The absolute error of the estimated α was found to decrease with increasing κ (Fig. 4.9).

This is understandable: as the average aspect ratio of the cells increases, the dominant

orientation can more easily be detected. Based on the results presented in this thesis,

confidence levels were assigned to α for certain ranges of κ (Tab. 4.6). This confidence

measure requires no extra computation since κ has already been estimated.
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Figure 4.9: Relationship between κ and ζα (AM case).

Table 4.6: Confidence levels for α, based on estimated κ.
Feature range Confidence level

κ > 1.5 High
1.3 < κ < 1.5 Medium
1.1 < κ < 1.3 Low

κ < 1.1 Very low
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4.4.2 Aspect ratio confidence measure

The absolute error of the estimated κ was found to decrease with an increase in the average

local image contrast (Fig. 4.10). This relationship can be explained as follows: local

contrast gives a measure of the local visibility of cell boundaries; therefore, the average

local contrast gives a measure of the average visibility of cell boundaries for the entire

image. Inconsistent or low-contrast cell boundaries hide the shapes of the cells and make

the estimation of κ difficult.

For this use, a new local contrast measure was developed. The Weber contrast measure

(see [27]) was used as a foundation for the new contrast measure. The Weber measure

defines the contrast, C, of a small object of uniform intensity, L, on a background also of

uniform intensity:

C =
∆L

L
(4.1)

where ∆L is the difference between the intensities of the object and background. The new

local contrast measure at an image location (x,y) is:

C(x, y) = k · ln
(

1 +
σ(x, y)

µ(x, y)

)
(4.2)

where σ(x, y) and µ(x, y) are the local standard deviation and mean, respectively, of the

pixel intensities in a local window and k is a scalar. The average local contrast, Cavg, is

simply the average of C(x, y) over all (x,y).

This new contrast measure modifies the Weber measure in three ways. First, while

both measures contain a dimensionless ratio of intensities, the new measure removes the

implausible assumption that each window contains a small ‘object’ laying on a ‘back-

ground’. The numerator in the new measure is a more robust σ(x, y) which measures the
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Figure 4.10: Relationship between average local contrast, Cavg, and ζκ (AM case).

overall variability of pixels in a window, while the denominator remains the same. Second,

the natural logarithm operator is used to compress the scale of the measure. Finally, the

scalar k makes C(x, y) = 1 correspond to a maximum contrast level. A window with a

Gaussian intensity histogram (having 98% of its area between 0 and 1) is defined as having

maximum contrast.

Implementing this new contrast measure required the choice of a window size and a

complexity reduction. The window size was set to 1.5∗Lmajor so that it was an appropriate

size for the image contents. Processing time was reduced by scaling the image and window

dimensions by a factor of 0.25.

The relationship between Cavg and the average level of cell boundary visibility is demon-

strated for selected images (Fig. 4.11). As before, confidence levels were assigned to κ for

certain ranges of Cavg (Tab. 4.7). The average computation time to implement this mea-
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Table 4.7: Confidence levels for κ, based on average image contrast measure, Cavg.
Feature range Confidence level

Cavg > 0.3 High
0.2 < Cavg < 0.3 Medium
0.1 < Cavg < 0.2 Low

Cavg < 0.1 Very low

sure (in MATLAB r© 6 on a Pentium 4 computer @2.4 GHz) for the 19 test images was

2.0 seconds.



Evaluation of Algorithms 54

(a) Cavg = 0.87 (b) Cavg = 0.68

(c) Cavg = 0.36 (d) Cavg = 0.16

Figure 4.11: Average local contrast, Cavg, of selected images. The relationship between
Cavg and the average visibility of cell boundaries is demonstrated.



Chapter 5

Conclusions

Five algorithms have been developed to estimate the average orientation, aspect ratio and

area of cells in an image of biological tissue. One of these methods was based in the spatial

domain, while the four others – least squares ellipse fitting (LSEF), area moments (AM),

correlation and axes searching (CAS) and Gabor filters (GF) – estimated the composite

cell parameters from the FFT magnitude response image. Four of these methods (all but

the GF method) displayed some measure of success when applied to 19 test images and

a separate set of 11 time-lapse images. The AM method alone showed high accuracy and

stability.

The SD method was accurate in estimating α̂, but showed some instability in estimating

κ̂ and a bias in estimating Â. The instability and bias arose because the SD segmentation

had trouble segmenting images with variable cell boundary visibility. Another weakness of

the SD method was the need to define five parameters.

The LSEF method was accurate in estimating α̂, a close second behind the AM method

for estimating κ̂ but consistently underestimated Â. The underestimation occurred because

the LSEF method was overly affected by high-frequency energy due to its squared distance

55
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measure. All parameter estimations were stable.

The AM method was most accurate in estimating each composite cell parameter, with

an average |ζα| = 0.20, |ζκ| = 0.20 and |ζA| = 0.45. The area results were found to be

correlated with the minor axis frequency, but this problem was contained by enforcing a

10-22 minor axis c.p.i. range for the test images. The AM method achieved the orientation

and aspect ratio performance objectives (|ζα| < 1 and |ζκ| < 1) for all the test images and

the area objective (|ζA| < 1) when the 10-22 c.p.i. range was enforced. When manual

selection of the image is done this range is large enough to be easily followed by the user.

The AM results were not biased and were stable for every composite cell parameter.

The CAS method was also accurate for estimating α̂, but struggled to estimate κ̂ and

Â. This was due to a lack of well-defined maxima in the |F | images. The Â estimations

were also biased high, and the κ̂ and Â estimations were not stable.

5.1 Summary

Due to its consistently superior performance, the AM method should be used to estimate

all the composite cell parameters: α̂, κ̂ and Â. This method was robust to significant

variation in illumination, cell pigmentation, cell shape and cell boundary visibility, and

was unbiased and stable. The LSEF and SD methods also performed very well, while the

CAS method struggled due to the lack of well-defined maxima in the |F | images. Each

method also had low complexity (O(N2)) and a low computation time in Matlab.

Confidence measures were developed for the AM method. A large estimated κ was a

good indication of confidence in the α results while a high local contrast measure indicated

confidence in the κ results.
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5.2 Future work

The AM method is ready to be used in a lab setting. However there are three potential

areas for improvement of the algorithm. First, further efforts should be made to remove

the Â estimation range (10-22 c.p.i.). Ideally, the user should be able to choose any window

size and get an accurate Â estimation. Second, a confidence parameter for Â should be

developed. This would complete the functionality of the system by giving every composite

cell parameter an associated confidence measure. Finally, an extension to the cell-tracking

algorithm that is able to assign an appropriate square test window would aid further time-

lapse testing. These additional tests could be used to further study the accuracy and

stability of the AM method.



Appendix A

Test images, generated images

58
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(a) 480×480 (b) 672×672 (c) 349×349 (d) 385×385

(e) 316×316 (f) 577×577 (g) 214×214 (h) 232×232

(i) 237×237 (j) 235×235 (k) 374×374 (l) 302×302

(m) 241×241 (n) 233×233 (o) 162×162 (p) 290×290

(q) 367×367 (r) 320×320 (s) 469×469

Figure A.1: Test images with image dimensions in pixels.



Test images, generated images 60

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s)

Figure A.2: Gradient magnitude images (normalised to [0, 1] to enhance visibility).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s)

Figure A.3: Preprocessed |F | images. Concentric circles show 25 and 50 c.p.i.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s)

Figure A.4: Hand-segmented (truth) images.
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(a) #1 (b) #2 (c) #3

(d) #4 (e) #5 (f) #6

(g) #7 (h) #8 (i) #9

(j) #10 (k) #11

Figure A.5: Time-lapse test images.
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(a) #1 (b) #2 (c) #3

(d) #4 (e) #5 (f) #6

(g) #7 (h) #8 (i) #9

(j) #10 (k) #11

Figure A.6: Time-lapse gradient magnitude images (normalised to [0, 1] to enhance visi-
bility.)
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(a) #1 (b) #2 (c) #3

(d) #4 (e) #5 (f) #6

(g) #7 (h) #8 (i) #9

(j) #10 (k) #11

Figure A.7: Time-lapse preprocessed |F | images. Concentric circles show 25 and 50 c.p.i.
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(a) #1 (b) #2 (c) #3

(d) #4 (e) #5 (f) #6

(g) #7 (h) #8 (i) #9

(j) #10 (k) #11

Figure A.8: Time-lapse hand-segmented (truth) images.
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