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Abstract

Synthetic aperture radar (SAR) provides an efficient imaging tool for sea ice mon-

itoring, which has found important applications in both scientific and operational

activities such as climatic research and ship navigation. Due to the large volume

of SAR data acquired, automated computer based interpretation is desired, the

goal of which is to segment the image into homogeneous regions and classify each

segmented region into the correct ice type. Unfortunately, significant variations

exist with respect to the intensity and texture appearance of SAR sea ice due to

the numerous imaging parameters and environmental factors, and hence make the

task extremely challenging in both the segmentation and classification processes.

The success of the interpretation system is thus largely dependent upon its adap-

tivity to intensity and texture. On the other hand, models relatively insensitive to

intensity and texture are needed for robust descriptions of the ice types. The two

issues are manipulated respectively by the two processes of the low level unsuper-

vised segmentation on image pixels and the high level supervised classification on

segmented regions. In the latter, features other than the intensity and texture need

to be efficiently incorporated, as suggested by the success of human operators in

discriminating ice types using additional high level knowledge such as floe shape

and existence of fractures. Computations of such features require the low level

segmentation to produce regions neither over-segmented nor under-segmented, the

balance of which is difficult to achieve due to the complexity of the sea ice scenes

and needs to be guided by the high level supervised classification.

This thesis presents a SAR sea ice interpretation system that combines in a bidi-

rectional interactive manner the low level segmentation and high level classification.

The segmentation algorithm is a region growing technique and the classification is
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based on Markov Random Field (MRF). The two processes are integrated under

the Bayesian framework, with both aiming at reducing a defined energy. The over-

all process keeps refining the segmentation and producing semantic class labels at

the same time in an iterative manner. Various features can hence be efficiently

combined, and successful results are demonstrated.
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Chapter 1

Introduction

1.1 Background

The identification of sea ice types and the evaluation of their properties have found

important applications in both scientific and operational activities such as climate

research and ship navigation. For consideration of efficiency, expense, and timing

requirements, remote sensing techniques are intensively used for monitoring sea

ice. During the past decades, much attention has been given to utilizing synthetic

aperture radar (SAR) to perform this task. SAR is an active microwave imaging

system that transmits a sequence of pulse in a side-looking manner and records the

backscatter signals to form a 2-D image. SAR is an appropriate tool for sea ice

monitoring for the following three reasons:

• SAR can provide regular imaging of ice fields over extended areas when using

satellite platforms.

• SAR has the ability to observe through clouds, and obtain measurements both
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day and night.

• The portion of microwave energy returned is largely dependent on the target

surface roughness, volume moisture content and electrical properties, which

are significantly different among different sea ice types and their snow covers.

Hence the problem arises of how to interpret SAR sea ice imagery accurately.

Interpretation of SAR sea ice currently in operation is in the form of ice chart and

egg code defined by the World Meteorology Organization (WMO) [111]. In pro-

ducing the daily ice charts, operators at the Canadian Ice Service (CIS) (or similar

agencies of other northern countries) manually select regions visually homogeneous

or separated by distinct boundaries. Each selected region may contain a single ice

type or several different ice types. The human operator then associates each of the

regions with an egg code, which is an oval shape symbol that contains numerical

information about the type, concentration (percentage of area coverage), and floe

size of the ice components in the specified region. A detailed description can be

found at the Canadian Ice Service website [95]. An example SAR sea ice image and

the corresponding ice chart and code are given in Figures 1.1 and 1.2 respectively.

Such a form of interpretation has substantial deficiencies. First, the interpre-

tation is not at the pixel level and does not provide location information at the

pixel’s resolution on the component ice types inside each egg code region. Second,

the regions with the egg code are generated subjectively and could be inconsistent

among individual operators, and so are the region boundaries. Third, the increasing

amount of SAR data demands increasingly higher throughput of the interpretation

system, and hence manual procedures are insufficient for future needs.

Therefore, automated computer-based SAR sea ice interpretation is desired.

The interpretation system segments the SAR sea ice image into regions of homo-
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Figure 1.1: A SAR image of Gulf of St. Lawrence captured by RADARSAT
ScanSAR C-band mode on Feb 20, 1998, with resolution of 100m and size of
6417× 5958.
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Figure 1.2: Ice chart corresponding to the SAR image in Figure 1.1. Egg codes are
defined as per World Meteorological Organization standards [111].
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geneous ice and identifies the corresponding ice type for each region. The process

should be robust, efficient and as automated as possible. Designing such a system is

the ultimate goal of this research. However, before defining the scope and focus of

this thesis, it is necessary to look a little deeper into the application and associated

problems.

1.2 Implementational Issues

Challenges

A fundamental difficulty with computer-based SAR sea ice image interpretation is

the large variation of the backscatter caused by numerous environmental factors and

imaging parameters. The same ice types can appear quite different in SAR images

of different locations or seasons. Moreover, even within a single image, ice classes

can exhibit a varying signature as a function of the incidence angle. Challenges

also include the ambiguities of the SAR sea ice appearance among different types,

especially in the transition areas. Another situation that disrupts a successful

interpretation of SAR sea ice imagery is the speckle noise, which causes significant

confusions in extracting the real tone (intensity) and texture features of SAR sea

ice. More detailed descriptions about the influence of the environmental factor,

imaging parameters, and speckle noise are presented in chapter 2.

Features

In a typical image interpretation system, a feature extraction step is performed first

which selects and measures properties that best distinguish the class types. Features

should be insensitive to rotation, luminance variation, and any other image specific
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factors. As already mentioned, SAR sea ice backscatter has high variation. This

causes the extracted low level (pixel-based) features such as tone and texture to be

also highly variable. Some more stable features are those high level (region-based)

ones such as shape. In the manual production of daily ice charts, human operators

identify ice types not only by tone and texture but also by other clues such as

floe shape and existence of fractures. It is therefore necessary to incorporate in

the interpretation system both low level features and high level knowledge, which

include tone, texture, shape and existence of fractures.

Supervised vs. Unsupervised

Based on the extracted features, the interpretation of SAR sea ice can be performed

by either classifying each pixel into an ice type directly using knowledge of class

distributions, or by grouping the pixels first according to some similarity or dis-

similarity measure and then classifying the obtained segments into ice types. In

the former, supervised training is required for obtaining the a priori knowledge of

the class distributions of low level features, while in the latter pixels are grouped

not by pre-trained class distribution but based on current image characteristics in

an unsupervised manner. Considering the high variations of tone and texture of

the SAR sea ice imagery, a comprehensive training of all possible variability is not

feasible, and thus the latter one is more appealing for SAR sea ice due to its better

adaptivity.

Segmentation and Classification

The interpretation process is thus split into two tasks: first segmenting the image

into disjoint regions, and then classifying the segmented regions to the ice types.
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Although the first task, the low level segmentation, is unsupervised, the second task

of high level classification has to be trained based on domain knowledge. Models

relatively insensitive to the variations of SAR backscatters (intensity and texture)

are needed for robust descriptions of the ice types, and this insensitivity is achieved

by utilizing high level knowledge which is relatively stable compared to low level

features.

In the above, the segmentation and classification are performed separately, with

the classification a postprocessing of the segmentation. A substantial deficiency of

such a simple unidirectional link between the two processes is the fact that seg-

mented regions may not match the real objects well enough for an accurate subse-

quent classification. In fact, segmentation is generally not a stand-alone problem

but ill-posed if not associated with any implicit or explicit high level classification.

Therefore, the classification needs to be able to guide the segmentation, and hence

a bidirectional relationship between the two is desired.

For a better understanding of the necessity of such a bidirectional relationship

for SAR sea ice interpretation, consider a region with multiple ice floes. The round

shape of well defined floes is helpful in identifying some ice types. However, cor-

rect shape can only be computed if individual floes are not joined together in the

segmentation result. Without knowing (or having an estimate of) what ice type

the segments are and whether they are ice floes, it is impossible for a segmentation

algorithm to determine if the two segments should be preserved apart or not.

In the literature, the term “interpretation” often refers only to the region-based

high level classification, and another term “understanding” represents the overall

process. To avoid confusion, both “interpretation” and “understanding” have the

same meaning in this thesis. An image interpretation system, or equivalently an

image understanding system (IUS), is a system that produces segmented regions
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from the image and derives reasonable descriptions on the regions as well.

1.3 Thesis Objectives

None of the existing SAR sea ice interpretation systems has been operationally

successful, due to the extremely complex nature of the SAR sea ice interpretation

problem. It is thus more practical to start from a easier point, making use of

some ancillary information 1 in a semi-automated manner rather than designing a

fully automated system all at once. In particular, this thesis makes use of the egg

code, which provides for the corresponding region the information on the number

of classes for the segmentation purpose and on the candidate ice types for the

classification purpose. The incorporation of egg code information not only reduces

the solution space, but may also help in finding the correct solution by exploring

the correlations between neighboring egg code regions.

Therefore, the goal of this thesis is to design a SAR sea ice imagery understand-

ing system which, with the input of egg code regions, produces a pixel level ice

identification for each input egg code region. The approach is not fully automated

because it utilizes a limited amount of human provided information. However, in-

corporating such information is beneficial to the reliability of the system. Such a

semi-automated approach is an important and practical step towards a fully auto-

mated SAR sea ice interpretation system that is operationally useful.

The thesis contributes in three aspects for SAR sea ice interpretation: an im-

proved unsupervised low level segmentation, a practical high level classification,

1Even for human operators in CIS, a single SAR image might not contain enough information
for correct ice identification, and additional information such as past ice charts and AVHRR data
is required.
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and a joint approach that combines the segmentation and classification in a bidi-

rectional and interactive manner.

1.4 Thesis Outline

The organization of the thesis is as follows. Chapter 2 gives an introduction to the

application environment, including topics on the SAR imaging system as well as

the backscattering characteristics of sea ice. Chapter 3 gives a review of existing

image understanding research with emphasis on those related to remote sensing

and SAR sea ice field. Chapter 4 proposes a novel image segmentation method

efficient for SAR sea ice imagery based on region growing and Markov random field

theory. Chapter 5 deals with the high level classification, and combines the low

level segmentation with the high level classification to form an overall SAR sea ice

image understanding system. Chapter 6 is a summary of the thesis and discusses

the future work.
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Chapter 2

Application Environment

Modern remote sensing techniques make it possible to acquire information about

the earth surface in real-time without actually being in contact with it. SAR as

a remote sensing technology is especially useful for identifying sea ice types. The

active microwave sensors of SAR have the ability to observe through clouds and

obtain measurements at night, and the microwave band of SAR can be selected to

be sensitive to target surface roughness, moisture content and electrical properties

of sea ice. SAR images also have high resolution relative to other non-optical remote

sensing technologies. The resolutions could be up to 3m for aircraft mounted SAR

and 10m for space craft mounted SAR.

In this chapter, a brief introduction of the fundamental theory of SAR system

is presented in section 2.1, which draws heavily on [38]. Then section 2.2 deals

with the SAR signatures of sea ice. Dependence upon the imaging parameters and

environmental variables are covered. The last section is a summary.
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2.1 Introduction to SAR

2.1.1 Radar Basics

A SAR is a radar system that transmits a sequence of electromagnetic pulses side-

ways to the ground and records the returned waveforms. Figure 2.1(a) shows the

basic mechanism of a side-looking SAR. The transmitter generates pulses (A) at

regular intervals. The pulses are focused by the antenna into a beam (B), which illu-

minates the ground surface obliquely. A portion of the energy (C) is then backscat-

tered and received by the antenna. By measuring the time delay, the distance to a

target and hence its location can be determined. With the sensor platform moving

forward a 2-dimensional image can be obtained by signal processing of the pulse

returns over time and the flight path.

(a) Basics of SAR Imaging (b)Imaging Geometry

Figure 2.1: SAR Basics (from [38])

2.1.2 Viewing Geometry and Spatial Resolution

The imaging geometry of a SAR system is shown in Figure 2.1(b) in which (A),

(B), (C), (D), (E) correspond to the flight direction, nadir, swath, range, and
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azimuth respectively. The range resolution is dependent on the length of the radar

pulse, while the azimuth resolution depends on the width of the illumination and

the speed of the flight. Detail explanations of the resolution dependency can be

found in [38].

In theory, fine range resolution could be achieved by using a very short pulse

length. However, this is usually not practical since the peak power may exceed

the limitation of the transmitter in providing a good signal-to-noise ratio (SNR).

A technique known as pulse compression is therefore used to solve the problem.

Wider pulses are transmitted instead of impulse-like waveforms, and the received

signal is processed so as to compress the energy into a much narrower pulse [27].

Figure 2.2: Microwave Spectrum (from [38])

Determined by the width of the illumination, azimuth resolution is actually

influenced by radar beam angle and the slant range distance. The radar beam angle
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is approximately 2 arctan(λ/2D), where λ is the wavelength and D is the antenna

length. This implies that the radar would need an impossibly long antenna to

achieve the same level of resolution as that of an optical system, since microwaves

have much longer wavelength as shown in Figure 2.2. To overcome this antenna

size limitation, a SAR can synthesize the effect of a very long antenna by using the

Doppler effect via the motion of the platform (i.e. aircraft or satellite) relative to

the ground. For further details, the reader is referred to [27]. Today the resolution

provided by RADARSAT (a Canadian spaceborn SAR system) is in the range of

10m-100m, which is sufficient for the study of the structures of sea ice. The CIS

primarily uses imagery captured under the ScanSAR model. This 50m resolution

data is 2× 2 block averaged to 100m resolution data for operational purpose.

2.2 SAR Sea Ice Imagery

Sea ice is generally a mixture of freshwater ice, brine and air. Based primarily

on the duration and thickness of the ice, sea ice categories are defined by WMO

[111] and are summarized in Table 2.1. The appearance of those sea ice types

in SAR images is determined by the physical properties of the sea ice and the

SAR system imaging parameters. The SAR system parameters include wavelength,

incident angle, polarization, and etc. The physical property of ice is influenced by

numerous environmental variables such as temperature, salinity, wind condition,

ocean currents, rate of freezing, history of melting, existence of snow cover and

intrusion of sea water.
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New Ice: A general term for recently formed ice.
These types of ice are composed of ice
crystals which are only weakly frozen to-
gether (if at all) and have a definite form
only while they are afloat.

Grey: Young ice 10-15 cm thick.

Grey-white: Young ice 15-30 cm thick.

Thin first-year: First-year ice of not more than one win-
ter’s growth, 30-70 cm thick.

Medium first-year: First-year, ice 70-120 cm thick.

Thick first-year: First-year ice over 120 cm thick.

Old Ice: Ice which has survived at least one sum-
mer melt. Often sub-divided into either
second year ice or multi-year ice.

Table 2.1: Ice categories defined by WMO [111]

2.2.1 SAR System Parameters

Whether a surface will appear smooth or rough under the illumination can be

indicated by the Rayleigh criterion: h < λ/(8 cos(θ)), where h is the root mean

square height of the surface, λ is the signal wavelength and θ is the angle of incidence

with the surface [109]. If the Rayleigh criterion holds true, the surface will be

smooth and reflect away most of the signal like a mirror, resulting in a low returned

energy. Similarly, a surface will be considered rough if the Rayleigh criterion is false.

Since the smoothness is influenced by the incidence angle, the tone values for areas

of the same ice type will decrease as the incidence angle increases across the image.

A suitable microwave band needs to be selected to capture the small scale sur-

face roughness while being able to penetrate well through the atmosphere. The

microwave region ranges from 1µm to 1m, from the shorter wavelength near the

thermal infrared region to the longer wavelengths approaching those used for ra-
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dio broadcasts, as shown in Figure 2.2. For monitoring sea ice, the C-band of

RADARSAT is suitable. Shorter wavelengths are more attenuated by the atmo-

sphere and snow cover, while longer wavelengths are less suited to discriminating

the small scale roughness of new or young ice.

Polarization, another SAR system parameter, also greatly influences the appear-

ance of objects in SAR images. In most radar systems, microwave is transmitted in

either horizontal (H) or vertical (V) planes. Similarly the antenna receives either

horizontal or vertically polarized backscatters. Thus, there are four combinations

(HH, VV, HV and VH) of the mode of transmitting and receiving signals, among

which HV and VH are equivalent with respect to the obtained measurement. De-

pending on the mode, the signals will interact with the surface and be backscattered

differently, thus greatly affecting the appearance of the surface.

One important phenomenon of SAR imaging system is that speckle noise is

produced. Speckle is caused by the coherent nature of the radar imaging system.

When a medium containing many elementary sub-resolution scatterers is illumi-

nated by a radar, the return waves will add either constructively or destructively,

forming a random, interference pattern. Such a interference pattern is deemed noise

and has been experimentally shown to be predominantly multiplicative [66]. The

existence of speckle noise adds considerable difficulty in extracting the real tone

and texture features of SAR sea ice. Although there exists many speckle noise

filters[66][39][58][88] for suppressing the noise before doing any further processing,

such filtering would break down the texture details and blur the boundary of seg-

ments. Therefore, no speckle filter will be used in this research.
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2.2.2 Physical Properties and SAR Signature of Sea Ice

Sea ice is generally a complex, dynamic and anisotropic mixture material, the

constituents of which are freshwater ice crystals, brine and air bubbles. The phys-

ical properties of sea ice that influence the corresponding SAR signature include

the constituents’ dielectric properties, the volume fraction of each constituent, the

geometry (shape, size and orientation) of brine pockets in the ice, the surface con-

ditions as well as the property of snow cover. Since these factors are determined by

many natural environmental variables including temperature, salinity, wind condi-

tion, ocean currents and rate of freezing, studying and utilizing the SAR signature

of sea ice is an extremely complex task [36].

The returned signals of sea ice can consist of contributions from both surface

scattering and volume scattering (scattering by lower layers). The surface scattering

is mainly influenced by the roughness of the surface, and the volume scattering

by the complex permittivity (an electrical property defined for high frequencies)

as it determines how far the microwaves will penetrate into the ice. Because salt

increases the dielectric loss by adding free charge carriers, this complex permittivity

of sea ice is largely influenced by the brine volume. For detailed study on complex

permittivity of sea ice, the reader is referred to [36].

Since first year ice has a high brine volume and hence is not easily penetrable

by microwaves, surface scattering dominates. For first year smooth ice, a large

part of the signal energy is reflected away and only a small part is returned in the

direction of the radar. As a result the tone values of such an area are quite low,

making it appear dark. For first year rough ice, more returns can be obtained and

the corresponding area appears brighter.

Multi-year ice has a much lower salinity. Besides limited surface scattering, the
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backscatters are mostly contributed by volume scattering, which is influenced by

particle (air bubble and ice crystal) size and density. Although multi-year ice often

looks apparently brighter than first year ice, diurnal and seasonal variations can

sometimes mask backscatter signatures of multi-year ice versus younger ice types.

These variations are caused by changes of water content and brine concentrations

due to the melting of surface snow cover or occasionally intrusion of sea water.

It is uncertain whether or not young ice can be distinguished from first year

smooth ice [19], as they can have a similar range and structure of backscatters.

However, young ice is often characterized by leads, which are narrow irregular nav-

igatable cracks consisting of thinner ice and sometimes open water. Identification

of young ice can hence be achieved if such well-oriented feature is present. Differ-

ence between the backscatter signatures of the two types of young ice, grey and

grey-white, can be very subtle. The tone of the two ice types depends largely

upon the roughness of the ice surface. Grey ice often has a light grey tone, tear

structures, light grey narrow bands indicating rafting and areas of brighter point

returns. Grey-white ice often has relatively dark tone, angular/rounded floe shape,

light grey ridge lines, and long angular fracture. Ice analysts often use the relative

appearances of the lead shapes to distinguish grey and grey-white ice, as opposed

to tone and texture.

New ice is generally darker than any older ice, and sometimes are also charac-

terized by rafting as in grey ice.

2.3 Chapter Summary

In this chapter, topics concerning SAR imaging system and SAR sea ice backscat-

tering has been reviewed. Understanding these is important for designing properly
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the SAR sea ice imagery interpretation system, which is covered in the following

chapters.
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Chapter 3

Background

An image understanding system (IUS) aims at constructing a more meaningful

representation of the image than its original pixel intensities. Typically, such a

“meaningful representation” corresponds to a symbolic description of the classes or

objects in the image, and an IUS is defined to be a system that transforms the raw

image data into such a symbolic description. Suppose the image space is denoted

by S, the image is denoted by I = {Is|s ∈ S} where Is is the image pixel value at

site s ∈ S, and the symbolic representation is L = {ls|s ∈ S} where ls is the class

(object) label at site s ∈ S. An IUS is a transformation

F : {Is|s ∈ S} −→ {ls|s ∈ S} (3.1)

In particular, the IUS that this thesis deals with tries to transform a SAR sea ice

image into ice type symbols, with the input of egg code representation of the image

which is at a much coarser level.

Direct transformation of the image to the ice type symbolic representation is
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pixel-based and is typically a supervised process. In an IUS of such kind, supervised

training is performed to obtain the a priori knowledge of the distribution of the

computed features for each pixel of the given class or object. Such IUSs have

little capability of incorporating region-based features and are often vulnerable to

variations of the images. Therefore, they are not considered in this thesis.

More commonly, the image is transformed into an intermediate symbolic repre-

sentation x = {xs|s ∈ S}, in which each unique value of xs does not provide the

description of a class or an object, but simply represents a group of pixels that are

similar in the computed features. Such a group corresponds to a region if any two

pixels of the group can be connected by a path consisting of pixels in this group only,

or can be a set of regions (referred as a region cluster). The transformation from

image to regions or region clusters is categorized as low level segmentation, while

that from regions or region clusters to the final object or cluster labels is the high

level classification. Figure 3.1 shows some typical paths that an IUS may follow.

Except the red path, all the other three use either regions or region clusters as the

intermediate representation, with the overall image understanding task decomposed

into the two processes of low level segmentation and high level classification.

The IUS in Figure 3.1 is said to be of bottom-up (data-driven) fashion [73].

In a bottom-up IUS, the relationship between the segmentation and the classifi-

cation is unidirectional, from the low level to the high level. A substantial defi-

ciency of such a simple unidirectional link between the two processes is the fact

that the segmented regions may not match the real objects well enough for an

accurate subsequent classification. On the other hand, an IUS can also be top-

down (knowledge-driven), which use a priori knowledge of the expected objects

to guide the segmentation. Well known examples include Hough transform [65]

and deformable template matching [26][50]. A top-down IUS is often computa-
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Figure 3.1: Flows of bottom-up interpretation systems.

tionally prohibitive or requires careful initializations. The attractiveness of com-

bining both bottom-up and top-down control strategies have been pointed out by

many researchers, and a wide variety of approaches can be found in the literature

[48][54][59][102][104][105][106][121].

For a given application, whether the corresponding IUS should choose a bottom-

up, top-down, or combined control strategy for the processes depends on the com-

plexity of the image data and the involved knowledge. If the image data is simple,

i.e. neither noisy nor ambiguous, image structures (or segmented regions) corre-

sponding to meaningful objects can be reliably obtained, and hence bottom-up

approaches are efficient. When the image data is complex but the expected ob-

jects can be described by simple models, top-down approaches are more suitable.

When both the data and knowledge are complex, the combined bottom-up and

top-down approach is preferred for exploring the advantageous of both schemes

[103]. For SAR sea ice, both the imagery and the knowledge of sea ice are complex,

and a method belonging to this combined control category is expected to be more

effective.
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This chapter presents a review on image understanding systems. There have

been enormous image understanding systems in various application areas such as

medical imaging, traffic surveillance, outdoor scene understanding, and remote sens-

ing. Those systems are diverse in control strategy, modeling, knowledge represen-

tation and inference. The thesis does not intend to present a comprehensive review

of those systems, which is neither necessary nor practical. In particular, those pure

top-down approaches are excluded as they are totally different from the work of

this thesis. Of interest here are remote sensing systems and emphasis will be put

on those systems. Although the low level segmentation is a part of the image un-

derstanding process, it is often deemed as a rather distinct field. Thus, a review

on image segmentation is given separately in section 3.1, while the overall image

understanding systems are reviewed in section 3.2. Section 3.3 provides a summary.

3.1 Low Level Segmentation

An image segmentation is a transformation of the original image into a symbolic

representation,

G : {Is|s ∈ S} −→ {xs|s ∈ S} (3.2)

by which the image space S is partitioned to n segments Ω1, . . . , Ωn, such that [80]

a)Ωi = {s|xs = i, s ∈ S},
b)

⋃n
i=1 Ωi = S,

c)∀i 6= j : Ωi ∩ Ωj = ∅,
(3.3)

In the above definition, any Ωi can be either a single region or a set of disjoint

regions (a region cluster). In remote sensing applications, the latter one is most
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common. For example, multiple regions that are similar (suggesting of the same

ice type) can occur at different locations in a SAR sea ice image, and it is often

convenient during the image segmentation to group them together for future ice

type identification. Hence, to make different notations for disjoint regions and

region clusters is necessary. For the rest of the thesis, a region i is represented by

Ωi and a region cluster i is represented by Ci.

The image segmentation process should produce non-overlapping regions or re-

gion clusters meaningful to the subsequent high level classification (ice identification

in this thesis). In general, segmentation procedures aim to produce regions that

are uniform and homogenous with respect to the extracted features such as tone

or texture, and have significant different feature values across region boundaries.

Thus, the definition of segmentation in Equation (3.2) can also be represented as

G : {ys|s ∈ S} −→ {xs|s ∈ S} (3.4)

where ys is the computed features at site s, and can (but not necessarily) be the

original pixel value Is.

This section presents a review of unsupervised low level segmentation. Unsu-

pervised methods can adapt to the varying tone and texture features of SAR sea

ice imagery more effectively, and hence are more suitable compared to supervised

approaches which require training. However, considerable research in this field is

supervised [5][6][97][99], probably due to the following reasons:

• Successful unsupervised segmentation is not possible without an understand-

ing of the ability of the features. Since unsupervised segmentation is not

suitable for the evaluation of features as it is more complex and often uses

additional information such as spatial context, supervised classification stud-
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ies must come first.

• Supervised classifications provide truth data, making objective performance

evaluation possible.

• The success of unsupervised segmentation is often determined by parame-

ters, for example cluster number, initial seeds, edge threshold, etc. Finding

appropriate parameters is extremely difficult for the complex SAR sea ice

imagery.

Recent years have shown an increased interest in applying unsupervised seg-

mentation methods to SAR sea ice imagery [19][23][30][100][101]. The proposed

low level segmentation approach by this thesis is also unsupervised.

In the next, a review is given on related low level feature extraction and segmen-

tation efforts. Although the main interest is in unsupervised approaches, supervised

efforts primarily dealing with feature extraction are also included.

3.1.1 Feature Extraction

The feature extraction is a very important stage for both supervised and unsuper-

vised segmentation. The goal of the feature extraction is to generate for each image

site a set of values, in the form of feature vector, representative of the behaviors of

the image at that site. Efficient features should have significantly different values

on different classes (objects), but similar values on the same class (object). More-

over, the various features should be uncorrelated with each other to ensure that the

feature vector has been reduced to the fewest possible dimensions.

For the SAR sea ice, tone and texture are the two most commonly used features.

Here the word “tone” represents the intensity and the “texture” corresponds to the
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spatial variation pattern of the intensities with some defined local region. There are

many early examples in the literature that investigate and compare the usefulness of

tone and texture information for discrimination of SAR sea ice classes. Shuchman

et al. [98] gave an analysis of tone distribution and compare with the texture feature

measured by gray level co-occurrence matrix (GLCM). They found that combining

tone with variance can perform a satisfactory discrimination among first-year ice,

open water and multi-year ice, although nilas and pancake can not be separated

from multi-year ice. They also concluded that there is no improvement using texture

information (measured by GLCM). Shokr [97] suggested that combining gray tone

with one GLCM measure is a suitable choice. This conclusion does not disagree with

Shuchman’s since the variance measure used in Shuchman’s work already contains

some texture information. An interesting observation by Shokr is that textures are

not capable of separating two ice types if they have a significant overlap in gray

tone. Barber and LeDrew [6] found that tonal classifiers are as accurate as textural

classifiers but not as robust to range dependent tone variations.

From these efforts, texture features seem to have the capability for discriminat-

ing between some sea ice types. But the extent of this capability contributed from

the speckle differences caused by tone and the extent from real texture is unclear.

Nevertheless, without a doubt, macro textures corresponding to ice structures such

as ridges and rafts provide unique information for ice identification. Moreover, tex-

tures have the advantage of being more stable to variations caused by incidence

angle, as observed by various authors [6][75].

Approaches to texture feature extraction span a wide range of methods. They

can be categorized as statistical, structural, signal processing and model-based

[108]. Statistical approaches attempt to characterize textures in a probabilistic

sense based on definitions such as smooth, coarse, grainy, regular, directional, etc
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[19]. Statistical measures include variance, skewness, kurtosis [16], GLCM [44], etc.

The structural approaches assume that the texture is a spatial arrangement of basic

primitives. The texture features are hence some measurements of the primitives

and their spatial arrangements. Since no consistently repeating patterns exist in

SAR sea ice textures, structural approaches seem not suitable for SAR sea ice

discrimination. Signal processing based approaches use signal processing techniques

such as filtering and Fourier transform to obtain texture features. Typical methods

include Gabor filtering [16][19] and discrete wavelet transform (DWT) [72][118].

Model-based approaches fit specific models to the textures. The obtained model

parameters are then used for texture description. A commonly adopted model is

the Markov random field (MRF) [17][119].

In this section, brief reviews are presented on the GLCM texture features, signal

processing based texture features, and MRF based texture features.

GLCM Texture Features

A GLCM [44] is a matrix which provides the conditional joint probability of all

pairwise combinations of pixels within a computation window (W ). These proba-

bilities are conditioned on the sampling distance (δ) and orientation (θ). The (i, j)

entry of a GLCM is the number of times the gray level pair i and j occur together

with the chosen displacement and direction, normalized by the total number of

pixel pairs. Since the computation burden of GLCM is heavy if the full dynamic

range is used, quantization of the original image to fewer levels (G) is needed. From

the matrix, statistical information can then be generated as features (MAX, UNI,

ENT, DIS, CON, INV, IDM, COR), as summarized in Table 3.1.

The GLCM is a very popular texture feature extraction method in the remote
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Maximum Probability (MAX) max{Pij}∀(i, j)
Uniformity (UNI)

∑G
i=1

∑G
j=1 P 2

ij

Entropy (ENT) −∑G
i=1

∑G
j=1 Pij log Pij

Dissimilarity (DIS)
∑G

i=1

∑G
j=1 Pij|i− j|

Contrast (CON)
∑G

i=1

∑G
j=1 Pij(i− j)2

Inverse Difference (INV)
∑G

i=1

∑G
j=1

1
1+|i−j|/G

Pij

Inverse Difference Moment (IDM)
∑G

i=1

∑G
j=1

1
1+(i−j)2/G2 Pij

Correlation (COR)
∑G

i=1

∑G
j=1

(i−µx)(j−µy)

σxσy
Pij

where Pij is the element of the matrix in ith row and jth column, and in
all cases (µx, µy) and (σx, σy) are means and standard deviations of (row i,
column j) respectively

Table 3.1: GLCM texture statistics (from [21])

sensing community. Considerable research has been conducted using GLCM to

discriminate SAR sea ice texture [5][6][21][97][99]. Most of those investigate dis-

tinct ice categories such as first-year ice and multi-year ice, and the results are

satisfactory. Studies were also conducted on the selection of GLCM parameters (δ,

θ, G, W ) and the performance of each statistic and the combinations of them, as

summarized in Table 3.2.

Shokr [97] found that the GLCM statistics are highly correlated and argued that

combining gray tone with only one GLCM texture statistic is a suitable choice for

SAR sea ice texture classification. Barber and LeDrew [6] suggested, however, that

using multiple statistics is more advantageous. Clausi’s [21] conclusion agrees with

Barber and LeDrew’s. He found that the GLCM statistics can be grouped into

three categories. Statistics belonging to the same category are highly correlated

while those belonging to different categories are relatively independent. Thus, he

argued that a combination of three independent statistics (CON, ENT and COR)
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Authors δ θ G

Shokr [97] 1*,2,3 Average 16,32

Barber and LeDrew [6] 1*,5,9 0*,45,90 16

Soh and Tsatsoulis [99] 1,2,. . . ,32 Average 8,16,32,64,128,256

Clausi [21] 1 0,45,90,135 8 to 256 (steps of 4)

Statistics W data resolution(m)

CON,ENT,IDM,UNI,MAX 5*,7,9 Variety

CON,COR,DIS,ENT,UNI 25 6× 6

COR,ENT,IDM,UNI,CON,autocorrelation 64 N.P.

MAX,UNI,ENT*,DIS,CON*,INV,IDM,COR* 16 100× 100

*Indicate a preferred choice; N.P. indicates that the information was not provided.

Table 3.2: Summary of selected papers using GLCM statistics as features for SAR
sea ice classification (adapted from [21])

is the best choice. For the orientation parameter, Soh et al. [99] averaged the

GLCMs of different orientations to make the extracted feature rotation invariant.

Barber and LeDrew [6] investigated multiple orientations and conclude that the

direction parallel to the look direction of the sensor is significantly better. Clausi

[21] supported Barber and LeDrew’s observation that independent orientations can

produce significantly improved results. For the selection of sampling distance, Bar-

ber and LeDrew [6] showed that δ = 1 is the best with the image (6m;7-look)

used. However, Soh and Tsatsoulis [99] argued that a single displacement value for

GLCMs to represent sea ice textural contexts is not advisable, since there is no hint

on determining a priori such a value for all samples and range of displacement val-

ues is more representative for both local and global details. As to the quantization

level parameter, Soh and Tsatsoulis [99] showed that quantization levels fewer than

8 should not be used, and Clausi [21] concluded that a quantization level greater

than 24 and less than 64 is often an appropriate choice.
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Signal Processing Based Texture Features

Most signal processing based feature extraction approaches assume that textures

can be identified by their energy distribution in the spatial-frequency domain. The

input image passes through a series of filters and the output responses usually

correspond to frequency subband components. They are typically further processed

nonlinearly to estimate the local energies. Feature vectors can then be computed

with these energies (most commonly smoothed magnitude responses).

Two early filtering approaches are the Laws filter masks [64], and Ring and

Wedge filters [25]. Laws suggested using 25 separable filters for the two dimension

image, 5 in each dimension. Thus, the spatial frequency domain is almost evenly

split into 25 subbands by these filters. Coggins and Jain [25] designed another

bank of filters made up of seven dyadically spaced ring filters and four wedge-

shaped orientation filters, which extract the frequency and orientation information

separately.

Some later approaches, Gabor filtering [16] and the discrete wavelet transform

(DWT) [72], have attracted more attention in recent years since they are in some

sense similar with the human visual system (HVS). It has been found that the HVS

decomposes images by several relative narrow-band filters tuned to different spatial

frequency ranges and orientations [15]. Experiments have shown that the frequency

bandwidth of each filter is about one octave [85] and the orientation range is not

more than 30o [87]. Both Gabor and wavelet filter banks can be designed to be

tuned to octave frequency bands and different orientations. Although the Gabor

function is not a wavelet in a strict sense, it can be implemented in a similar manner

to that of wavelets.

Another important characteristic of Gabor and DWT is that the narrow banded
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signals can be downsampled, providing a multi-resolution representation of the

original image. Therefore, combining other techniques with this multi-resolution

representation may be helpful in describing large scale features.

Literature in signal processing for SAR sea ice discrimination is quite limited.

Clausi [19] gives a comparative study on Gabor filtering and the GLCM for the

SAR sea ice texture feature extraction. His experiments showed that Gabor fea-

tures may be more clusterable than the GLCM features [19, p.151], which makes

it advantageous in unsupervised segmentation. Another of his conclusions is that

the GLCM features can capture fine boundary details well with a small window

size. Since smoothing is often required for the Gabor filtering output, the Gabor

technique tends to blur texture boundaries belonging to small regions. Clausi also

believed that Gabor filtering is more appropriate for structured textures whose en-

ergies are concentrated in low and mid spatial frequency part, while GLCM has

stable response to textures with high spatial frequencies and is not so sensitive to

noise [22]. Yu [118] demonstrated that the DWT can give a satisfactory classifica-

tion accuracy, and using GLCM on the multi-resolution DWT representation does

not show to be superior.

MRF Based Texture Features

The MRF assumes that any pixel is independent to others outside its defined neigh-

borhood given the configuration of the neighborhood (Markovianity principle). The

neighborhood, with appropriate size or order, makes computation of the dependence

among sites manageable. By the Hammersley-Clifford theorem [8], the MRF al-

lows the configuration of the sites be described in a probabilistic perspective using

energy functions defined on neighborhood cliques. Details will be presented later

in Chapter 4.
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A commonly seen MRF model for texture feature extraction is the Gaussian

Markov random field model (GMRF) [17]. The GMRF assumes that the joint

probability of pixels is Gaussian distributed. It has been shown that GMRF pixels

can be represented as a linear weighted combination of the neighborhood pixels

and additive noise [17][57]. Those weights are computed from the texture image

based on the minimum mean square error (MMSE) criteria and can act as texture

features.

Yue [119] compared GMRF with GLCM for SAR sea ice segmentation and

concluded that GMRF generally performs poorer than GLCM as the model may

not fit SAR sea ice textures well. Clausi [20] found that although GMRF lagged

Gabor and GLCM, GMRF features tend to be uncorrelated with them, and hence

can be fused with either of them to provide supplemental information and improve

the SAR sea ice texture features.

3.1.2 Unsupervised Segmentation

The unsupervised segmentation is a segmentation process that does not require the

a priori knowledge of the class distributions of features, i.e. without the need of

training. Typical unsupervised image segmentation methods include:

• Histogram thresholding [83] and clustering [35][49]: Histogram thresholding

techniques distinguish pixels that have higher feature values from pixels that

have lower feature values by thresholds determined from histogram statistics.

Clustering methods usually measure the fitness of the extracted features of

each pixel into the pre-defined model of each class. Both methods use infor-

mation only in the feature space and ignore the spatial context of the image
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(even though some features themselves can incorporate spatial information),

leading to increased sensitivity to noise.

• Region growing and merging [1][16][107]: These approaches perform segmen-

tation by merging smaller regions into large regions using statistical simi-

larity tests. The initial regions can be small neighborhoods or even single

pixels. Baraldi and Parmiggiani [4] applied region growing to solve the over-

segmentation problem for SAR image. Selection of the initial seed regions and

the homogeneity criteria are the two major problems of this kind of approach.

• Edge detection: These approaches segment by finding discontinuities of fea-

tures in the image and connecting those edges to form closed boundaries.

Various methods have been proposed for the purpose of generating the closed

boundaries using edge information, such as directional searching [70], wa-

tershed [110][80], and snake contours [51]. The performance of this kind of

approach depends largely on how well the edge is defined in the image, and

hence it will often encounter difficulty if the image is noisy or has indistinct

boundaries.

• Model-based: These segmentation approaches take into account the spatial

context as well as the homogeneity and discontinuity information by mod-

eling using defined energy functions. The segmentation is obtained as the

result of energy minimization. The most popular model in image segmenta-

tion is the MRF [9][40][67][116]. Snake contours [51] may also be included

in this category. Finding the minimum of energy can be very difficult and

computationally complex since the solution space is usually non-convex. As a

result, the initial configuration often influences the segmentation significantly,

especially for boundary-based models.
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The various segmentation approaches can also be categorized as region-based,

edge-based and hybrid. Region-based methods explore the homogeneity of fea-

tures within the region, edge-based methods deal with the dissimilarity across the

boundary, while hybrid techniques combine the two. In the recent years, hybrid

techniques have drawn more attention and the related research [13][107] span a

wide range of class of methods.

Histogram Thresholding and Clustering

Histogram thresholding techniques [83] distinguish pixels that have higher feature

values from pixels that have lower feature values by thresholds determined from

histogram statistics. Usually, a threshold is selected as a valley between two peaks

of the histogram. To avoid the influence from small spikes, a histogram can be

smoothed first, or the peak and valley detection can be performed on a multi-scale

basis [100]. Such methods will encounter problems when the image does not have

distinct histogram modes separated nicely by valleys.

The clustering methods group the pixels based on their feature vectors into

clusters. The underlying model of the probability density of the clusters is assumed

to be known and the model parameters are estimated from the feature data of

the pixels. A typical probability density model is the Gaussian function. Such a

Gaussian mixture problem can be formulated by minimizing an objective function

arg min
C1,...,Cn

{
n∑

i=1

∑
s∈Ci

{
1

2
log(|Σi|) +

1

2
(ys − µi)

T Σ−1
i (ys − µi)

}}
, (3.5)

where n is the number of region clusters, µi is the mean feature vector of region

cluster Ci, and Σi is the covariance matrix of region cluster Ci. The expectation-

maximization (EM) technique [28] is typically used to estimate the model param-
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eters and perform the clustering. The popular K-means clustering [35] is also a

simplification of this Gaussian mixture method.

Clustering techniques are related to the thresholding technique with the clus-

ter model parameters determining the corresponding thresholds. In clustering, the

number of clusters has to be set a priori or estimated by, for example, the mini-

mum description length [43] principle. Both clustering and histogram thresholding

generate region clusters and belong to the category of methods that follow the blue

path in Figure 3.1.

Soh and Tsatsoulis [100] detect the peaks of the gray level histogram on a multi-

scale basis, and thus determine the number of categories as well as the thresholds

for segmentation. A cluster aggregation approach named Aggregated Population

Equalization (APE) is then applied. Samadani [93] applied the finite Gamma mix-

ture model based on the assumption that each ice class in SAR imagery follows a

Gamma distribution. Clausi [19] proposed a clustering algorithm named K-means

Iterative Fisher (KIF) and use a divisive binary hierarchical tree to determine the

cluster number. It was applied to Gabor and GLCM features of SAR sea ice images

with satisfactory accuracy. All the above approaches explore the spatial relation-

ship of image pixels only to a very limited (if any) degree, leading to increased

sensitivity to noisy measurements of features.

Spatial Context Model

Spatial context models such as those MRF-based have been popular in image seg-

mentation as they provide an efficient regularization, which is theoretically neces-

sary since image segmentation is generally an ill-posed inverse problem.
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From Bayes’ rule:

P (x|y) =
p(y|x)P (x)

p(y)
(3.6)

where P (x|y) is the posterior conditional probability of the label configuration given

the features, p(y|x) is the distribution of the features conditioned on the label con-

figuration, P (x) is the prior probability of the label configuration, and p(y) is the

distribution of the feature vector. Maximizing the posterior P (x|y) gives a segmen-

tation solution, and it is equivalent to maximizing p(y|x)P (x) by ignoring the p(y)

which is constant for all possible configurations of x. It is thus possible to impose

spatial context constraint by modelling P (x) with MRF [30][31][67][116][119].

The multi-level logistic model (MLL) [31] has been a popular spatial context

model, and will be described in detail in Chapter 4. Examples of MLL context

model applied to SAR sea ice segmentation can be found in [23][30]. Clausi and Yue

[23] use the MLL spatial context model together with the GMRF texture features,

and the result is not superior compared with the clustering approach on GLCM

features. Deng and Clausi [30] focus on weighting the context model adaptively

and has achieved better results for SAR sea ice segmentation than the MLL model.

Both methods have produced smooth segmentation results relatively insensitive to

noise.

Watershed and Region Growing

The watershed algorithm for image segmentation [80][110] simulates the flooding

patterns of terrains. Using the gradient magnitude as height, the surface is flooded

from local minima of heights and the merging of the waters coming from different

sources is prevented. The image is thus segmented into disjoint regions separated

by watershed lines which represent the locations where water from different sources
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meet. The first step in computing the watershed is identifying the minima. Au-

tomated approaches typically select them as the local minima from a smoothed

gradient image, often leading to over-segmentation results for noisy images.

Region merging is typically used for solving this over-segmentation problem

[16][45][82]. In region merging, similar neighboring regions are merged according

to a certain criterion, which differentiate various existing merging approaches. Al-

though an inverse operation of splitting inhomogeneous regions into smaller regions

can also be integrated with the region merging such as in [107], it is usually com-

putationally prohibitive.

An example that has applied watershed and region growing to SAR sea ice

segmentation is ARKTOS [101]. In the ARKTOS system, an initial watershed

segmentation is performed, followed by region merging based on criteria of boundary

gradient, intensity difference and sizes of the regions. Attributes such as area,

average intensity, shape and texture measures are then computed of each obtained

region for a Dempster-Shafer rule-based ice classification system. ARKTOS is

identified as a complete image understanding system that follows the green path in

Figure 3.1.

3.2 High Level Classification and Image Under-

standing

The high level classification is defined as the labelling process that transforms the

region or region cluster representation into the object or class labels:

L : {xs|s ∈ S} −→ {ls|s ∈ S} (3.7)
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In a bottom-up or combined control IUS, the task of labelling the segmented

regions is strongly application dependent and requires application domain knowl-

edge to be known. If the domain knowledge is simple and can be represented by a

number of values, feature vector classification can be applied. The feature vector

classification has been well understood [35][41], and is the simplest type of high

level classification process for an IUS. The features are computed from the seg-

mented regions representing intensity, texture, shape, and other properties of the

regions. Such approaches cannot handle cases that are associated with more com-

plex knowledge (e.g. context information), and sophisticated methods are required

for encoding and manipulating the knowledge. There are two categories of such

methods: knowledge-based and probabilistic-based [33]. The knowledge-based ap-

proach overlaps significantly with the subfield of artificial intelligence (AI) called

knowledge-based systems. It tries to make the knowledge of how to select, apply

and combine various image processing algorithms explicit, and aims at building a

system readily extendable, reusable and easy to understand for non-experts on the

field of image analysis. The probabilistic-based approach uses formal probabilistic

models such as Bayesian belief networks [84] or Markov random fields [78]. They

are well grounded in probability theory and are expected to be more robust to

minor changes of image characteristics [33].

3.2.1 Knowledge-based System

Defined in the AI field, a knowledge-based system (KBS) customarily refers to a

computer based system in which a large part of knowledge is represented sym-

bolically and separated from the inferencing mechanism. Two kinds of knowledge

are differentiated: procedure knowledge and declarative knowledge. The procedure

knowledge is implicitly incorporated in a model or algorithm, while the declarative
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knowledge is represented explicitly and symbolically. The field of KBS mainly deals

with the representation and manipulation of declarative knowledge, although pro-

cedure knowledge has been an integral part in many KBS for the construction of

those relatively simple processing routines used in the KBS. The architecture of a

KBS consists of a knowledge base that embodies knowledge, an inferencing engine

manipulating the knowledge base, and a working memory where the initial data

and intermediate results are stored [42].

The knowledge representation, which defines the data structures for storing

knowledge and interpretive procedures for intelligent manipulation of knowledge, is

crucial for a KBS since the system’s ability to know, update, perceive and under-

stand is restricted by the content and structure of its knowledge base [117]. Some

popular knowledge representation techniques include production rule, semantic net-

work, and frames [89]. In this section, a review will be given to some existing image

understanding systems, organized by the knowledge representation and inference

mechanism. It should be noted that the KBS may not be restricted to the highest

level of region-based classification and scene understanding for an IUS. Systems

based on image domain knowledge, which is types of and relations among image

features as opposed to those application domain knowledge of objects, have been

used on lower levels of image segmentation, enhancement and various other image

processing tasks [79][73]. Such systems for low level processing are not of interest

to this thesis.

Semantic Network

The semantic network is a graph in which nodes represent concepts or instances of

objects in the problem domain and the links represent relations and associations be-

tween them [86]. Concepts describe the predefined generic model of the objects and
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instances are realizations of concepts in the image. The links for the relationships

between objects do not have constraints for the naming, but certain classes have

developed as standards. For example, the is-a link is often used to describe the spe-

cialization of an object. Other links typically used are instance-of, part-of, con-of

(transformation of an abstract symbol to its concrete realization), and etc. Figure

3.2 shows an example semantic network used in a remote sensing KBS named AIDA

for representing landscape objects in aerial images [68]. Another important com-

ponent is the computation functions that calculate the attribute ranges and values.

For example in Figure 3.2, the MRF is a computation function for describing the

textured 2D region. The computation functions incorporate procedural knowledge,

and have to be selected and defined a priori by experts.

Figure 3.2: Simplified semantic network used in [68].

Different inference procedures can be used for the semantic network. However,

the inheritance is always included and implemented by is-a and instance-of so as

to provides a means of dealing with default reasoning. The control of the inference
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determines how and in which order the inference is performed on the nodes and

links. In the AIDA system, the control is proceeded by executing a sequence of

predefined rules order by their associated priorities.

Examples of semantic network based IUS include ERNEST [81], AIDA [68],

geoAIDA [7], a digital landscape model based system [56], and etc. Successes

have been reported for their selected applications including interpretations of aerial

images [7][68], scintigraphic images and MRIs [61][81].

Frames (or Schema)

In a KBS that is based on frame system theory [77], abstract objects in the problem

domain are represented by “frames”. Each individual frame corresponds to a node

in a graph, and the relationships between the frames are the links in the graph.

Compared to the nodes in the semantic network, the frames are more complex

entities and object oriented. Attached to each frame are a number of “slots”, and

the slots are associated with attribute-value pairs with each forming a description

of the object. A value can be a set or range of numbers, a pointer to another frame,

or a function incorporating procedural knowledge.

Frames are arranged in a hierarchical manner via defined relations such as the

is-a link. As in the semantic network, inheritance is an important part of the in-

ference. Another inference mechanism involved is matching, which match a given

frame to a concept frame. The matching process has three components: testing ap-

propriateness, updating slot values, and transferring control to the next appropriate

frame [89].

Frames (or Schema) have been used in many KBS image understanding systems

such as SIGMA [48], VISION [34], and MESSIE [24]. For example in SIGMA, each
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object represented by a frame has three main components: unary properties of the

object, relationships with other objects, and associated rules to guide the interpre-

tation process. A rule is composed of condition, hypothesis, and action. Beginning

from some hypothesis obtained after an initial segmentation, bottom-up hypothesis

generation of high level object instances is performed, which in turn results in the

top-down hypothesis generation of missing image structures. The SIGMA system

iterates such hypothesis generation processes together with evidence accumulation

and hypothesis verification. Success has been demonstrated in understanding scenes

such as houses and roads in aerial images [48].

Production Rules

The semantic network and frames have provided representation of objects. Knowl-

edge other than the object models (e.g. how to seek and match) is typically rep-

resented by rules. In production rule representations, knowledge is in the form of

“if...then...” structure. Such representations have several properties [92]:

• Incorporation of new knowledge can be easily achieved by adding rules to the

knowledge base.

• Complex problems are solved by selecting rules and combining the result.

• The result can be explained by reversing the line of reasoning.

Rules are suitable for representing knowledge which occurs as a large number of

discrete facts, and are also often combined with object models such as semantic

networks and frame for controlling the inference, as in examples of AIDA and

SIGMA.
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Uncertainty and Dempster-Shafer Theory

Uncertainty arises because of the incompleteness and inaccuracy of the data, knowl-

edge, and understanding. For example, in our application of SAR sea ice analysis,

images are noisy, the egg codes are subjective and not necessarily 100% accurate,

and transitions from one ice type to another is not discontinuous. A successful KBS

should have some mechanism to deal with uncertainty.

There are several means of handling uncertainty for a KBS: certainty factor [46],

fuzzy logic [92], Dempster-Shafer theory [96], and probabilistic models [84]. The two

commonly used are Dempster-Shafer theory and probabilistic models. Probabilistic

models are categorized separately from KBS approaches in section 3.2.2, and this

section only reviews Dempster-Shafer based system for image understanding.

The Dempster-Shafer theory is designed to deal with the evidence supporting the

proposition rather than computing the probability of a proposition. The following

coin flipping example in the AI book by Russell and Norvig shows clear the basic

idea of the Dempster-Shafer theory [92](p. 462). “Given that the coin may or

may not be fair, what belief should you ascribe to the event of it coming up head?

Dempster-Shafer theory says that because you have no evidence either way, you have

to say that belief Bel(Heads) = 0, and also that Bel(¬Heads) = 0. Now suppose

that you have an expert at your disposal who testify with 90% certainty that the

coin is fair (i.e. he is 90% sure that P (Heads) = 0.5). Then Dempster-Shafer theory

gives Bel(Heads) = 0.9 × 0.5 = 0.45 and likewise Bel(¬Heads) = 0.45. There is

still a 0.1 gap that is not accounted by the evidence. Dempster’s rule shows how to

combine evidence to give new values for Bel, and Shafer’s work extends this into a

complete computational model.”

Wesley has applied the Dempster-Shafer theory to a KBS designed to interpret
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color images of outdoor natural scenes [113]. Andress and Kak has developed a

robot self-location system PSEIKI using the Dempster-Shafer reasoning to resolve

conflicting hypothesis [2]. One relevant work to the SAR sea ice interpretation is

the ARKTOS system [101]. In ARKTOS, a SAR sea ice image is first segmented

into regions by watershed and region merging. Attributes are then computed from

the segmented regions. Such attributes include area, average intensity, perime-

ter, average roughness, elongation, roundness, and etc. Facts are then extracted

based on the computed attributes, and rule-based classification is performed using

Dempster-Shafter belief theory. The system is reported to be fully automatic, near

real-time, and has good performance in high-Arctic areas.

3.2.2 Probabilistic Models

Knowledge-based systems are usually ad hoc. Researchers formulate rules mostly

based on intuition or through trial and error. Such a heuristic designing manner

not only makes it difficult to compare different KBS, but also cause many systems

to be brittle even for very limited variety of images. Probabilistic models such as

Bayesian belief networks [84] and Markov random fields [67] have stronger theoret-

ical foundations, and have recently gained more attention for constructing image

understanding systems. In those IUSs, the probabilistic models have been used for

modelling complex knowledge representations [11][91] or more commonly, applied

to the region adjacency graph (RAG) constructed from the segmented regions of

the images [53][60][78].
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Bayesian Belief Network

A Bayesian belief network (BBN) is a directed acyclic graph (DAG) whose nodes

represent propositions (or variables) and whose links represent causal influences

[84]. In a Bayesian network, knowledge is represented by the network structure and

the conditional probabilities associated with the links. Figure 3.3(a) shows the rela-

tional graph example of a BNN. The full probability distribution can be expressed

as the product of conditional and prior probabilities. Thus for this example,

P (ABCDE) = P (A)P (B|A)P (C)P (D|B,C)P (E|C) (3.8)

(a) (b)

Figure 3.3: Relational graphic models (adapted from [112]) (a) A Bayesian network.
(b) A singly connected Markov network.

There exists for singly connected networks (i.e. there is only one path between

any two given nodes) efficient belief propagation schemes, which obtains posterior

probabilities of the unobserved variables given observed variables [84]. In such a be-

lief propagation scheme, information is passed through the network in a distributed

manner and, when equilibrium is reached, each proposition will be assigned a mea-
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sure of belief consistent with the axiom of probability theory. It should be noted,

however, that the region adjacency graph (RAG) typically used for representing

objects (segmented regions) in interpretation have loops. The behavior of loopy

BBN has been investigated by Weiss [112], and it has been shown that the belief

propagation scheme for singly connected nets can still be applied to loopy BBN if

it is being used for finding MAP solutions.

Markov Random Fields

Markov random field (MRF) can be applied not only to regular image lattice but

also to more general network structures, as shown in Figure 3.3(b). The latter is

also named Markov network, and is very similar to the BBN. Unlike the BBN which

has directed links, the MRF has undirected links representing symmetrical prob-

abilistic dependencies. Clique energies are used to encode the knowledge instead

of the conditional probabilities in BBN. The interpretation is then formulated as

finding the minimum of the overall energy that corresponds to the maximum of the

probability of the interpretation given the domain knowledge and measurements on

the image (or image structures obtained).

An early MRF based interpretation work is by Modestino and Zhang [78], in

which the clique energy functions is selected using fuzzy set theory. Kim and Yang

[53] estimate the clique function by training a back-propagation neural network.

In the IUS proposed in this thesis, RAG based MRFs are used for both the region

based clustering in Chapter 4 and the SAR sea ice interpretation in Chapter 5.
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3.2.3 Others

Some other systems [71][105] are not as rigorously organized as the KBS or prob-

abilistic models, and are designed more specifically for some applications. One

system that needs to be mentioned is the map-guided MAGSIC [71] for SAR sea

ice interpretation. The MAGSIC first performs the segmentation using the MRF-

based approach proposed in [30], and then further labels the obtained region clusters

based on the ice chart. Since the ice chart provides the information on how many

and what type are the ice classes in a specified region, the labelling for single class

regions is straightforward and the beliefs are propagated to other non-single class

regions. The adopted propagation scheme in MAGSIC is rule based, implemented

by comparing region clusters showing up simultaneously in neighboring egg code

regions. Such a propagation mechanism is ad hoc, and allows further improvement

using, for example, Bayesian belief network. The MRF based method adopted in

this thesis also provides such a possibility.

3.3 Chapter Summary

In this chapter, a review of image understanding systems has been presented. Ex-

isting approaches of both low level segmentation and high level classification have

been covered, with an emphasis on those related to SAR sea ice field. In the next

two chapters, a novel unsupervised low level segmentation method is proposed and

a practical high level classification system is designed for SAR sea ice imagery.
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Chapter 4

Iterative Region Growing on

Semantics

This chapter deals with the unsupervised low level segmentation for SAR sea ice

imagery. Although there has been a variety of methods in literature applied to SAR

sea ice imagery, those approaches have more or less deficiencies that make them not

sufficient for operational use. For example, both the clustering and thresholding

approaches [100][93] and MRF approaches [30][119] use stationary models (either

feature or spatial context) with the model parameters estimated globally, and thus

could result in false partitions for non-stationary images. Moreover, spatial in-

teractions among pixels have not been efficiently utilized in existing approaches.

Although the MRF context model adopted in some research [30][119] is able to

describe long range (tens or hundreds of pixels) of behaviors by propagating local

interactions, such propagations are extremely slow and are often limited within a

local range. Another common drawback of previous research is that high level fea-

tures, for example the shape of ice floes, have not generally played a role in the
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segmentation process. Although ARKTOS [101] uses such high level knowledge

for classifying the segmented regions into ice types, the process for obtaining the

segments (i.e. segmentation) has not benefited from the incorporation of such high

level features.

Among the different kinds of methods above, the MRF [30] is an efficient method

as it accounts for the nature of SAR speckle noise in a statistically optimal way

and at the same time provide an efficient spatial context model for regularization.

Moreover, it is convenient for such global approaches to incorporate ancillary in-

formation, i.e. the number of classes provided by the egg code, which is beneficial

for the reliability of the system. Therefore, this research follows the MRF-based

approaches, using a formulation that is derived from the traditional MRF one for

the image segmentation problem. Different from existing MRF based approaches,

the proposed method has incorporated edge strength in a novel manner to improve

on non-stationary situations, and uses a sequence of region merging operations to

obtain the solution. Such an iterative region merging procedure also allows the

possibility of integrating high level classification to guide the segmentation process,

and thus the proposed method is named as iterative region growing on semantics

(IRGS). Since this chapter only investigates the low level segmentation problem,

the integration of the high level classification will not be described until chapter 5.

Section 4.1 briefly reviews the MRF theory and the traditional MRF based

image segmentation method. Section 4.2 introduces the proposed method. Results

and discussions are presented in section 4.3, while the final section (4.4) provides a

summary.
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4.1 Markov Random Field Based Segmentation

4.1.1 Markov Random Field

The MRF assumes that any pixel is independent to others outside its defined neigh-

borhood given the configuration of the neighborhood (Markovianity principle). The

neighborhood, with appropriate size or order, makes computation of the dependence

among sites manageable. Figure 4.1(a) shows the neighborhood of a five-order

model defined on a regular image grid. Another definition involved is clique, which

is a set of mutually neighboring sites. Figure 4.1(b) gives an example of cliques of

a second order model.

The Hammersley-Clifford theorem [8] shows that a random field X is an MRF

if and only if X is a Gibbs distribution. That is, for any configuration x̂ of the

state space T of random field X, the joint probability is

P (X = x) =
1

Z
exp {−E(x)} =

1

Z
exp

{
−

∑
c∈C

Vc(x)

}
(4.1)

where C is the set of all cliques on the entire lattice, Vc(x) is the energy of configura-

tion x on clique c, E(x) is the total energy of configuration x, and the normalizing

constant Z =
∑

x∈T exp{−E(x)} is called the partition function.

The clique energy functions model the interactions among pixels in a neigh-

borhood. Based on different energy functions, various MRFs have been proposed.

Popular MRF models include the Gaussian model (GMRF) [17], which is usually

applied to feature extraction, and multi-level logistic model (also known as Potts

model) [31][116], which is used for modelling context content in segmentation.
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(a) (b)

Figure 4.1: Neighborhoods and cliques (a) The neighborhood of a site s with labels
of order 5. At order n, the neighborhood contains all the sites that have label less
than or equal to n. (b) The 10 clique types of a second order model. Adapted from
[67].

4.1.2 MRF Based Segmentation

As an inverse problem defined in (3.4), the image segmentation task can then be

formulated as a MAP (maximum a posterior) problem, for which maximizing the a

posterior P (x|y) gives a solution. As already described in Equation (3.6) in section

3.1.2, this is equivalent to maximizing p(y|x)P (x), and thus it is possible to impose

spatial context constraint by modelling P (x) with MRF [30][31][67][116][119]. The

multi-level logistic model (MLL) [31] has been a popular spatial context model,

whose clique energy is defined as:

V (xs, xt) =





β0 if xs 6= xt

0 otherwise
(4.2)

where s and t are neighboring sites forming a pair-site clique, and β0 is a positive

number. Such a context model makes the prior P (x) large if the local neighborhood

region is dominated with one single class and small otherwise, and hence is effective

in suppressing noisy configurations of class labels.
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Using Equation (4.2) as the spatial context model and assuming the feature

model is Gaussian, the objective energy function is thus defined in (4.3), the mini-

mization of which gives a solution to the segmentation problem.

arg min
C1,...,Cn

n∑
i=1

∑
s∈Ci

{
1

2
log(|Σi|) +

1

2
(ys − µi)

T Σ−1
i (ys − µi) + β0Ui(s)

}
(4.3)

where Ui(s) is the number of neighboring sites of s that does not belong to region

cluster Ci, and other definitions are the same as in (3.5).

An important issue with MRF-based approaches is how to compute the global

minimum of the objective function. MRF-based objective functions such as that in

(4.3) are highly non-convex [67], and the existence of local minima cause consider-

able difficulty in finding the global minimum in an intractable vast search space.

In practice, a desired label configuration does not necessarily have to correspond to

the global minimum of the energy function. However, it is usually the case that a

local minimum with lower energy suggests a more accurate result. Methods easily

trapped in local minima are therefore not appealing.

Various combinatorial optimization methods have been used, which include iter-

ated conditional mode [9], simulated annealing [40], mean field theory [120], genetic

algorithm [3], network inference [18] and graph theoretic techniques [13]. The it-

erated conditional mode (ICM) [9] is the simplest among all. Utilizing the local

dependence among pixels, the ICM iteratively refines the label configurations based

on the provisional estimate of those configurations, accepting changes that decrease

the energy function the most. Its greedy nature makes it easily trapped in local

minima and sensitive to the initial estimate. A better and perhaps the most widely

used approach is simulated annealing (SA) [40][55]. Unlike the ICM, SA employs

a random search scheme, for example, Metropolis-Hastings sampling [76] which
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accepts or rejects changes not deterministically but based on a probability

P =
1

Z
e−δE/T (4.4)

where δE is the change of energy if the new configuration is accepted, Z is a nor-

malizing factor, and T is a parameter named temperature irrespective of the energy

function involved. The SA process simulates the physical process of annealing by

slowly decreasing the temperature T to force the system into lower energy states.

With a certain cooling schedule (annealing schedule), the SA can be guaranteed to

find the global minimum [40]. However, the schedules leading to this guarantee are

impossibly slow, and there is a tradeoff between the cooling speed and the quality

of the solution.

In the SA process, the algorithm allocates an increasing amount of trials to re-

gions in the searching space that have low energy. When the global minimum is in

a very small region surrounded by a large population of energetically unfavorable

configurations, occurrence of trials that happen to jump into the global minimum

region are of very low probability. Such a phenomenon is known as a ”golf course”

[35], and is difficult to optimize by practical SA methods. Consider an example

in Figure 4.2, which deals with the segmentation for two objects (classes) corre-

sponding to the shaded and unshaded respectively. The configuration 4 is the truth

with the lowest energy, while the current estimate is configuration 1 corresponding

to a local minimum. Let Ei denotes the energy of configuration i and suppose

E4 < E1 < E2 < E3. To obtain the correct result from the current estimate,

consecutive flips of the three center pixels is required, the occurrence of which is

not highly probable. In the search space, the area of energetically unfavorable con-

figurations around the global minimum increases exponentially with the number
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of pixels needed to be flipped, which, if large, makes the sampling in the global

minimum region almost impossible.

Figure 4.2: An example that SA may fail

For improving on such a “golf course” situation, or relevantly the rate of con-

vergence, large moves in the searching space is necessary. This can be achieved by

performing configuration changes on groups of pixels instead of each single pixel

during the optimization process. The optimization is thus performed on a hierar-

chical organization of the pixels, and the grouping structure of pixels can be either

fixed [12][52][62][115] or data-adaptive [13][114].

4.2 Proposed Methodology - IRGS

This section presents a novel segmentation method which tries to improve on two

aspects compared to the traditional MRF approach: the adaptivity to image non-

stationarity and the convergence rate in finding a satisfactory solution. In the

traditional MRF approach formulated in (4.3), both the feature model and spatial

context model are stationary, with model parameters estimated globally. Such a

formulation is limited for non-stationary situations common for SAR sea ice im-

agery due to incidence and environmental factors. The proposed method incorpo-

rates edge strength, which has some capability of describing local behaviors and

can improve the spatial context model on its adaptivity to the non-stationarity of

the image. The solution is obtained by minimizing a defined energy function itera-

tively, with each iteration consisting of a region merging process and a classification
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process combined in an interactive manner. Since the classification is performed

on regions instead of single pixels, long range of spatial interactions is accounted

efficiently. Here the classification is a general purpose clustering approach not as-

sociated with any meaningful ice identifications, as this chapter deals with the low

level segmentation only. However, the proposed method provides the possibility of

replacing the clustering process with a SAR sea ice classification process so that

various high level domain knowledge can be utilized to guide the low level seg-

mentation, as described in chapter 5. With respect to Figure 3.1, the proposed

segmentation process corresponds to the black path from the original image to the

region clusters, and future replacement by high level SAR sea ice specific classifica-

tion corresponds to changing the path to the green one to form a complete image

understanding system.

There has been a significant amount of work on hybrid region and edge segmen-

tation [13][47][74][107] and energy based region merging [45][94][107]. The proposed

IRGS method is different from others in that it uses a sequence of edge penalty

functions to approach to the traditional MRF objective function and allows further

integration of domain specific classification.

4.2.1 Hybrid Region and Edge Energy Function

The proposed hybrid region and edge energy function is a modification of the tra-

ditional MRF function (4.3). Since the term β0Ui(s) is nonzero only when the site

s is at the boundary, Equation (4.3) is equivalent to

arg min
C1,...,Cn

{
n∑

i=1

∑
s∈Ci

{
1

2
log(|Σi|) +

1

2
(ys − µi)

T Σ−1
i (ys − µi)

}
+ β0

n∑
i=1

∑

s∈∂Ci

Ui(s)

}

(4.5)
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where ∂Ci is the set of boundary sites belonging to region cluster Ci (i.e. those

having at least one neighbor not belonging to Ci, shown as the white sites in Figure

4.3(a)).

Instead of penalizing equally for all boundary site pairs in (4.5), a greater penalty

can be applied to weak edge and a lesser penalty to strong edge, so that local

statistic such as edge strength can be incorporated. Therefore, the penalty term can

be replaced with some monotonically decreasing function of edge strength g(|∇|)
(defined in 4.2.2), where |∇| is the strength of the edge between the two neighboring

sites astride the boundary. The proposed objective function can thus be defined as

arg min
C1,...,Cn

{
n∑

i=1

∑
s∈Ci

{
1

2
log(|Σi|) +

1

2
(ys − µi)

T Σ−1
i (ys − µi)

}

+β0

n∑
i=1

∑

s∈∂Ci

∑

t∈ηs,t6∈Ci

g(|Is − It|)
}

(4.6)

where ηs is the neighborhood of site s, and |Is− It| gives the edge strength between

the two neighboring sites s and t.

As
∑n

i=1

∑
s∈∂Ci

Ui(s) in (4.5) is closely related to the length of the boundaries,

the role of the spatial context model can be viewed as penalizing the existence of

boundaries by their populations. Therefore, the problem can be approximated by

arg min
C1,...,Cn

{
n∑

i=1

∑
s∈Ci

{
1

2
log(|Σi|) +

1

2
(ys − µi)

T Σ−1
i (ys − µi)

}
+ β1

n∑
i=1

∑

s∈∂Ci

1

}

(4.7)

The ∂Ci here in (4.7) is defined to be the sites separating Ci from other classes

instead of the inner boundary in (4.5). That is, for the n region clusters C1, . . . , Cn
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and the image space S,

a)
⋃n

i=1 Ci

⋃n
i=1 ∂Ci = S,

b)∀i, j : Ci ∩ ∂Cj = ∅,
c)∀i 6= j : Ci ∩ Cj = ∅,
d)∀i : ∂Ci ⊆

⋃n
j=1,j 6=i ∂Cj,

(4.8)

Figure 4.3(b) gives an example of a boundary defined in such a manner. Such a

boundary definition on the regular image lattice is more convenient for boundary

manipulations than the double inner boundaries in (4.5), and hence will be used

hereafter in this thesis. The β1 in (4.7) is also a different positive number from the

β0 in (4.5). As the majority part of the boundaries are expected to be smooth, the

Ui(·) are mostly 3 1. Therefore, the β1 should be approximately 3 times the β0.

(a) (b)

Figure 4.3: Boundary definitions: (a) the boundary is the bold black line; (b) the
boundary is defined on the image lattice, shown as the white sites.

The proposed objective function corresponding to the new boundary definition

1In this thesis, the 8 nearest neighbor system is used
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then becomes

arg min
C1,...,Cn

{
n∑

i=1

∑
s∈Ci

{
1

2
log(|Σi|) +

1

2
(ys − µi)

T Σ−1
i (ys − µi)

}

+β1

n∑
i=1

∑

s∈∂Ci

g(|∇s|)
}

(4.9)

where |∇s| is the gradient magnitude at site s. Compared to (4.6), the implemen-

tation can be much simpler.

Our method of penalizing differently on the edge strength has the shortcoming

of bias on certain classes since boundaries between some classes can be generally

weaker than those of others. However, including edge strength is advantageous in

describing local behaviors, and as shown in the next section, the bias problem can

be alleviated by properly manipulating the edge penalty function g(·).

4.2.2 Choosing Edge Penalty Function

The edge penalty function g(·) can be any monotonically decreasing function, so

that the greater the edge strength, the smaller the penalty. Suppose the gradient

|∇s| for any site s has been normalized to [0,1]. Then, the penalty function can be

formulated as:

g(|∇s|) = e−(|∇s|/K)2 (4.10)

The parameter K (Fig. 4.4) defines how fast the edge penalty decays with the

increase of edge strength. As K increases, the penalty difference between weak and

strong edges decreases. When K approaches infinity, all edge penalties are equally

1.

Due to the high variability of the SAR sea ice images, a single value of K may
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Figure 4.4: Edge penalty functions defined by Equation (4.10)

not work well for all the ice types and scenes. Therefore, the parameter K of the

edge penalty function g(·) is allowed to increase during the segmentation, details

of which are described later in the next section. The local feature of edge strength

is hence utilized, but the bias is significantly reduced.

4.2.3 Optimization

Finding the global minimum of (4.6) or (4.9) is expected to give a satisfactory

segmentation. As it is a combinatorial optimization problem, techniques such as

simulated annealing [40] can be used. However, due to the impossibility of im-

plementing an ideal optimization process, the solution searching may be trapped

into some local minima. If the image is non-stationary, the local minima are easily

located far away from the desired solution and convergence to such local minima is

intolerable.
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Consider the image in Figure 4.5(a), which will also serve as an example in

the algorithm testing. Figure 4.5(a) is an image that has two distinct regions,

one relatively bright and one relatively dark. Both clusters have Gaussian dis-

tributed intensities, but the intensity distribution is non-stationary with a gradual

fading effect. Such a fading effect is common in SAR sea ice imagery due to in-

cidence. Figure 4.5(d) gives the segmentation result using classical MLL-based

approach defined in (4.3) whose Gaussian function parameters are estimated by

the expectation-maximization technique [28] and the β0 is chosen to be 18. It is

quite obvious that the globally estimated statistics for the clusters are not sufficient

for the segmentation due to the non-stationarity of the image. Therefore, local in-

formation of edge strength is incorporated as in Equation (4.6), where K is 0.5. The

simulated annealing is used for finding the solution and the segmentation result is

given in Figure 4.5(e). Interestingly however, there is no visible improvement. The

region of the global minimum of (4.6) is too small and surrounded by energetically

unfavorable configurations (“golf course” [35] as already mentioned before), thus

making the SA algorithm inefficient.

Aiming at reducing the relative population of the unfavorable configurations

surrounding the global minimum, the perturbation unit is changed from a single

pixel to a homogeneous region. The idea is intuitively simple. Pixels or regions

that have similar local statistics are grouped together first, and then labelling is

performed on the obtained regions using global statistics. Back to the example of

Figure 4.5, it is expected that pixels belonging to the left part can be grouped into

one region and those belonging to the right part into another region before they are

labelled (classified). This leads to the combined region merging and classification

approach.
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(a) An example image. (b) The truth. Energy: 65539.2
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(c) The histogram.

(d) By the MLL-based approach. Accu-
racy: 88.2%.

(e) By SA on the objective function in
(4.6). Energy: 76235.3; Accuracy: 88.41%

Figure 4.5: Segmentations on an example highly non-stationary image. The left
region has a mean grey level of 60 with the standard deviation of 10; The right
region has a mean grey level of 96 with the standard deviation of 20. Energies
defined by (4.6) are computed with β0 = 18 and K = 0.5.
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Region Merging

For the optimization purpose, the region merging process in our approach should

aim at reducing the overall energy function. However, the energy function of (4.9)

needs to be modified for the convenience of the merging process. The notation

of region clusters is replaced by disjoint regions. That is, the following objective

function is used instead of (4.9).

arg min
Ω1,...,Ωn

{
n∑

i=1

∑
s∈Ωi

{
1

2
log(|Σi|) +

1

2
(ys − µi)

T Σ−1
i (ys − µi)

}

+β1

n∑
i=1

∑

s∈∂Ωi

g(|∇s|)
}

(4.11)

Here n is the number of segmented regions, µi is the mean feature vector of region

Ωi, and Σi is the feature covariance matrix of region Ωi. During each merging oper-

ation, the overall energy for the resulting configuration is computed and compared

with that before merging. If there is a decrease, the merging is justified.

The energy of (4.11) need not be calculated every time when determining

whether or not a pair of segments should be merged. There is only a need to

compute the difference between the total energy of the two neighboring segments

tested and the energy of the one after merging. Suppose two regions Ωi and Ωj are

being investigated, and let Ωk = Ωi

⋃
Ωj. Since

∑
s∈Ωi

{
1

2
(ys − µi)

T Σ−1
i (ys − µi)

}
=

1

2
MNi (4.12)

where M is the dimension of feature vector and Ni is the number of pixels belonging
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to Ωi, influence of this term is cancelled. The energy difference δE is thus

1

2

∑
s∈Ωk

log(|Σk|)− 1

2

∑
s∈Ωi

log(|Σi|)− 1

2

∑
s∈Ωj

log(|Σj|)− 2β1

∑

s∈∂Ωi
⋂

∂Ωj

g(|∇s|) (4.13)

If (4.13) gives a negative value, Ωi and Ωj can be merged. If (4.13) gives a positive

value, Ωi and Ωj are not merged.

A sequential merging order needs to be defined since the merging cannot be

performed simultaneously. A natural way is to find the two segments whose energy

decrease most if merged, and merge them first. The merging begins on an initial

configuration obtained by a watershed algorithm [110], and is iterated until the

energy cannot be reduced any more.

Classification

The classification process described here is general purpose without any applica-

tion specific knowledge, and is usually called “clustering” rather than the term of

“classification”. With the obtained segments after region merging, a region adja-

cency graph (RAG) [67] is first built. The RAG is a graph with nodes representing

segmented regions and links representing the existence of a common boundary be-

tween segments, as the example in Figure 4.6. In this thesis, only unary properties

and binary relations are considered.

The MRF is again used to model the dependence among the nodes. As already

introduced in section 3.1.1, the summation of clique energies gives a modelling

of the probability of the corresponding classification. To make the region based

classification generate reasonable solutions to (4.9), the clique energy functions are

designed to make the summation of the energies have the same formulation as (4.9).
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(a) (b)

Figure 4.6: The segmented regions and the corresponding Region adjacency graph:
(a) the segmentation; (b) the RAG with unary properties (d1), binary relations
(d2), and triple relations (d3) (from [67]).

The single-node clique energy is thus defined as

V1(xi = k) =
∑
s∈Ωi

{
1

2
log(|Σk|) +

1

2
(ys − µk)

T Σ−1
k (ys − µk)

}
(4.14)

and the pair-node clique energy is

V2(xi = k, xj = l) =





2β1

∑
s∈∂Ωi

⋂
∂Ωj

g(|∇s|) if k 6= l

0 otherwise
(4.15)

where xi is the cluster label of region Ωi, µk and Σk are the mean vector and

covariance matrix of cluster k respectively.

Stochastic methods are then used to minimize the defined energy and assign

cluster labels to the regions. The implementation uses the Gibbs sampling [40],

which is a statistical sampling technique especially useful for solving combinato-

rial optimization problems. The Gibbs sampler considers univariate conditional

distributions - the distribution when all of the random variables but the current

are assigned fix values. Maximizing the complex joint a posterior, or equivalently

minimizing the energy of (4.9), is thus decomposed into manipulations of local con-
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ditional distributions. The process chooses the class label xi of any region Ωi for a

value k based on the probability 1
Z
e−E(xi=k)/T where Z is a normalizing factor and

T is called temperature that controls the randomness of the realizations. Unlike the

simulated annealing [40] which performs the sampling iteratively while decreasing

the temperature T , the Gibbs sampling is applied only once for each region in a

classification. Detailed explanation is presented in the next section [p. 67].

Iterative Region Growing Using Semantics (IRGS)

As already mentioned [p. 57], using a single penalty function will produce bias.

Different classes that have fuzzy boundaries between could be merged, and a class

that has high intra-class variation or noise could be split. Both could result in poor

performance of the system, even though in the latter situation the split parts could

probably be assigned the same class label in the subsequent classification.

Therefore, the combined merging and classification process is iterative. The

diagram for the overall algorithm is shown in Figure 4.7. At first, a watershed

segmentation is performed to obtain an initial segmentation, upon which the region

adjacency graph (RAG) is built. The iterative process begins with a classification

(clustering) on the obtained segments (Ωi, i = 1 . . . n) using Gibbs sampling. With

the classification result, it is possible to determine whether or not two segments Ωi

and Ωj are allowed to be merged (depending on whether or not they belong to the

same class), and then set or clear the corresponding flag accordingly

flagij =





true, xi = xj

false, otherwise

However, the decision that two segments are allowed to be merged does not mean
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that they should be merged. Among them, only the merging that will reduce the

energy of (4.9) are executed. That is, two neighboring segments Ωi and Ωj will be

merged only when flagij is true and δE computed by (4.13) is less than 0. The

merging is in a greedy best-first order, i.e. the region pair whose merging will

reduce the energy the most is combined first. When all the qualified region pairs

have been merged, a new iteration begins with an increased edge penalty. The

iteration continues until no merging is possible or a maximum number of iterations

has been reached.

In the process, two segments are not allowed to be merged if they belong to

different classes, the purpose of which is to suppress the merging between segments

of different classes that have weak boundaries in between. This concept is known as

semantic region growing [37][102]. Here the merging and classification are iterative

and, as such, is referred to as iterative region growing using semantics (IRGS). High

level knowledge can thus play a role in the segmentation process via classification.

Although the classification used in this chapter is based only on low level features,

domain specific classifications that using high level knowledge will be integrated

into this system in chapter 5.

For the classification in each iteration, the Gibbs sampling is only applied once

for each region. The resulting processing speed is much faster than that of using a

complete annealing scheme for each classification, which is unnecessary since there

is still an outside iteration loop. It should be noted that such a sampling without

a complete cooling process causes a limited degree of randomness. This random-

ness is deliberately allowed because the segmentation is often inaccurate at the first

several or tens of iterations. High level features (especially shape) extracted on an

inaccurate segmentation result will make the classification not accurate either. It is

necessary to let segments have the possibility of being merged for situations where
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Figure 4.7: System diagram of IRGS
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the pair of segments would always be incorrectly labelled as different classes if no

randomness is allowed. From the optimization point of view, this randomness can

help the solution searching “jump” out of local minima. Although the randomness

of classification could probably increase the occurrence of merging between seg-

ments actually belonging to different classes, it is not expected to be serious. The

randomness decreases quickly when the sizes of regions grow, and hence is relatively

high only at the first several iterations of merging where only segments with the

weakest boundaries are qualified to be merged.

4.2.4 Another Point of View

To view the proposed method from another point is helpful. Consider the graduated

non-convexity (GNC) method which is proposed in [49] for surface reconstruction.

The GNC is a deterministic method for computing the global minimum of the

non-convexity energy function. It first approximates the energy function with a

new convex function. The minimum obtained on the new function thus has the

lowest energy globally, but may not correspond to the true global minimum of the

original non-convex function. A whole sequence of energy functions is then used

to approach, beginning from the convex approximation, to the original non-convex

function. For each energy function in the sequence, a local minimum is computed

descending from the location obtained in the previous function. The final local

minimum is expected to be the true global minimum if any two sequential functions

are sufficiently similar. Figure 4.8 illustrate the GNC process.

Similarly, an algorithm can be designed that searches the solution of (4.7) using

a sequence of functions defined by (4.9) with the edge penalty changed gradually.

The algorithm is summarized as in Table 4.1.
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Figure 4.8: The minimum of a non-convex function F may be found by the GNC
algorithm, which starting from a convex approximation F ∗ (a) runs downhill on
each of a sequence functions (b), to reach the global minimum. Adapted from [49].

Starting from the extreme case of Gaussian mixture problem 2 in (3.5), the

algorithm in Table 4.1 introduces more and more edge penalty during the solution

searching. When K is sufficiently large, the energy function is close to (4.7) and

an approximate solution to (4.7) is obtained.

Different from the GNC in [49], the initial function of the sequence (the Gaussian

mixture) is non-convex. The first minimum obtained, which is the starting posi-

tion in the search space for subsequent optimization process, may not be globally

optimal. Moreover, the sequence of functions in the form of (4.9) does not belong

to the cases where GNC is known to be able to find the global minimum (see [49]

for details). Regardless of these, the algorithm in Table 4.1 does produce satisfac-

2The extreme case corresponds to K = 0, where the edge penalty function has a nonzero value
only at the zero gradient point. Therefore strictly speaking, it is not an exact Gaussian mixture
problem, but one with penalties on situations where neighboring sites with zero edge strength
between them belong to different classes. Obviously, such situations can hardly happen in the
solutions, and the two problems are approximately equivalent.
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1. Construct a RAG. Each node in the graph can be either a pixel
or a region obtained by an initial over-segmentation process (for
example, watershed segmentation).

2. Based on the RAG, model the regions and their dependencies with
MRF defined in (4.14) and (4.15).

3. Classify the regions by finding the minimum of the MRF energy
using a greedy method such as the iterated conditional mode (ICM)
[9].

4. If the configuration difference between the result and that of the
previous iteration is ignorable, or a maximum number of iterations
have been reached, the overall process is completed. Otherwise,
increase K for the edge penalty function in (4.15) and go back to
step 2.

Table 4.1: Algorithm of graduated increased edge penalty segmentation (GIEP).

tory results for many images as shown later in experiments. A similar MRF-based

approach proposed by Deng and Clausi [29] has also used a sequence of energy

functions during the segmentation process. In their approach, the weight for the

context model is increased gradually as shown in Figure 4.9. The main difference

is that the shape of edge penalty function used here is a Gaussian function while

theirs is constant over the gradient magnitude.

The IRGS in Figure 4.7 can be viewed as a modification of the algorithm in

Table 4.1 with an extra merging step added in each iteration. The dimension

of the searching space is thus reduced by the merging of similar regions. This

could sometimes cause an inaccurate location of the global minimum. However,

the resulting larger moves in the search space by region merging is beneficial to

the convergence rate and often advantageous on “golf course” situations as already

explained earlier.
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Figure 4.9: Context model weights

4.2.5 Parameter Estimation

The objective function of (4.9) consists of two summation terms, one corresponding

to the feature model which is assumed to be Gaussian and the other corresponding

to the edge penalty. Parameters involved include the multivariate Gaussian function

parameters µ and Σ, the edge penalty weight β1, and the increment schedule of the

edge penalty function parameter K.

Feature Model Parameters

The assumption of the feature model being Gaussian means that the distribution

of the feature vector ys is a mixture of n Gaussian functions, where n is the number

of classes. The model parameters are first estimated based on the equation (3.5)

without considering the spatial context (or edge penalty). Such a Gaussian mixture

problem is typically solved by the expectation-maximization (EM) algorithm [28].
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Let πi denote the prior for class Ωi, and wsi represent the probability of site s

belonging to class Ωi given the observation data and current estimate of all param-

eters. The EM algorithm iterates through computing the E step:

wsi =
p(ys|µi, Σi)πi∑
i p(ys|µi, Σi)πi

(4.16)

and the M step:

µi =

∑
s wsiys∑

s wsi

(4.17)

Σi =

∑
s wsi(ys − µi)

T (ys − µi)∑
s wsi

(4.18)

πi =

∑
s wsi∑

i

∑
s wsi

(4.19)

The obtained parameters by the above EM are just used initially. They are

further updated in each iteration of IRGS, where the parameters are still computed

with the M step, but wsi of each site s takes value of either 1 or 0 based on whether

the provisional class label estimate of s is i or some other class. Although little is

known of the influence of the Gaussian mixture solution accuracy on that of (4.7),

finding the global minimum of the Gaussian mixture problem is still desirable.

It is well known that EM is sensitive to the initial configuration, especially in a

multivariate context [10]. In this thesis, a large number (60) of different initial

values are chosen randomly. After a small number of iterations, the one with

the smallest energy is chosen and refined further by more iterations to obtain the

solution.
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Edge Penalty Weight β1

Since the edge penalty weight β1 is closely related to the MLL model parameter β0,

the estimation of β0 is consider first. Theoretically sound estimation is difficult and

ad hoc schemes that assign experimentally satisfactory values to the parameter are

commonly used. For example, Rignot and Chellappa [90] reported that [1.0-1.6] is

the best range for β0 in polarimetric SAR image segmentation. Yue [119] concluded

that β0 could be set between 1 and 3 based on the segmentation experiments on SAR

sea ice. The difficulty of the problem is due to the intractability of the normalizing

constant of the distribution, known as the partition function, that makes direct

maximum likelihood (ML) estimation of β0 impossible. There are some efforts that

try to maximize an approximation of the likelihood [9][63] or use a Monte Carlo

scheme [32] to avoid the computation of the partition function.

From intuition, the β0 should be related to the length of the boundary expected.

Larger penalties should be given to images that are expected to be simple, and vice-

versa. Descombes et. al. [32] give a mathematical formulation of the relationship

between the β0 and the boundary length using maximum likelihood estimation.

This is briefly presented here. Given an image x representing the random field

of labels, let N(x) =
∑

s∈Ωi
Ui(s), where the definition of Ui(·) is the same as

(4.3). Therefore, N(x) is the total number of pairs of neighboring sites that are

of different labels, and is approximately proportional to the boundary length. The

MLL modelled prior is:

P (x|β0) =
1

Z(β0)
exp(β0N(x)) (4.20)
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where Z(β0) =
∑

x exp(β0N(x)). The maximum likelihood estimate is given by:

∂ log P (x|β0)

∂β0

= N(x)− Z ′(β0)

Z(β0)
= 0

And therefore,

N(x) =
Z ′(β0)

Z(β0)
=

∑
x N(x) exp(β0N(x))

Z(β0)
=

∑
x

N(x)P (x|β0) (4.21)

Equation (4.21) shows that β0 should choose the value, of which the result-

ing priors have a mean boundary length (population) equivalent to the expected

boundary length (population) of the segmentation. Since β0 is only related to the

boundary length, it can also be concluded that the choice of β0 has little depen-

dence upon many application specific properties of data such as the noise strength,

although the noise strength does influence the accuracy of the boundary length

estimation.

Determining the β0 during the segmentation can thus be achieved by simply

estimating the boundary length and looking up the corresponding value in a pre-

determined graph. Computation of the lookup graph is based on a Monte Carlo

scheme since (4.21) is intractable. Twenty five values between 0 and 3 are chosen

for β0, and five hundred 128 × 128 samples are generated for each value. Figure

4.10 shows several samples obtained from different β0 values, and Figure 4.11 shows

the resulting interpolated graph that gives the correspondence between β0 and the

ratio of the mean boundary length over the image size.

With β0 known, β1 is simply set to be 3β0. Usually β1/β0 is a little smaller than

3 since the boundary cannot always be straight. However, such a value is chosen

as it is reasonable and encourages uniform regions.
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(a) β0 = 0.3,
rB/R =
0.464172

(b) β0 = 0.4,
rB/R =
0.245199

(c) β0 = 0.5,
rB/R =
0.093506

(d) β0 = 0.8,
rB/R =
0.029073

(d) β0 = 2.0,
rB/R =
0.020732

Figure 4.10: Samples obtained from different β0 values. rB/R denotes the ratio of
populations of boundary sites over region sites
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Figure 4.11: Relationship between β0 and the ratio of mean boundary length over
image size
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Beginning from a defined initial value, β0 and β1 are refined during each iter-

ation based on the boundary length estimated from the provisional segmentation

result. In practice, the boundary length estimation is heavily influenced by the

noise strength. A noisier image often corresponds to a noisier initial configuration

for the optimization process, and if the optimization is easily trapped into a local

minimum, an over-segmentation is likely to occur. This situation will cause the β0

computed from the segmentation result to be smaller than it should be, and will

also favor over-segmented configurations in turn. The experiments demonstrated

that except the proposed IRGS approach all other tested methods are likely to give

such overestimates of expected boundary length. Thus, the β0 is deliberately set

to be much larger, six times the original estimate, for methods other than IRGS.

Edge Penalty Incremental Schedule

The incremental schedule for the penalty function parameter K in (4.10) is desired

to be very slow in order to approximate well the approaching from the Gaussian

mixture problem of (3.5) to the final objective function of (4.7). On the other hand,

the processing time is required to be tolerable for the method to be practically

useful. A tradeoff has to be made. The parameter K is simply chosen to be

K(t+1) = 1.02K(t)+1/255, where t = 0, 1, . . . is the sequence number, and K(0) = 0.

Gradient Magnitude Computation

In computing the gradient magnitude for (4.9), the original image is convolved

with the first derivative of a Gaussian kernel in horizontal and vertical directions

respectively to obtain the two directional derivatives. The variance of the Gaussian

function influences the smoothness of the boundary obtained to a limited degree,
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and for the experiments in this thesis it is set to be 1.0.

The Initial Watershed

The proposed IRGS has an initial watershed segmentation step, implemented as in

[110]. The purpose of the watershed segmentation step is to generate regions for

constructing the RAG. Although there is no reason why the initial RAG cannot be

constructed from individual pixels, such a watershed based RAG construction can

significantly speed up the process and reduce the memory requirement. However,

this implies that in addition to the overall model for merging and classification a

different model has been introduced in the process. It is thus desirable that the ini-

tial watershed does not influence the robustness and accuracy of the overall model.

This is only possible when the desired segmentation solution belongs to the con-

figuration subspace constrained by the watershed segmented regions, i.e. no pixels

belonging to difference ice types have been grouped together by the watershed pro-

cess. Therefore, over-segmentation that produces very small regions is deliberately

chosen. The degree of over-segmentation is determined by the variance of the Gaus-

sian filter for smoothing the gradient magnitude, of which the local minima as used

as the seeds. In the implementation, the Gaussian filter has a variance of 1.0, and

hence highly over-segmented results are obtained initially.

4.3 Algorithm Testing

The algorithm has a complexity of O(nr), where n is the number of clusters and r is

the number of regions in the initial RAG. Obviously, r depends on the complexity

of the image contents. In the worst case where each pixel is a region, r is the image
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size. To make the execution time acceptable, the algorithm is implemented with

C++. For each of the three SAR images (1252 × 873) tested in this section, the

program takes about 4-6 minutes on a P4-1.6G PC with 1G RAM.

4.3.1 Methods Comparison

The focus of the experiments in this section will be put on the comparisons be-

tween the IRGS described in Figure 4.7, the region-based graduated increased edge

penalty (GIEP) segmentation described in table 4.1 in section 4.2.4, and the classi-

cal MLL approach whose objective function is (4.3) and optimization scheme is the

simulated annealing (MLL-SA). For comparison, Deng and Clausi’s method [30] is

also included, which gradually changes the weighting between the feature model

and the context model during the optimization process. For all the experiments in

this section, only the tone (intensity) feature is used. The annealing schedule, if

applied, is always T (t) = 0.98t.

All the above methods perform the feature model parameter estimation simul-

taneously with the segmentation process. During the segmentation iterations, the

spatial context model plays a role in producing the intermediate results, and hence

also in the updating of feature model parameters. However, it is unclear under

what conditions or situations this role is positive. At the initial stages of iterations

where the feature model parameters are far from the true values, incorporation of

the spatial context model may produce meaningless segmentation, which in turn

can make the resulting updated feature model parameters even worse. Considering

that, Deng and Clausi’s method gives a very small weight on the spatial context

model initially, and then gradually increase the weight during the iterations. The

GIEP and IRGS have also used a similar principle, i.e. gradually increasing spatial
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context influence, based on the edge strength information. Here, the only method

whose feature model parameter estimation needs to be carefully implemented is

the MLL-SA. In this thesis, the MLL-SA first uses the feature model parameters

estimated without considering the spatial context, as in a pure Gaussian mixture

model (GMM) approach. Updating of the parameters is then performed only when

a sufficient number of iterations have been completed to achieve low randomness

in the segmentation, i.e. the temperature is lower than 0.1.

Testing 1: Non-stationary Synthetic Image

The first example investigated is the one in Figure 4.12(a) which, as already dis-

cussed in section 4.2.3, has a fading effect often found in SAR imagery. This

example image is a difficult one because of such non-stationarity. Here it is deemed

as difficult with respect to approaches that deal with the global behavior of tone or

texture of the whole image. It is definitely true that more suitable models or meth-

ods, for example a simple edge detection followed by thresholding, can be designed

for such a special case. However, preferred techniques are restricted to general

global approaches that are relatively insensitive to noise and capable of describing

classes in a global manner, which is desired for SAR sea ice discrimination.

As already shown in Figure 4.5(d) in section 4.2.3 and again in Figure 4.12(c),

an undesirable result has been obtained by the MLL-SA approach defined in (4.3).

This has already been discussed in section 4.2.3. A marginally improved result

is produced by Deng and Clausi’s method in Figure 4.12(e), where the boundary

in the center of the image is not shifted as far as in Figure 4.12(c). The GIEP

method is then applied using 200 iterations. The first 28 iterations generate a

result shown in Figure 4.12(d). Here in Figure 4.12(d) and as well in 4.12(f), the

bright lines are the boundaries of the regions obtained from the initial watershed
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algorithm. At iteration 29, there is a change of label for a small region at the

center top. Examining that small region, the left part of the region boundary has

high gradient magnitude while the right and bottom part of the boundary has low

gradient magnitude. The two parts of the boundary are hence penalized differently,

but in the first several iterations the difference is too small to be effective. As K

grows to 4.04/255 at iteration 29, the right and bottom part is penalized sufficiently

larger than the left one so that the region has chosen the same label as its left

neighbor. After that, K continues to grow but the penalty difference between the

two decreases beginning from a certain point. At last, whether or not the region

should be flipped back depends no longer on the gradient magnitude but on the

length of the boundaries, and in this example a better configuration of the two is

preserved in Figure 4.12(h).

Although an improved result has been obtained by the GIEP approach, there

is still a large region of errors in the left of the image. The GIEP is incapable

of flipping consecutively all the bright regions in the left end, and larger flipping

units are desired. This is achieved by the step of region merging in the IRGS. As a

result, the IRGS has produced the best configuration in Figure 4.12(g). Since both

the IRGS and GIEP can be viewed as optimization techniques for solving (4.3), as

already discussed in section 4.2.4, energies computed by (4.3) are compared among

the methods 3. The computed energies has demonstrated that GIEP’s solution

corresponds to a local minimum which is a little better than that of the MLL-SA

approach, and IRGS locates a minimum with the lowest energy among all. This

also justifies the formulation of (4.3) for the segmentation of the image, as the

3Since the β0 are not fixed but estimated adaptively with the data, the estimated values can
be quite different among the tested methods. To show the advantages of other methods over the
MLL-SA approach in finding a better solution, the β0 used in energy comparison is fixed as the
one optimal to (estimated by) the MLL-SA approach.
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(a) Original image. (b) The truth.

(c) By the MLL-SA approach. β0: 18;
Energy: 76864.3; Accuracy: 88.2%.

(d) By GIEP from iteration 1 to 28.

(e) By Deng and Clausi’s method.
Energy: 75001.6 Accuracy: 89.37%

(f) By GIEP after 29 iterations.

(g) By IRGS. Energy: 68932; Accuracy:
99.61%.

(h) By GIEP. Region boundaries erased.
Energy: 75234; Accuracy: 92.16%.

Figure 4.12: Segmentations on the example in Figure 4.5. Energies defined by (4.3)
are computed with β0 = 18.
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lowest energy obtained corresponds to the configuration with the highest accuracy.

Testing 2: Noisy Synthetic Image

The next experiment is on a synthetic image shown in Figure 4.13(a). Zero mean

Gaussian noise of variance 222 has been added in Figure 4.13(b), causing a signifi-

cant overlapping of the intensity ranges between the triangle and circle objects. A

Gaussian mixture segmentation based on minimizing the objective function in (3.5)

is first applied. The EM technique is used for optimization and the corresponding

result shown in Figure 4.13(d) is very noisy. In Figure 4.13(e), a better but still

poor result with over-segmentation phenomenon occurring in the triangle has been

produced by the MLL-SA approach. Deng and Clausi’s method gives an improved

result in Figure 4.13(f) but is still not satisfactory. Both methods of Figure 4.13(e)

and 4.13(f) update labels pixel by pixel, and without an extremely slow annealing

schedule can easily be trapped into a local minimum. Successful segmentations have

been achieved by both GIEP in Figure 4.13(g) and IRGS in 4.13(h). The results of

the two approaches are exactly the same, with a energy lower than those of others.

Compared to the truth, the two methods have achieved 99.64% of accuracy.

Testing 3: Various Noise Strength and Region Size

Experiments are performed on a set of synthetic images. In the synthesis of those

images, two different intensities are chosen, one relatively dark for the background

and one relatively bright for the foreground objects. Those foreground objects have

round shape with a limited amount of deformation, and are generated at random

locations in the image. With speckle noise added, the resulting images are expected

to give a rough simulation of SAR sea ice scenes characterized by water and well
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(a) An example image. (b) With zero mean
Gaussian white noise

(σ = 22) added.
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(c) Histogram of the image
in (b).

(d) By the Gaussian
mixture. Accuracy: 83.64%.

(e) By the MLL-SA
approach. β0: 5.008;

Energy: 524052; Accuracy:
92.48%.

(f) By Deng and Clausi’s
method. Energy: 499389;

Accuracy: 98.32%.

(g) By GIEP. Energy:
487194; Accuracy: 99.64%.

(h) By IRGS. Energy:
487194; Accuracy: 99.64%.

Figure 4.13: Segmentations on an example synthetic noisy image. The three grey
levels in the original image are 48, 128, 160 respectively.
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defined ice floes.

For adding the speckle noise, Gaussian noise with mean of 1.0 is multiplied with

the image intensities. Although SAR speckle is generally modelled as a Gamma

distribution [93], multiplicative Gaussian noise is much more convenient to use and

gives a reasonable approximation to SAR speckle.

(a) Original image. (b) Multiplied with unit
mean Gaussian white noise

(σ2
n = 0.01).

(c) Multiplied with unit
mean Gaussian white noise

(σ2
n = 0.04).

(d) Multiplied with unit
mean Gaussian white noise

(σ2
n = 0.08).

(e) Multiplied with unit
mean Gaussian white noise

(σ2
n = 0.2).

(f) Multiplied with unit
mean Gaussian white noise

(σ2
n = 0.8).

Figure 4.14: Example 512× 512 synthetic noisy images. The two grey levels in the
original image are 128 and 160. The mean diameter of the simulated ice floes is 20
pixels.

Figure 4.14 shows an example simulated scene and the corresponding synthetic
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images with different noise variance (σ2
n). For the experiment, 16 different levels of

noise are chosen, and 20 scenes different in floe shape and location are generated

with each having an average floe diameter of 20 pixels. By combining each of the

20 scenes and each of the 16 different levels of noise, a total of 320 synthetic images

are available for testing. Segmentations are then performed on these images using

each method. Table 4.2 gives a summary of the average percentage accuracies

of those methods on each noise level. When the noise variance is relatively low

(σ2
n ≤ 0.03), all the methods that have utilized spatial context (i.e. all except the

Gaussian mixture) give satisfactory results, with Deng and Clausi’s method having

the highest accuracy. However, as the noise variance increases above 0.03, the

performance of Deng and Clausi’s method drops quickly. This is due to the difficulty

of estimating the correct feature model parameters in the presence of strong noise.

The MLL-SA method seems better in such a range (σ2
n ∈ [0.04, 0.08]) compared

to Deng and Clausi’s method, probably due to a better local minimum selected by

the initial Gaussian mixture based parameter estimation in this experiment. Both

of the methods have convergence failure 4 when even higher level noise exists. It

can be clearly found that GIEP and IRGS perform well for a wide range of noise

strength.

The segmentations on the image with σ2
n = 0.08 are shown in Figure 4.15(b)-

(f). At such a noise level, both MLL-SA and Deng&Clausi’s method perform poorly

due to the inaccurate feature model parameter estimation. In fact, accurate results

can be obtained by both methods if the feature model means are fixed with the

true values of 128 and 160, as shown in Figure 4.15(g)(h). The GIEP and IRGS

results displayed in 4.15(e)(f) have higher accuracy ratios than other methods,

4Here the convergence failure means that the method cannot converge to a solution that
segments the image into the specified number of classes. That is, all the sites are labelled as one
class.
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σ2
n SNR Gaussian mixture(p) MLL-SA(p) Deng&Clausi’s(p) GIEP(r) IRGS(r)

0.01 1.9861 75.98% 94.17% 98.65% 98.02% 97.86%

0.02 1.5106 70.82% 92.12% 97.70% 96.32% 95.40%

0.03 1.3522 67.14% 91.30% 95.06% 95.04% 91.00%

0.04 1.2638 64.89% 90.99% 79.44% 93.94% 88.25%

0.05 1.2159 63.77% 91.93% 65.42% 93.06% 88.63%

0.06 1.1809 62.62% 87.66% 66.79% 92.42% 87.34%

0.07 1.1537 61.63% 86.41% 64.86% 91.62% 80.10%

0.08 1.1494 60.76% 78.43% 65.52% 91.35% 80.45%

0.09 1.1283 59.78% 48.72% 63.08% 90.76% 85.50%

0.1 1.1291 58.64% CF 62.56% 90.28% 81.64%

0.2 1.0912 47.01% CF 44.15% 87.35% 80.99%

0.3 1.0832 49.44% CF CF 84.49% 78.90%

0.4 1.0711 50.76% CF CF 81.52% 77.42%

0.6 1.0449 50.96% CF CF 75.58% 72.92%

0.8 1.0159 51.09% CF CF 70.71% 63.50%

1.0 1.0100 50.82% CF CF 68.64% 63.24%

Here p denotes “pixel-based”, and r denotes “region-based”. CF represents that at least one
of the twenty samples has “convergence failure”.

Table 4.2: Summary of segmentation results for the synthetic images. The grey
levels in the original image are 128, 160 respectively. The mean diameter of the
simulated ice floes is 20 pixels. The image size is 512× 512.

85



(a) Synthetic noisy image
(unit mean multiplicative

Gaussian noise, σ2
n = 0.08).

(b) Gaussian mixture.
Estimated means: 120.0,
190.1; Accuracy: 59.96%.

(c) MLL-SA. β0: 4.558;
Estimated means: 140.5,

162.6; Energy: 1.39223e+006;
Accuracy: 75.74%.

(d) Deng and Clausi’s.
Estimated means: 140.7,

172.5; Energy: 1.58778e+006;
Accuracy: 61.22%.

(e) GIEP. Estimated means:
129.5, 158.1; Energy:

1.36575e+006; Accuracy:
91.30%.

(f) IRGS. Estimated means:
130.7, 154.6; Energy:

1.35055e+006; Accuracy:
88.06%.

(g) MLL-SA with true means.
Accuracy: 89.81%.

(h) Deng and Clausi’s with true
means. Accuracy: 95.45%.

Figure 4.15: Segmentation on Figure 4.14(d)
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which implies that the incorporation of edge strength information is quite beneficial

to the feature model parameter estimations. GIEP is superior to IRGS in preserving

details of the segmentation boundaries. This shortcoming of IRGS is even more

serious for images of higher level of noise, as shown in Figure 4.16. In addition to

that, the IRGS segmentation results are quite different among Figure 4.16(g)-(i).

This is because IRGS is region based and the regions produced by merging can be of

large size. For highly noisy and ambiguous images such as Figure 4.16(a)-(c), errors

are inevitable and could be amplified by the large regions. From that perspective,

GIEP is better since it does not perform merging. In GIEP, there are a sufficient

number of regions that have very limited size, and hence the statistical nature of

the method allows the error to be controlled in a more limited range.

Compared to GIEP, IRGS is not effective at preserving small details but has

obtained a solution with a lower energy, as shown in Figure 4.15(e)(f). Such a phe-

nomenon, as will also be encountered in later experiments, implies that either the

Gaussian feature mode or the MLL context model is not appropriate for describing

the behaviors of the tested image. For the synthetic images used here, the Gaussian

feature model is correct (by the Gaussian nature of the noise), and it is the spatial

context model that needs to be investigated.

The MLL context model penalizes the existence of boundary site pairs, and thus

favors configurations of large segments with smooth boundaries. Unfortunately,

the image in Figure 4.15(a) contains many small segments, and the correspond-

ing boundaries are irregular and have many sharp corners. Therefore, the more

energetically favorable solution obtained by IRGS does not correspond a better

configuration for the tested image. In the next, segmentations of images having

larger floe sizes are investigated.

Three more different floe sizes (40, 60, and 80 pixels in diameter) are chosen.
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(a) Synthetic image (unit
mean multiplicative Gaussian

white noise, σ2
n = 0.2).

(b) Synthetic image (unit
mean multiplicative Gaussian

noise, σ2
n = 0.4).

(c) Synthetic image (unit
mean multiplicative Gaussian

noise, σ2
n = 0.8).

(d) GIEP. Accuracy: 88.02%. (e) GIEP. Accuracy: 83.52%. (f) GIEP. Accuracy: 75.70%.

(g) IRGS. Accuracy: 87.60%. (h) IRGS. Accuracy: 77.80%. (i) IRGS. Accuracy: 63.50%.

Figure 4.16: Segmentation on synthetic images with different noise strength. The
grey levels in the original image are 128, 160 respectively. The mean diameter of
the simulated ice floes is 20 pixels. The image size is 512× 512.
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(a) Mean diameter 40. (b) Mean diameter 60. (c) Mean diameter 80.

(d) GIEP on (a). Accuracy:
95.90%.

(e) GIEP on (b). Accuracy:
97.05%.

(f) GIEP on (c). Accuracy:
97.89%.

(g) IRGS on (a). Accuracy:
94.21%.

(h) IRGS on (b). Accuracy:
97.18%.

(i) IRGS on (c). Accuracy:
97.95%.

Figure 4.17: Segmentation on synthetic images with different region size. The grey
levels in the original image are 128, 160 respectively. The image size is 512 × 512.
σ2

n = 0.08.
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Again, for each of the three sizes 20 scenes are simulated with different levels of

noise added. In Figure 4.17, some of the GIEP and IRGS segmentation results on

the noise level of σ2
n = 0.08 are presented. As expected, both GIEP and IRGS

have higher accuracies approaching to the same value with the growth of region

size. Figure 4.18-4.21 gives the segmentation accuracies over the signal to noise

ratio (SNR). When noise is relatively low (SNR> 1.4), all methods except the

Gaussian mixture model (GMM) method perform well. When the image has heavy

noise (SNR< 1.4), the GIEP and IRGS are significantly advantageous over other

methods.
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Figure 4.18: Percentage of correctly labelled pixels vs. SNR for images of mean
floe diameter 20.

Testing 4: Non-stationary SAR Sea Ice Image

The methods are then applied to SAR sea ice images. Performance evaluations

are subjectively based because there is no pixel level ground truth data. All the
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Figure 4.19: Percentage of correctly labelled pixels vs. SNR for images of mean
floe diameter 40.
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Figure 4.20: Percentage of correctly labelled pixels vs. SNR for images of mean
floe diameter 60.
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Figure 4.21: Percentage of correctly labelled pixels vs. SNR for images of mean
floe diameter 80.

SAR sea ice images are acquired by the RADARSAT ScanSAR C-band mode with

the resolution of 100m. The first SAR sea ice image is captured over Baffin Bay

on June 24, 1998, and presented in Figure 4.22. A two class segmentation (ice vs.

water) is performed on the image. In the image, the water is dark and the ice is

bright. It should be noted that there is a region of rough water towards the top

right part of the image that appears a little brighter than the rest of the water, and

hence the image is not stationary with respect to the statistics of water. A Gaussian

mixture segmentation is shown in Figure 4.23. The result image is “spotty”, caused

by the heavy speckle noise. With the spatial context model incorporated, the

MLL-SA approach has produced a much smoother segmentation in Figure 4.24.

However, due to the stationary model assumed, many sites belonging to rough

water are incorrectly grouped into the other cluster (see the center right part of

the image). Such phenomenons also occur in Deng and Clausi’s result in Figure
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4.25. Similar to the example in Testing 1, both the GIEP and IRGS improves on

such non-stationary situations, as shown in Figure 4.26 and 4.27 respectively. The

rough water region is much cleaner with very few sites incorrectly labelled. It is

interesting to note that the MLL-SA approach gives the lowest energy while that of

the IRGS is slightly higher. This is not surprising as the chosen β0 for the energy

computation is only optimal with respect to the MLL-SA approach. Moreover,

since some part of the water is relatively bright compared to the rest, one Gaussian

function is not well suited for describing such a cluster having two sub-clusters. In

fact, it is often unclear whether or not the global minimum of the defined objective

function corresponds to the desired configuration for a complex image such as Figure

4.22. Therefore, unlike the simple synthetic examples in Testing 1 and 2, the

computed energy in complex images may not indicate the accuracy of the obtained

configuration. An objective function with sub-optimal solutions that are consistent

with the intuition is often acceptable, and this example is such a case.

Testing 5: Noisy SAR Sea Ice Image with Indistinct Ice Types

In this experiment, a SAR sea ice image of the Gulf of St. Lawrence captured on

Feb 19, 1997 is used. The image is shown in Figure 4.29 consisting of two different

ice types besides the water. The left and right part of the image is relatively dark

corresponding to grey ice, and some brighter regions in the center are grey-white

ice. Figure 4.30-4.35 show the results by various methods. Similar to the example

in Testing 2, due to the large overlapping of the intensity range between the

grey and grey-white ice, all methods except IRGS perform quite poor. Although a

subjective evaluation is difficult for such an image because of the subtle intensity

difference between the two ice types and the heavy noise, it is still obvious that

IRGS is advantageous in producing large homogeneous regions consistent with large
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Figure 4.22: A SAR image (1252×873) captured over Baffin Bay on June 24, 1998.

Figure 4.23: Gaussian mixture segmentation on Fig. 4.22.
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Figure 4.24: MLL-SA segmentation on Fig. 4.22. β0: 4.18785; Energy:
4.26153e+006.

Figure 4.25: Segmentation on Fig. 4.22 using Deng and Clausi’s method. Energy:
4.34642e+006.
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Figure 4.26: GIEP segmentation on Fig. 4.22. Energy: 4.3394e+006.

Figure 4.27: IRGS segmentation on Fig. 4.22. Energy: 4.26885e+006.
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Figure 4.28: IRGS segmentation on Fig. 4.22 with boundary overlayed.

ice floes, as shown in Figure 4.34. The GIEP method lags behind the IRGS in

generating uniform regions, but seems to be better than other methods as shown in

Figure 4.33, probably due to its region-based nature and its advantage in the feature

model estimation under heavy noise condition, as already discussed in Testing 3.

The estimated SNR of this image, excluding water regions, is 2.2653. Referring

back to Figure 4.18-4.21, such a SNR is in the range where GIEP, ISRG, and

Deng&Clausi’s methods should perform similarly. This implies the existence of

large differences between the synthetic images and the true SAR sea ice imagery in

noise, texture, or some intrinsic image structures.

Testing 6: SAR Sea Ice Image with High Intra-class Variations

Figure 4.36 is another image of the Gulf of St. Lawrence acquired on Feb 20, 1998.

In the image, the center of the bottom is water and land. Regions relatively dark

97



Figure 4.29: A SAR image (1252× 873) captured over the Gulf of St. Lawrence on
Feb 19, 1997.

Figure 4.30: Gaussian mixture segmentation on Fig. 4.29.
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Figure 4.31: MLL-SA segmentation on Fig. 4.29. β0: 3.60617; Energy:
5.78134e+006.

Figure 4.32: Segmentation on Fig. 4.29 using Deng and Clausi’s method. Energy:
5.59624e+006.
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Figure 4.33: GIEP segmentation on Fig. 4.29. Energy: 5.59507e+006.

Figure 4.34: IRGS segmentation on Fig. 4.29. Energy: 5.54939e+006.
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Figure 4.35: IRGS segmentation on Fig. 4.29 with boundary overlayed.

with brighter ridges inside are grey-white ice, and the rest are grey ice. The image

is difficult to segment because of the large intra-class variations of the grey-white

ice. Again, over-segmentation is obvious for the grey-white ice in the results by

MLL-SA approach as shown in Figure 4.38 and by Deng and Clausi’s method as

shown in Figure 4.39. In Figure 4.40, the GIEP improves for the over-segmentation

phenomenon by using large moves in search space. However, the moving paces are

still limited by the regions obtained from the initial watershed segmentation.

The IRGS gives larger homogeneous regions in Figure 4.41. On the other hand,

similar to the results in Testing 3, it can also be found that the IRGS result is

likely to be an under-segmentation. Regions corresponding to leads (the dark long

cracks) in the grey ice have disappeared, which is undesirable from an operational

perspective. Some brighter regions in the right of the image, which could possibly be

grey ice, are also merged with surrounding regions. This is because the MLL model
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tends to generate blob-like configurations, and is not well suited for modelling the

prior for scenes where the shape of objects are far from blob-like. Since the IRGS

can be viewed as a method trying to find the global minimum of the objective

function with MLL as the prior, it is possible that the minimum found is not a

desired configuration due to the inappropriateness of the prior model. In the image,

both the leads and the bright regions in the right do not have blob-like shapes, and

thus the scene is not a favored configuration by the MLL prior model. Possible

improvement can be achieved by using a domain specific model as the prior instead

of the generic MLL, which will be presented in chapter 5.

Figure 4.36: A SAR image (1252× 873) captured over the gulf of St. Lawrence on
Feb 20, 1998.
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Figure 4.37: Gaussian mixture segmentation on Fig. 4.36.

Figure 4.38: MLL-SA segmentation on Fig. 4.36. β0: 4.1526; Energy:
5.23105e+006.
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Figure 4.39: Segmentation on Fig. 4.36 using Deng and Clausi’s method. Energy:
5.29724e+006.

Figure 4.40: GIEP segmentation on Fig. 4.36. Energy: 4.93387e+006.
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Figure 4.41: IRGS segmentation on Fig. 4.36. Energy: 4.57517e+006.

Figure 4.42: IRGS segmentation on Fig. 4.36 with boundary overlayed.
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Summary of Results

For most cases, the IRGS generates results with the lowest energy, which corre-

spond to configurations consisting of large homogeneous regions. Both IRGS and

GIEP methods can improve on non-stationary and over-segmentation situations.

The power of IRGS and GIEP on alleviating the over-segmentation problem is due

to their region-based implementation and their incorporation of edge information.

Although IRGS is region-based in nature, there is no reason why the GIEP can-

not be implemented as pixel-based. Pixel-based GIEP provides an alternative to

the traditional optimization techniques, such as the iterated conditional mode and

simulated annealing, for the MLL-based image segmentations.

4.3.2 Applied to Texture Features

In this section, GLCM texture features are used for testing the efficiency of the IRGS

approach. The GLCM statistics are currently the preferred texture features for SAR

sea ice identification [6][99][23]. The GLCM requires many parameters (δ,W ,θ,G)

to be set. There is no known method to automatically select these parameters, and

typically the parameters are determined based on supervised trials. The parameters

should be dependent upon texture specific characteristics. For example, if a texture

is coarse (i.e. formed by primitives that are large in scales) the sampling distance

δ and the window size W should also be relatively large. For the experiments in

this section, two kind of textures are used. The Brodatz textures [14] are generally

coarse while SAR sea ice textures can have both large scale characteristics (macro

texture) and fine details (micro texture). Therefore, the window size and sampling

distance are different among the experiments depending on the image used, while

the other two parameters are the same for both textures: the quantization level
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G is 32, and the average of four orientations (0o,45o,90o,135o) are adopted for the

extraction of rotation invariance features.

Testing 7: Brodatz Texture Mosiac

The image used is a mosaic of two Brodatz textures [14] - bark (D12) and straw

(D15). It is of 256 × 256 and is shown in Figure 4.43(a). With a 17 × 17 window

selected and the sampling distance set to be 2, the GLCM ENT statistic (defined

in Table 3.1), is computed on the image and the Gaussian mixture clustering is

applied to the obtained feature. Figure 4.43(b) gives the ENT feature normalized

to [0 1], and Figure 4.43(c) is the Gaussian mixture clustering result. It can be

found that small patches of errors exist in the segmentation result. This is expected

to be solvable by either increasing the window size W or using a spatial context

model. Increasing the window size can make the ENT feature image more smooth,

but at the same time will weaken the discontinuities at the boundaries and hence

cause inaccurate boundary locations. An MLL context model is incorporated as

before for the tone feature, and the result is shown in Figure 4.43(d). Significant

reduction of over-segmentation phenomenon has been achieved by the MLL-SA

approach. In Figure 4.43(e), the IRGS gives the best result. Again, the IRGS

has exhibited its advantage over traditional MLL-SA approaches in improving on

the over-segmentation situations. The boundary location obtained by IRGS is not

precise. Due to the implicit smoothing in computing the texture features, the ENT

image in Figure 4.43(b) does not have a distinct boundary but rather a vague and

broad boundary region. One might think of using the original image instead of

the ENT image for computing the edge penalty term in the model. However, for

textures having similar intensities, edge strength inside the homogeneous texture

regions are often much higher than that on the boundaries. Figure 4.43(g) shows
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the normalized gradient computed on the original image, and Figure 4.43(i) is the

mean gradient over columns computed respectively on the original image and the

ENT one. The figures show that the gradient magnitude of both original image and

ENT image at the boundary is smaller than some of those inside the texture region,

and it is unpredictably whether including such edge information is beneficial or not

to the segmentation process. The IRGS result using the edge strength computed

on the original image is shown in Figure 4.43(h), and the classification accuracy is

only marginally lower than that in Figure 4.43(e).

Testing 8: SAR Sea Ice Texture

In this experiment, the IRGS is applied to the GLCM texture features computed on

the SAR sea ice image of Figure 4.29. There has already been considerable research

investigating GLCM parameters and features for the SAR sea ice texture classifica-

tion [6][21][97][99], and the experiment here does not intend to perform a thorough

and comprehensive study on selecting the optimal parameters and statistics. Here

W is simply chosen to be 9. If using larger windows such as 17 × 17, failure of

segmentation has been noted in the experiments (not presented), where the two

clusters of grey and grey-white ice are merged as the same class and boundary

regions are erroneously identified as a separate class. The sampling distance δ is

set as 1, and two statistics of ENT and DIS (defined in Table 3.1) are used. Figure

4.44 shows the Gaussian mixture segmentation on the two GLCM texture features.

Similar as the case using tone feature in Testing 5, the result is very noisy. The

MLL-SA approach produces an improved but still highly over-segmented result in

Figure 4.45. Such over-segmentation phenomenon is greatly reduced by the IRGS

in Figure 4.47, where the edge penalty term is computed on the original image.

Comparing this result with Figure 4.34, it is difficult to say which is better since no
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(a) The texture mosaic
image (256× 256).

(b) The ENT feature
(W = 17,δ = 2.)

(c) Gaussian mixture
segmentation on (b).
Accuracy: 89.60%

(d) The MLL-SA
segmentation on (b).

β = 18; Accuracy: 96.63%.

(e) The IRGS segmentation
on (b). Accuracy: 98.90%.

(f) The IRGS segmentation
on (b) with boundary

overlayed.

(g) The normalized gradient
computed on (a).

(h) The IRGS segmentation
on (b) with edge penalty

computed from (a).
Accuracy: 98.75%.
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over columns computed on
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Figure 4.43: Segmentation on a texture mosaic image.
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ground truth data is available. However, it can be concluded IRGS is advantageous

for improving on over-segmentation situations. An experiment that use the DIS for

computing the edge strength has also been conducted in Figure 4.46. Unlike Figure

4.47, the IRGS is not successful this time in producing large homogeneous regions.

A possible reason is the implicit smoothing in the computation of texture features,

which has reduced significantly not only the edge strength at the boundary loca-

tions but also the variance of features inside the homogeneous regions, making the

merging criterion stronger.

Figure 4.44: The Gaussian mixture segmentation on the GLCM features (ENT and
DIS) for Figure 4.29.
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Figure 4.45: The MLL-SA segmentation on the GLCM features (ENT and DIS)
for Figure 4.29.

Figure 4.46: The IRGS segmentation on the GLCM DIS feature for Figure 4.29.
The edge penalty is computed on the DIS feature.

111



Figure 4.47: The IRGS segmentation on the GLCM features (ENT and DIS) for
Figure 4.29. The edge penalty is computed on Figure 4.29.

4.4 Chapter Summary

In this chapter, a new unsupervised segmentation approach has been proposed.

The method is a region merging method with the merging criteria being an energy

function constructed in a statistical optimal way under the Bayesian framework.

The method is advantageous in locating the boundaries accurately and producing

large homogeneous regions. However, these two advantages are not so obvious for

textures as for tone features. The proposed method has also provided a framework

for incorporating domain specific knowledge based classification, which is expected

to be beneficial to both the low level segmentation and the high level region labelling

process.
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Chapter 5

High Level Classification and

Overall System

The low level segmentation transforms the raw image data into the segmented re-

gions, allowing a much reduced but sufficient description of the intrinsic properties

(e.g. mean grey level, shape, size, etc) and relationships (e.g. proximity, connectiv-

ity, etc) of the objects that the regions correspond to. Further object recognitions

can then be performed with such properties and relationships by a high level classi-

fication process, whose goal is to attach semantic symbols to the segmented regions.

By combining the low level segmentation and the high level classification, an image

understanding system (IUS) is thus constructed.

The IUS implemented in this chapter is based on the IRGS system proposed in

chapter 4. In chapter 4, the IRGS method has used a domain independent labelling

(clustering) to influence the region growing for the low level segmentation. There is

no reason why the general purpose labelling cannot be replaced by a domain specific

classification. The domain specific classification can still be MRF based, but the
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clique energy functions are a modified version on (4.14) and (4.15) to incorporate

domain knowledge.

The resulting IUS combines both bottom-up and top-down control strategies in

the system. From that perspective, the proposed method is advantageous relative

to pure bottom-up systems such as ARKTOS [101], since in a bottom-up system

regions obtained by the low level segmentation may not sufficiently match the real

objects for an accurate subsequent high level classification. In fact, segmentation is

generally not a stand-alone problem but ill-posed if not associated with any implicit

or explicit interpretation. The high level classification process in the IRGS system

has some degree of control on the low level segmentation, and hence a bidirectional

relationship between the two processes has been achieved.

This concept of controlling region growing by interpretation result is known as

semantic region growing [37][102]. A number of other works have also demonstrated

success to various degrees in incorporating region (object) information into the

segmentation process [54][59][104]. However, their high level classification results

directly generate the region growing, which hence can be viewed as part of the

high level classification process. From that perspective, this work is substantially

different in that the high level classification and the low level segmentation are

still two distinct processes and are iteratively refined in a cooperative manner.

A hierarchical organization of the segmented regions can be formed during the

iterations, which makes it possible to establish a reasonable match between the

segmented regions and the objects. Such a match is crucial in incorporating object

features such as shape.

Compared to the knowledge-based image understanding systems, the MRF

based high level classification system is simpler and easier to build. Moreover,

the formulation of the MRF based classification can be combined with that of low
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level segmentation to give a well formulated MAP problem under the Bayesian

framework.

The MRF based high level classification method applied here is based on Mod-

estino and Zhang’s work [78], to which a brief introduction is given in section 5.1.

Section 5.2 describes the implementation for SAR sea ice. Experiments and discus-

sions are presented in section 5.3. Section 5.4 is the chapter summary.

5.1 MRF Based Classification

In section 4.2.3, a MRF based clustering method has been designed on the RAG

structure, with the related single and pair node clique energies formulated by (4.14)

and (4.15) respectively. Similarly, the high level domain specific classification can

be designed here using the clique energy functions to encode domain knowledge.

The design rule of the clique energy function is simple. If the interpretation of

the regions in a clique tends to be consistent with the measurement and the domain

knowledge, the energy function should decrease, resulting in a relatively low value,

and vice versa. Modestino and Zhang defines the clique functions for single node

cliques as follow [78].

Let c be an arbitrary single node clique with node i representing the segmented

region Ωi. Let the corresponding clique function be denoted by Vc(xi : K,yi),

which depends on the configuration of labelling xi, the measurements of the unary

properties yi, as well as the domain knowledge represented by K. Suppose that

yi has m components y
(1)
i , y

(2)
i , . . . , y

(m)
i representing measurements of m defined

features of Ωi. With the assumption that they are independent, a single node
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clique function is defined as

Vc(xi : K,yi) =
m∑

j=1

w(j)
c (xi,K)B(j)

c (xi : K, y
(j)
i ) (5.1)

where B
(j)
c (·), j = 1, 2, . . . , m are called basis functions, and the w

(j)
c (x,K) are a set

of non-negative weights for the basis functions with

m∑
j=1

w(j)
c (x,K) = 1 (5.2)

w
(j)
c (x,K) not only depends on the selected feature j, but also upon the labelling

configuration x and knowledge K. However, for simplicity w
(j)
c (x,K) is chosen to

be a constant. The basis function should give low values when the measurements

y are consistent with the knowledge K for the specified interpretation x. There

are a number of different basis functions that can be used, as presented in [78].

For example, the function can choose the form of the negative logarithm of the

measurement distribution given the interpretation:

B(j)
c (x : K, y(j)) = −a(j)

c log P (j)
c (x|K, y(j))

∝ −a(j)
c log P (j)

c (y(j)|K, x) (5.3)

And if Gaussian distribution is assumed for the basis function, it results in a square

form of distance function as shown in Figure 5.1(a). Such a function is not robust

to outliers. Considering that the number of training samples are often limited for

the high level classification task and the Gaussian assumptions may not be valid,

more robust distance functions such as Figure 5.1(b) are favored. Other possible

functions include the thresholding in Figure 5.1(c) and the piecewise linear function
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in Figure 5.1(d) related to fuzzy set theory. One special basis function that needs

to be mentioned is a constant function, whose value is always 1. The constant

function is especially useful for incorporating rule based knowledge. For example,

if an interpretation xi is not valid according to some rule, the constant basis function

increases the clique energy regardless of the feature values.

Without loss of generality, the basis functions in Figure 5.1 are all positive and

assume that the mean feature value of the class is 0. The basis function is symmetric

if there is no reason to manipulate differently the larger values and smaller values of

the features. Sometimes, to use a one sided version of those functions is necessary.

For example, ellipse fitting error can be used as a shape feature for round ice floes.

Such a feature is always positive, and the smaller it is, the lower value of the basis

function. The single-sided version of the piecewise linear function in Figure 5.1(d)

is a suitable choice, and is used in the thesis.

The multiple node clique functions are also in the form of the weighted sum of

basis functions. The design principle of multiple node clique energies is identical to

that of single node clique energy, except that binary or higher order relations are

used as features instead of unary properties. This thesis limits to pair node cliques

without considering higher order cliques.

5.2 Implementation of SAR Sea Ice Classifier

5.2.1 Selected Features and Clique Energy

The domain knowledge involved in SAR sea ice interpretation includes those re-

lated to tone, texture, shape, and existence of leads (long narrow ice fractures).

Incorporation of the domain knowledge into the system and investigation of the
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Figure 5.1: Example of different basis function
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possible choice of clique energy functions requires training samples or other form of

data provided by experts. For example, Mohammed Shokr at the Canadian Atmo-

spheric Environment Service is leading a project of analyzing tone statistics of SAR

sea ice based on past images and ice records. Such statistics are possibly valuable

for constructing the knowledge base for the system. In this thesis, training samples

are extracted from 8 SAR sea ice scenes in addition to Figures 4.29 and 4.36, the

details of which will be presented later in section 5.2.3. Based on the selected train-

ing samples, various features have been investigated on whether they are suitable

for ice identification and how they are encoded in the MRF clique energy function.

Single node clique energy

Single node clique energies model the unary properties of the objects. For the

clustering in section 4.2.3, the single node energy (4.14) describes how similar the

measured features of the segmented region is to the mean feature vector of a region

cluster. For the SAR sea ice application, it is the mean feature vector of the ice

types that should be matched against, and preferred features for the domain should

be measured from the segmented regions. Here tone, texture features, and shape

descriptors are considered.

The simplest unary property of a segmented region is the mean of the tone.

However, tone is sensitive to the environmental factors and imaging parameters.

Figure 5.2 shows the scatter plot of the tone of various ice types computed from

the selected training samples. The fact that many ice types overlap significantly in

the tone values is obvious. For example, water has a mean of tone around 50, while

new ice, grey ice and thin first year ice all have quite a few samples located within

that range. Similar situations have occurred for the two GLCM texture features

CON and ENT (G = 32, δ = 1, average of 0o,45o,90o,135o), as shown in Figure
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5.3 and 5.4. As observed from all three figures, none of the classes have a distinct

range of feature values relative to the other classes. There does exist some useful

information in the figures such as the separability between water and multi-year ice,

and the tendency of increase in the feature values from water to thin ice, and then

to thick ice. However, such information is associated with the relative difference

of the features rather than the feature values themselves, and hence is more easily

represented by pair node clique functions.

It can be concluded that both the tone and GLCM texture features are not

reliable for describing the ice types, and hence direct incorporation of them into

the single node clique functions is not adopted. However, it has been observed that

grey-white ice is often characterized by relatively dark ice floes with brighter ridges

existing between. Thus, the following measure named normalized CON is used for

capturing such texture features.

y
(tex)
i =

CONi

µ
(tone)
i µ

(tone)
i

(5.4)

Here CONi is the CON measured from region Ωi, and µ
(tone)
i is the mean tone value

of region Ωi. The reason that CON is normalized by the square of mean tone is due

to the multiplicative nature of speckle noise. The division is expected to be able to

cancel the part of the texture strength contributed by speckle noise, while preserving

and enhancing the texture of grey-white ice. The defined measure is closely related

to the square of the coefficient of variation, which is commonly utilized in speckle

filtering research [69]. Figure 5.5 shows that the normalized CON feature separates

grey-white ice well from the two others for the sample image of Figure 4.36. Similar

observations can be found from the computed feature values of the sample image

of Figure 5.9(h) as well. However, for some other images where grey-white ice is
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Figure 5.2: Distributions of the tone of water and ice classes.
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Figure 5.3: Distributions of the GLCM CON feature of water and ice classes (δ =
1,G = 32,average of 0o,45o,90o,135o).
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Figure 5.4: Distributions of the GLCM ENT feature of water and ice classes (δ =
1,G = 32,average of 0o,45o,90o,135o).
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relatively bright and do not exhibit obvious ridges, such as in Figure 4.29, 5.9(b),

and 5.9(n), there are significant overlaps between the grey-white ice and other ice

types with respect to the defined feature.

0 0.006
0.0014

Water

0 0.006
0.00084

Grey ice

0 0.006
0.003

Grey−white ice

Figure 5.5: Distributions of the texture feature defined in (5.4) (δ = 8, G = 32,
average of 0o,45o,90o,135o), extracted from Figure 4.36.

Therefore, a hypothesis is made of the grey-white ice that deals with whether or

not the grey-white ice has dark floes with bright ridges. The hypothesis is tested by

investigating the histogram for the normalized CON of the image being analyzed.

Suppose the region cluster having the highest mean normalized CON is Ch. That

is, ∀j, ȳ(tex)
Ch

≥ ȳ
(tex)
Cj

. If Ch is well separated from any other region cluster, i.e.

∀j, ȳ(tex)
Ch

− ȳ
(tex)
Cj

≥ σ
(tex)
Ch

+ σ
(tex)
Cj

where σ
(tex)
Cj

is the standard deviation of y
(tex)
s , s ∈ Cj, then Ch is said to have coarse

texture and very likely corresponds to the grey-white ice. The corresponding clique

energy of the region cluster Ch for the grey-white ice configuration is decreased by

a constant 1. The clique function thus is in the form of constant basis function,

1Here the nodes correspond to region clusters rather than disjoint regions. For an explanation
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with the weight w
(tex)
c being either a negative number (-0.3 by trials) or 0 according

to whether the hypothesis is true or not. Moreover, a threshold T (tex) is set as

ȳ
(tex)
Ch

− σ
(tex)
Ch

, and the corresponding clique energy for any region Ωi is defined as

follows:

B(tex)
c (xi : K, y

(tex)
i ) =





1 y
(tex)
i > T (tex) and ice xi is grey-white ice

0 otherwise
(5.5)

Another unary property that can be incorporated into the single node clique

function is the shape. Two shapes are of particular interest. The ellipse shape can

be used for describing ice floes, and the elongated shape can be used for describing

cracks and leads. The egg code has provided information on whether or not a

specified ice type in the current region has well defined floe shape (i.e. the ice floe

size is larger than the resolution of the image), and thus the corresponding clique

basis function is defined as

B(ell)
c (xi : K, y

(ell)
i ) =





0 y
(ell)
i < C

(ell)
1 and ice xi has well defined floes

y
(ell)
i −C

(ell)
1

C
(ell)
2 −C

(ell)
1

C
(ell)
1 ≤ y

(ell)
i < C

(ell)
2 and ice xi has well

defined floes

1 C
(ell)
2 ≤ y

(ell)
i and ice xi has well defined floes

0 otherwise

(5.6)

Here, C
(ell)
1 and C

(ell)
2 are two parameters for the piece-wise linear basis function as

depicted in Figure 5.6, and are experimentally set as 4 and 12 respectively. y
(ell)
i is

see section 5.2.2.
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the ellipse fitting error normalized by the boundary length, computed by

y
(ell)
i =

∑
s∈∂Ωi

D(s, e)∫
ds

where D(s, e) is the Euclidean distance between boundary site s and the nearest

site of ellipse e.

Figure 5.6: Basis function for ellipse shape energy.

The degree that a shape is elongated is measured by y(elon) = lcross/lmax, where

lmax is the length of the minimum bounding rectangle, and lcross is the minimum

crossing length of the segmented region in the direction normal to the long axis of

the rectangle. They are depicted in Figure 5.7.

The basis function for the elongated shape energy is defined in (5.7), and the

corresponding shape is illustrated in Figure 5.8. Here, the basis function is designed

in a robust manner. When y
(elon)
i is much smaller than C(elon), the function approx-

imates the square Euclidean distance from the feature value to the zero. If y
(elon)
i

is much larger, it gradually approaches the upper limit of 1. This kind of function

is more robust to outliers than the commonly used square distance function. Here
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Figure 5.7: Minimum bounding rectangle and shape parameters.

in the system, C(elon) = 0.2.

B(elon)
c (xi : K, y

(elon)
i ) =

(
y
(elon)
i

C(elon)

)2

1 +

(
y
(elon)
i

C(elon)

)2 (5.7)

Figure 5.8: Basis function for elongated shape energy.
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There are also many other features that can be possibly considered as candi-

dates. For example, Soh et. al [101] has listed more than 20 features applied in the

ARKTOS system. This thesis tries to design a system that is relatively simple and

general, and hence selects a limited number of essential features.

Multiple node clique energy

Tone difference is a useful feature for describing binary relations. This is reasonable

as observations can often be made on situations such as “new ice looks darker than

thicker ice in an image”. The distribution of the tone difference can be measured

from training samples, and assuming that the feature is Gaussian distributed the

corresponding basis function can be defined as the negative logarithm of this Gaus-

sian pdf. However, for the consideration of outliers again, the robust scheme is

adopted resulting in the following basis function:

B(td)
c (xi, xj : K, y

(td)
i , y

(td)
j ) =

(
y
(td)
i −y

(td)
j −µ

(td)
xixj

σ
(td)
xixj

)2

C(td) +

(
y
(td)
i −y

(td)
j −µ

(td)
xixj

σ
(td)
xixj

)2 (5.8)

where µ
(td)
xixj is the mean of tone difference between class xi and xj, σ

(td)
xixj is the

standard deviation of tone difference between class xi and xj, and C(td) is a constant

(set as 1 here).

The spatial context of ice types is another important binary feature. For exam-

ple, leads can often be found inside grey ice floes. Because of such a observation,

the system considers the lead as a sperate class with the shape defined as elongated.
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The basis function corresponding to spatial context is as follows

B(sc)
c (xi, xj : K, y

(sc)
i , y

(sc)
j ) =




−1 ice xi, xj are often spatially adjacent

0 otherwise
(5.9)

5.2.2 Overall System and Optimization

In addition to a different classification process, the low level segmentation also uses

a slightly different objective function from that in chapter 4. The objective function

for region merging is as follows:

arg min
Ω1,...,Ωn

{
n∑

i=1

∑
s∈Ωi

{
1

2
log(|Σi|) +

1

2
(ys − µi)

tΣ−1
i (ys − µi)

}

+β1

n∑
i=1

∑

s∈∂Ωi

g(|∇s|) + α
∑

i,∀xi∈Xf

∑

s∈∂Ωi

ei(s)



 (5.10)

Compared to the objective function in (4.11), there is an additional term corre-

sponding to a shape related energy. Here, ei(s) is the error of site s in the ellipse

fitting for the boundary ∂Ωi, α is a positive constant set to be 0.01, xi denotes the

class (object) type for segment Ωi, and Xf is the set of ice types that are charac-

terized by well defined floes for which ellipse shape segments, which correspond to

individual ice floes, are favored.

The optimization of the overall IUS follows the diagram of Figure 4.7 and the

description in 4.2.3. However, for the high level classification step in each iteration,

classification is performed first on the region clusters and then on individual regions.

The reason is similar to why region merging is adopted in IRGS - using a large group

of pixels or regions as the unit for labelling allows reduced computations to reach

a solution. The subsequent classification on individual regions acts as a refining
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process in a top-down manner. Also, some features or clique functions have to be

computed on a region cluster base (e.g. the distribution of the normalized CON),

and exhaustive classification methods can be applied to region clusters since the

number of clusters is no more than 5 (in addition to water, the egg code definition

allows at most 4 different ice types).

5.2.3 Training

SAR sea ice images of 8 different scenes have been used for preparing the training

samples, covering various regions such as Baffin Bay, Gulf of St. Lawrence, and

Beaufort Sea, and in various seasons as well. They are all acquired by RADARSAT

in ScanSAR C-band mode and have resolution of 100m (images of 50m resolution

2 × 2 block averaged by CIS). Based on the ice chart, polygon regions that have

relatively clear interpretations (i.e. only a single ice type is contained or the ice

mixture can be visually separated without much difficulty) are extracted from those

images. Table 5.1 provides a list of those images, and Figure 5.9 are the thumbnails.

The selected polygon regions are further segmented (without ice identification)

by the IRGS presented in chapter 4. The obtained segmentation maps are then

manually refined, and ice identification is performed based on visual interpretation

of the segmented regions. By doing that, an ice interpretation map has been pre-

pared manually with the aid of computer for each training sample image. It should

be mentioned that during the manual preparation of the interpretation map, any

region that has low confidence in being identified as one ice type rather than others

will be assigned a “unsure” label and excluded from future training process.

Among all the features incorporated, difference of tone is the only one that

needs to be trained. That is, the two parameters associated with the clique energy
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Figure Date Location Number
of Classes

Ice types (see Table 2.1 for
details)

5.9(a) Feb 07, 1998 Baffin Bay 2
thin first-year, thick first-
year

5.9(b) Feb 19, 1997 Gulf of St. Lawrence 4
thin first-year, grey-white,
grey, water

5.9(c) Jun 24, 1998 Baffin Bay 2
thin first-year, thick first-
year

5.9(d) Oct 13, 1997 Beaufort Sea 3 grey, new, water

5.9(e) Oct 13, 1997 Beaufort Sea 2 multi-year, grey

5.9(f) Jun 27, 1998 Beaufort Sea 3
thin first-year, thick first-
year, water

5.9(g) Jun 24, 1998 Baffin Bay 1 thick first-year

5.9(h) Feb 20, 1998 Gulf of St. Lawrence 4
thin first-year, grey-white,
grey, water

5.9(i) Jun 24, 1998 Baffin Bay 2 thin first-year, grey

5.9(j) Mar 01, 2003 Gulf of St. Lawrence 1 thick first-year

5.9(k) Mar 08, 2003 Gulf of St. Lawrence 2
medium first-year, thin first-
year

5.9(l) Mar 01, 2003 Gulf of St. Lawrence 2
medium first-year, thin first-
year

5.9(m) Mar 01, 2003 Gulf of St. Lawrence 2 grey, new

5.9(n) Mar 01, 2003 Gulf of St. Lawrence 3 grey-white, grey, new

5.9(o) Mar 01, 2003 Gulf of St. Lawrence 2 grey, new

Table 5.1: Details of the training images. All images are RADARSAT in ScanSAR
C-band mode with the resolution of 100m. The ice types are defined in Table 2.1.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Figure 5.9: Selected training sample images. See Table 5.1 for image details.
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corresponding to tone difference, µxixj
and σxixj

in (5.8), needs to be estimated

from the training samples. Since the available SAR sea ice images are limited, the

interpretation maps obtained manually do not provide sufficient disjoint regions

for any pair of ice types. Smaller regions from intermediate IRGS results are thus

randomly selected as training samples. Based on the prepared interpretation map,

the mean and variance of tone difference is computed from the selected training

samples.

Other parameters include the w
(tex)
c (the weight associated with normalized

CON), w
(ell)
c (the weight associated with ellipse shape), C

(ell)
1 and C

(ell)
2 (the ellipse

shape basis function parameters), w
(elon)
c (the weight associated with elongated

shape), C(elon) (the elongated shape basis function parameter), w
(td)
c (the weight

associated with tone difference energy), C(td) (the tone difference basis function

parameter), and w
(sc)
c (the weight associated with spatial context energy). The

values of those parameters are selected by trials, and are summarized in Table 5.2.

w
(tex)
c w

(ell)
c C

(ell)
1 C

(ell)
2 w

(elon)
c C(elon) w

(td)
c C(td) w

(sc)
c

-0.3 0.1 4 12 6 0.2 1 1 1

Table 5.2: Summary of the parameters for the high level classification.

5.3 Algorithm Testing

Experiments have been performed on the training set and several other SAR sea ice

images. All are acquired by RADARSAT ScanSAR C mode with 100m resolution.

Some of the experiment results are shown in Figure 5.10-5.17. Due to the difficulty

of obtaining pixel level ground truth, the results are evaluated subjectively. An
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online meeting with experts in Canadian Ice Service (CIS) was held on April 26,

2006 for such an evaluation. The experiment results agree (at least roughly) with

the human expert interpretations, and the system has performed successfully.

In Figure 5.10, the red lines are region boundaries before the final classification.

The system has shown some degree of capability of preserving individual ice floes,

which is useful in identifying ice types. This justifies the incorporation of ellipse

shape energy in the objective function of (5.10) for segmentation.

Experiments are then performed on the image of Figure 4.36, which has already

be included in the segmentation algorithm testings in chapter 4. The result is

presented in Figure 5.11. Compared to the segmentation result of Figure 4.41, a

number of leads and some grey ice regions in the right have been preserved. Thus,

the system has achieved a good balance between preserving details and producing

large homogeneous regions using the domain specific model.

The roles of various features used in the classification model are then investi-

gated by examining the results obtained without using the investigated features

in the classification. In Figure 5.12, two experiments are performed excluding re-

spectively the spatial context feature, which is modelled by Equation (5.9), and

the coarse texture feature, which is modelled by Equation (5.5). In Figure 5.12(a)

where the spatial context feature is excluded, small regions of leads and grey ice are

not preserved. Without the spatial context feature which favors the co-occurrence

of leads and grey ice, those leads and grey ice are more easily to be classified as

other ice types, and subsequent merging of those regions with surrounding regions

is likely to occur. In Figure 5.12(b), the labelling of grey and grey-white ice is

flipped. This is because that the tone difference feature used here assumes that

grey-white ice is generally brighter than grey ice (may not be true, but is the result

of the preliminary training). Without using the coarse texture knowledge, there is
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no reason why the system should choose the relatively bright region in the image

as grey ice.

In Figure 5.13, the system has identified successfully large regions of homoge-

neous ice, but on the other hand has lost some small details such as the gaps among

the floes at the bottom of the image. At the bottom right of the image, an open

water region has been identified by CIS experts but misclassified as new ice by the

system. Such an error occurs due to the relatively bright appearance of the rough

water in this region caused by wind, and the relatively strong edge between the

smooth water and rough water.

The interpretation in Figure 5.14 has also lost some details such as narrow

cracks. Errors have also occurred at the bottom right of the image, where some

multi-year ice has been misclassified as grey ice due to the relatively dark appear-

ance caused by snow cover, as indicated by CIS experts. Nevertheless, the system

is again successful.

The three images of Figure 5.15-5.17 are difficult because there are no distinct

boundaries and the appearance of some ice types are very close. The system per-

forms surprisingly well and has generated results that look meaningful.

5.4 Chapter Summary

In this chapter, a complete image understanding system has been constructed.

The system has combined bottom-up and top-down approaches, and is simple and

extendable. The performance of the system is satisfactory based on preliminary

evaluations on the image set currently available. Further validation by remote

sensing and ice experts on more data sets are needed.
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Figure 5.10: Interpretation result on Figure 4.29 [p. 98].
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Figure 5.11: Interpretation result on Figure 4.36 [p. 102].
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(a)

(b)

Figure 5.12: Interpretation result on Figure 4.36[p. 98] without using some fea-
tures. (a) Spatial context modelled by Equation (5.9) is excluded, resulting an
under-segmentation in which many leads and grey ice regions disappear; (b) Coarse
texture indicator modelled by Equation (5.5) is excluded, causing complete wrong
ice identification between grey ice and grey-white ice.
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Figure 5.13: Interpretation result on Figure 5.9(d) [p. 132]. Boundary lines re-
moved.
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Figure 5.14: Interpretation result on Figure 5.9(e) [p. 132]. Boundary lines re-
moved.
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Figure 5.15: Interpretation result on a Baffin bay image acquired on Feb 7, 1998.
The region has old ice and thick first-year ice. Boundary lines removed.
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Figure 5.16: Interpretation result on Figure 5.9(l) [p. 132]. Boundary lines removed.
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Figure 5.17: Interpretation result on a Gulf of St. Lawrence image acquired on
Mar 1, 2003. The region has thin first-year, medium first-year, and grey-white ice.
Boundary lines removed.
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Chapter 6

Conclusion

6.1 Summary and Research Contribution

This thesis deals with the task of developing an automated computer-assisted SAR

sea ice image understanding system. A novel Markov random field (MRF) based

image segmentation and interpretation method called iterative region growing on

semantics (IRGS) is proposed, and its applicability to operational SAR sea ice image

analysis is investigated. Experimental results have shown that the IRGS algorithm

is efficient for both general segmentation and the SAR sea ice interpretation task.

The IRGS algorithm consists of two separate but cooperative processes, corre-

sponding respectively to the image segmentation in the low level and the region

labelling at a high level. Both of the two processes aim at locating the global

minimum of a corresponding MRF-based energy function.

In the low level segmentation, the defined MRF-based energy function is ap-

proached by a series of different functions that are characterized by gradually in-

creased edge penalty. The searching is performed by an iterative region growing
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method, with each iteration a process for finding a local minimum of the current

function approximation. Such an optimization method tends to obtain configu-

rations that are composed of large homogeneous regions which, for most images

investigated, correspond to lower values of the defined energy than those by other

techniques such as the simulated annealing. From that perspective, IRGS is more

advanced. It has been observed that IRGS may lag in preserving small details be-

hind classical MRF based approaches, which are pixel-based and use the simulated

annealing. However, this does not imply a weakness of IRGS in optimization but

rather the inaccuracy of the MLL prior model.

A more suitable model for SAR sea ice imagery is then designed, also based

on MRF modeling techniques. Various features such as tone, texture, shape and

spatial context have been combined using the MRF clique potential formation,

thus not only providing a better prior model for the low level segmentation but at

the same time allow interpretations performed on the segmented regions. Such an

MRF-base high level classification approach is simple and has been demonstrated

to be able to produce meaningful results for SAR sea ice imagery.

The low level segmentation and the high level classification has been integrated

into a complete image understanding system in a cooperative manner. The high

level classification performs the labeling on the regions obtained by the low level

segmentation, and on the other hand it influences the segmentation process in

turn by resisting the merging operations between any two regions not belonging

to the same class. Considered under the Bayesian framework, the overall image

understanding system tries to solve a MAP (maximum a posterior) problem, with

the low level image features and high level domain knowledge associated respectively

with a feature model and a prior model. The summation of the energies of the two

models gives the overall objective function, and both processes try to reduce one
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part of the overall energy without changing greatly the other.

In summary, the contributions of this thesis include: 1) the design and imple-

mentation of a novel image segmentation algorithm and 2) the investigation and

development of a practical image understanding system for SAR sea ice imagery

analysis. To the knowledge of the author, there is only one system [101] that have

incorporated various high level knowledge in developing an image understanding

system for SAR sea ice, and none of the existing approaches have integrated the

low level segmentation and the high level classification based on the MRF energy

formulation under the Bayesian framework. The work in this thesis is not limited to

the SAR sea ice field but can possibly be applied to applications in other domains.

6.2 Future Research Directions

6.2.1 Refine with region splitting

In the system developed in this thesis, the high level classification is not always

accurate. Otherwise, there is no need to do the iterative refinements. Two regions

that should belong to different classes may be assigned with the same class label,

and thus have the possibility of being merged incorrectly. Since there is no reverse

operation (i.e. region splitting) of the region merging in the system, errors caused

by the merging cannot be corrected later.

Therefore, it is desirable to add region splitting steps in the solution searching.

The splitting of a region into two arbitrary shape regions is usually very compu-

tationally expensive. A possible scheme is to limit the configuration space of a

splitting to the one before merging. That is, the splitting does not generate new

regions but only rolls back to a previous configuration. Thus, it is necessary to pre-
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serve a record of the merging process, probably in the form of binary trees. At the

top level is the roots of a set of binary trees with each root node corresponding to

an object in the image. Top-down refinements can then be performed by changing

the structures of the binary trees, computing the resulting energies of the region

labeling configurations, and accepting or rejecting the change by deterministic or

stochastic techniques.

6.2.2 Model the Incidence Effect

The segmentations and interpretations of the SAR sea ice imagery sometimes suffer

heavily from the fading effect caused by the graduated change in incidence angle.

The patterns of the tone and texture vary spatially. It has been observed that the

relationship between the mean of tone in decibel scale and the incidence angle can

be approximated by a linear model, of which the slope depends on the roughness

and moisture content of snow or ice [75]. If an assumption can be made about the

homogeneity of any segmented region on the roughness and moisture content of ice,

the segmentation (region merging) process can possibly be improved by replacing

the stationary Gaussian feature model with a spatially varying Gaussian feature

model. To be specific, equation(5.10) can be modified as

arg min
Ω1,...,Ωn

{
n∑

i=1

∑
s∈Ωi

{
1

2
log(|Σi|) +

1

2
(ys − µi(s))

tΣ−1
i (ys − µi(s))

}

+β1

n∑
i=1

∑

s∈∂Ωi

g(|∇s|) + α
∑

i,∀xi∈Xf

∑

s∈∂Ωi

ei(s)



 (6.1)

where µi(s) is different from the µi in (5.10) in that it is the expected feature value

of the region i at site s and varies with the coordinates of s. With a linear model,
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µi(s) and the model coefficients can be computed using least square error fitting

based on all feature values and coordinates of the sites in region i.

Moreover, if an assumption can be made about the homogeneity of a given ice

type in a given egg code region on the roughness and moisture content, the slope

of the linear model may also be used as a feature in the high level classification.

Either applying a linear model to the segmentation or to the region labelling can

be an interesting future work.

6.2.3 Incorporate Gabor Texture Features

Some experiments on including the GLCM texture features in IRGS have already

been performed in chapter 4. Unfortunately, the implicit smoothing operation of

the GLCM computation has made the MRF context model not quite necessary.

The larger the window is, the less effect the context model has. Unlike GLCM,

the computation of the Gabor features are not necessarily associated with smooth-

ing, although a post-processing of smoothing is usually applied. Gabor features

are able to provide different descriptions of textures than GLCM features [22],

and are expected to be more efficient in identifying macro textures. Incorporating

unsmoothed Gabor features in the IRGS system can be a future work.
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