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Abstract

Video surveillance systems are playing an increasing role in preventing and investigating

crime, protecting public safety, and safeguarding national security. In a typical surveillance

installation, a human operator has to constantly monitor a large array of video feeds for

suspicious behaviour. As the number of cameras increases, information overload makes

manual surveillance increasingly difficult, adding to other confounding factors like human

fatigue and boredom.

The objective of an intelligent vision-based surveillance system is to automate the

monitoring and event detection components of surveillance, alerting the operator only when

unusual behaviour or other events of interest are detected. While most traditional methods

for trajectory-based unusual behaviour detection rely on low-level trajectory features, this

thesis improves a recently introduced approach that makes use of higher-level features of

intentionality. Individuals in a scene are modelled as intentional agents instead of simply

objects. Unusual behaviour detection then becomes a task of determining whether an

agent’s trajectory is explicable in terms of learned spatial goals. The proposed method

extends the original goal-based approach in three ways: first, the spatial scene structure

is learned in a training phase; second, a region transition model is learned to describe

normal movement patterns between spatial regions; and third, classification of trajectories

in progress is performed in a probabilistic framework using particle filtering. Experimental

validation on three published third-party datasets demonstrates the validity of the proposed

approach.
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Chapter 1

Introduction

1.1 Motivation

Intelligent surveillance is an application of computer vision that has attracted much re-

search interest in recent years. Video surveillance systems have played an increasing role

as tools for preventing and investigating crime, protecting public safety, and safeguarding

national security. However, the operation of these systems presents significant challenges.

In a typical traditional surveillance setting, a human operator has to constantly monitor

a large array of video feeds for suspicious behaviour. In many cases, there are more cameras

than screens, requiring the cameras to be cycled through the screens. A 2003 survey of

CCTV in UK railway systems reported screen to camera ratios varying from 1:4 to 1:78

in eight railway stations [27]. In their informal survey of four UK installations, Dee and

Velastin reported screen to camera ratios from 1:4 to 1:30, and operator to screen ratios as

high as 1:16 [12]. As the number of security cameras increases, information overload makes

the task of detecting occurrences of suspicious behaviour increasingly difficult, adding to

other confounding factors such as human fatigue and boredom [12, 33]. These conditions

make surveillance very challenging in large installations such as airports.

A human operator may also make biased judgements based on appearance instead of

actual statistical behaviour [12]. Not only can this bias hamper overall performance, it can
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also raise discrimination and privacy issues.

All of these factors make a compelling case for automating the visual surveillance pro-

cess, as much as practicable, using computer vision and pattern recognition techniques.

1.2 Problem definition

The objective of an intelligent surveillance system is to minimize the involvement required

of the human operator. The system should automate the monitoring and event detection

components of video surveillance, alerting the operator only when unusual behaviour or

other events of interest are detected. The general framework of intelligent surveillance com-

prises several stages: environment modeling, motion detection, object classification, track-

ing, behaviour understanding and description, and possibly personal identification [18]. An

alternative formulation identifies the similar stages of low-level image processing, tracking,

and high-level scene and/or behaviour analysis [12]. This thesis is concerned with the stage

of high-level scene and behaviour analysis (i.e., behaviour understanding and description

in the former framework), and more specifically, with the detection of suspicious behaviour

given trajectory data from the tracking stage.

Fundamentally, methods that focus on this stage of the intelligent surveillance frame-

work attempt to extract semantic meaning from tracker observations. Given an observed

trajectory, we aim to draw some inferences about the behaviour of the individual - in par-

ticular, whether the individual’s behaviour might be considered unusual. The degree to

which an observed behaviour is unusual depends on the specific context. The scene’s spatial

structure can influence the types of normal behaviour: for example, an individual taking

a shortcut through a restricted area should be identified as behaving unusually. Temporal

considerations can also be a factor: for example, an individual sprinting down a corridor

through which people normally walk is behaving unusually. Hence, an effective detector

of unusual behaviour requires context-specific training or learning. In most surveillance

scenarios, to learn explicit models for every possible form of suspicious behaviour is imprac-

tical. A more realistic approach, adopted by the vast majority of methods in the literature
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(described later in Section 2.1), is to learn what constitutes normal behaviour and then

classify new observations based on how novel they are with respect to the learned model.

The problem can be summarized as follows. Given a set of training trajectories, the

algorithm is required to learn what constitutes normal movement behaviour in the scene.

During system operation, the algorithm is required to classify new observed trajectories as

normal or unusual.

1.3 Thesis objectives and organization

As described in more detail in Section 2.1, there are several methods in the literature for

detecting unusual behaviour based on trajectories. However, most of these methods use

low-level features such as flow vectors (vectors containing position and velocity data) or

control points (e.g., for a spline), and ignore the fact that the trajectories are generated by

humans with specific intentions and objectives. Recently, a novel approach that makes use

of higher-level features of intentionality was proposed by Dee and Hogg [9, 10, 11]. Dee and

Hogg introduced the idea of modelling individuals in the scene as intelligent agents instead

of simply “objects”. Detection of unusual behaviour then becomes a task of evaluating the

goal-directedness of an agent’s behaviour - in other words, how explicable the trajectory is

with respect to the known spatial goals in the scene. More details are presented in Section

2.1.

This thesis builds upon Dee and Hogg’s goal-based paradigm and extends it in three

important ways. First, the proposed method learns the spatial scene structure in a train-

ing phase. In Dee and Hogg’s method, the inference of goals and subgoals depends on

an obstacle map that is specified manually. The proposed method’s automatic learning

of spatial goals in the scene reduces the human involvement required in training the sys-

tem. Second, the proposed method learns a transition model that describes normal agent

movement between subgoals/goals. This is a unique contribution that is not present in

Dee and Hogg’s method. The feature adds richer semantic information about the scene in

terms of the relative frequency of normal subgoal/goal transitions and the normal speeds
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of travel. Third, the proposed method classifies trajectories in progress in a probabilistic

framework using particle filtering. The probabilistic approach is also novel with respect

to the original method. Particle filtering enables multiple hypotheses about the goals of

the agents in the scene to be efficiently maintained. Both Dee and Hogg’s method and

the proposed method naturally evaluate trajectories in progress (i.e., partial trajectories),

allowing unusual behaviour to be detected as it is occurring instead of only after it has

completed. Further details are presented in Chapter 3.1.

The experimental validation of this thesis aims to resolve two main questions. First,

can the proposed learning approach achieve the same classification accuracy as the original

approach that uses a manually specified obstacle map? Second, can the goal-based method

provide good classification performance in comparison to traditional methods based on low-

level trajectory features?

The rest of this thesis is organized as follows. Section 2 provides an overview of related

work in trajectory-based unusual behaviour detection. Section 3 describes the proposed

method. Section 4 reports the results of experiments conducted on one synthetic and two

real-world datasets. Finally, conclusions and directions for future research are presented

in Section 5.
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Chapter 2

Related Work

This thesis focuses on the stage of behaviour understanding and analysis in the intelligent

visual surveillance framework, which takes as input the results of the object tracking stage.

Object tracking is a challenging problem, especially in the presence of occlusion, noise,

camera motion, and changes in illumination [55]; however, tracking issues are beyond the

scope of this work. The object tracking literature contains a wide variety of well-established

algorithms and extensions of those algorithms. For example, the mean-shift tracker [7, 8]

has been the basis of numerous extensions [15, 28, 54]. The interested reader is referred

to the review by Yilmaz et al. [55] for a good treatment of the state-of-the-art in object

tracking.

2.1 Trajectory-based methods for unusual behaviour

detection

Several researchers have proposed trajectory-based methods for recognizing unusual be-

haviour patterns in a surveillance context. In most surveillance scenarios, to learn explicit

models for all forms of suspicious behaviour is impractical. The more realistic approach,

and the approach adopted by the methods described in this section, involves learning what

constitutes normal behaviour in a particular scene, and then classifying new observed be-
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haviours based on how novel they are with respect to the learned model. The methods

described in this section perform online behaviour analysis, instead of identifying instances

of unusual behaviour given an entire video sequence. Algorithms of the latter type [56]

may be useful for post-mortem offline analysis; however, they are not suitable for real-time

surveillance.

Johnson and Hogg developed one of the earliest works in trajectory-based detection

of unusual behaviour [25]. Johnson and Hogg represented an object’s trajectory using a

sequence of flow vectors, which consist of the object’s instantaneous position and velocity

in the image plane. Clustering is performed on training flow vectors using a competitive

neural network. The output of this network is input to a layer of leaky neurons. The leaky

neurons retain a short-term memory of activation, allowing partial trajectory information

to be encoded. The partial trajectories, as represented by the outputs of the leaky neuron

layer, are then clustered using a second competitive neural network. In this way, clusters of

normal instantaneous movements and partial trajectories are learned. However, the number

of clusters is required to be specified a priori in both clustering steps. This requirement

poses an implementation issue since it is not clear how an appropriate number of clusters

should be determined. In addition, the experimental results demonstrate the performance

of Johnson and Hogg’s method in learning normal trajectory patterns but no explicit

validation is presented for the task of unusual trajectory detection.

Owens and Hunter proposed a method for detecting unusual trajectories in greyscale

surveillance video [40]. The authors build on the flow vector representation, adding second

order information and applying temporal smoothing to encode a short-term history of mo-

tion. A self-organizing map neural network is used to learn normal trajectories. To classify

the novelty of an observed feature vector, the Euclidean distance is calculated between

the observed vector and the prototype vector of the winning neuron when the observed

vector is input to the self-organizing map. If the distance is above a threshold, then the

observed vector is classified as unusual. Owens and Hunter’s method uses a simpler neural

network structure than Johnson and Hogg’s, but determining an appropriate configuration

for the output layer to achieve effective clustering remains an implementation issue. The
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trade-off between false negatives and false positives is also unclear, as experimental results

are reported only for a single threshold value.

Stauffer and Grimson performed online k-means clustering on flow vectors augmented

with object size information [48]. The joint co-occurrence statistics of the prototypes are

used to learn a hierarchical classifier of trajectories. The novelty of a trajectory is de-

termined based on the novelty of the constituent augmented flow vectors and the overall

co-occurrence statistics. Similar to Johnson and Hogg’s method [25], determining an ap-

propriate number of clusters a priori for the clustering step is an implementation issue.

The trajectory classifier is demonstrated within a fully integrated object tracking system;

however, unusual behaviour detection is not experimentally validated.

Hu et al. developed a combined tracking and behaviour understanding system [19]. Tra-

jectories are represented by sequences of “point feature vectors”: flow vectors augmented

with size information. Training trajectories are clustered using fuzzy k-means clustering

in a two-stage approach. The first stage clusters trajectories based on only spatial infor-

mation. Trajectories are resampled and linearly interpolated to obtain the fixed-length

vectors needed for clustering. The number of clusters k is determined by finding a lo-

cal optimum of the Tightness and Separation Criterion [52]; however, if the number of

samples in a cluster falls below a fixed threshold, the cluster is merged with its closest

neighbour. The second stage adds temporal information (velocities in the point feature

vector) to further cluster the trajectories within the clusters found by the first stage. The

output of this two-step clustering is cluster prototypes that are represented using “motion

patterns”. Each motion pattern is a sequence of Gaussian distributions. To learn these

Gaussian distributions, each trajectory belonging to the cluster is uniformly partitioned

using a common width, and point feature vectors falling into each partition are used to

learn a Gaussian distribution corresponding to that partition. The probability of a point

feature vector given a Gaussian distribution is then defined as a function of its Mahalanobis

distance to the distribution. During system operation, a trajectory in progress is classified

as normal or unusual by finding the motion pattern with maximum posterior probability,

and then calculating the probability of the current point feature vector given this motion
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pattern. If this probability remains low enough for several frames, then the trajectory is

flagged as unusual. The experimental validation of the unusual trajectory detection could

be improved by performing quantitative validation; only examples of correct detections

are presented in the experimental results. The trade-off between false negatives and false

positives could also be included in the quantitative validation.

Makris and Ellis proposed an algorithm in which normal trajectories are learned by

presenting training trajectories in sequence and comparing them to the current prototype

trajectories, or “routes” [32]. A route is modelled using a pair of entry and exit points, a

central axis consisting of control points, and an envelope describing deviation from the axis.

A training trajectory is assigned to the closest route according to a maximum separation

distance measure, and the parameters of the matched route are updated based on the

trajectory. If no route is sufficiently close, a new route is created. As training progresses,

routes may be merged or split according to maximum separation distances. In later work,

the authors improved the learning and modelling of entry and exit regions using 2-D

Gaussian mixture models, and detected unusual trajectories using hidden Markov models

(HMMs) [33]. A key contribution of the algorithm is the learning of a scene model that

describes semantically important spatial regions in the scene. However, since unusual

behaviour detection is considered more as an application than as a core component of

the algorithm, experimental validation of unusual behaviour detection is limited and not

quantitative.

Fernyhough et al. represented an object’s trajectory using the convex hull of the object

over time, partitioned according to the object’s position sampled at regular time inter-

vals [14]. Like Makris and Ellis [32, 33], prototype paths are learned by presenting training

trajectories in sequence and updating the parameters of the matching prototype. Trajec-

tories are then used to learn qualitative event sequences, where an event refers to a spatial

interaction between two objects as defined by relative position and direction of motion (e.g.,

“following” or “travelling alongside left”) [14]. No experimental validation is performed

for the task of unusual behaviour detection, as unusual behaviour detection is presented

as an application instead of as a core component of the algorithm.
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Piciarelli and Foresti [41] took a similar approach to Makris and Ellis [32, 33] and

proposed an online clustering algorithm for trajectories in which cluster prototypes con-

sist of a sequence of points and local variances from those points. The distance from a

trajectory to a cluster is defined as the mean normalized Euclidean distance between a

point in the trajectory and the nearest point in the prototype within a sliding window.

Clusters are organized in a tree structure and continually updated, split, and merged as

tracking observations arrive. Accumulated frequency information is used to calculate the

likelihood of an observed trajectory and decide whether it is normal or unusual. How-

ever, the method operates on complete trajectories and is not designed to detect unusual

trajectories in progress. In addition, no experimental validation is presented for unusual

trajectory detection.

In a later work, Piciarelli et al. proposed using a single-class support vector machine

(SVM) to detect unusual trajectories [42]. Trajectories are subsampled into fixed-length

vectors for training and classification. Outliers are detected and removed from the SVM

training set based on the change in the hypervolume in SVM feature space containing the

training samples as samples are removed: the hypervolume should shrink more markedly

when removing outliers than normal trajectories. In contrast to many of the previous works,

extensive quantitative validation is performed for unusual trajectory detection, including

validation on a large synthetic dataset developed by the authors. However, how to select an

appropriate subsampling (fixed vector length) that preserves all important spatial features

of the trajectories is not obvious. In addition, the method requires complete trajectories

and cannot detect unusual trajectories in progress.

Junejo et al. clustered raw trajectories using a min-cut graph algorithm [26]. Nodes

in a fully connected weighted graph correspond to trajectories, and edges are weighted by

the Hausdorff distance between trajectories. Each cluster is represented by a prototype

trajectory and an envelope based on the maximum spatial deviation from the prototype. In

addition, representative velocities and curvatures are modelled by fitting Gaussian distri-

butions to the instantaneous velocities and curvature measures in the cluster’s trajectories.

An observed trajectory is classified as unusual if, for every learned cluster, the observed
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trajectory is sufficiently different in terms of spatial extent, velocity, or curvature. A lim-

itation of this approach is the reliance on Hausdorff distance, which does not consider

sequential ordering: as a result, trajectories going in opposite directions are viewed as the

same in clustering. The number of clusters is also required to be specified a priori; how to

determine an appropriate number of clusters is unclear.

Naftel and Khalid represented trajectories using function approximations, including

least square polynomial, Cheybyshev polynomial, and Discrete Fourier Transform [39].

Trajectories are compared using their Euclidean distance in the coefficient feature space.

Training trajectories are clustered using a self-organizing map neural network followed by

an agglomerative hierarchical clustering step. An observed trajectory is classified as un-

usual if its Mahalanobis distance to the nearest cluster is sufficiently large according to

a T 2 statistic test. Similar to several of the previous methods, the number of trajectory

clusters must be specified a priori, which poses an implementation issue. The authors

suggest a possible workaround in which the agglomerative merging is controlled by a dis-

tance threshold, but how to select an appropriate threshold is not obvious. The method

also operates primarily on complete trajectories and does not easily evaluate trajectories

in progress. The authors do present an experiment in which trajectories in progress are

simulated by removing 10%, 20%, 30%, 40%, and 50% of the points from the end of each

trajectory. These partial trajectories are then passed to the classifier as though they are

regular, complete trajectories. However, there are two problems if partial trajectories are

simply treated as complete trajectories in practice: first, there is no means to distinguish

between a truly unusual trajectory and a normal trajectory that has completed only a small

proportion of its sequence (say, 50% complete); second, there is no means to estimate the

proportion of the trajectory that is complete.

Jiang et al. modelled trajectories using hidden Markov models (HMMs) and adopted a

similarity measure based on the Bayesian Information Criterion [24]. Training trajectories

are clustered using a modified hierarchical clustering algorithm with 2-depth search and

additional reclassification and HMM retraining steps in each iteration. The prior proba-

bility of each HMM is estimated using Expectation Maximization (EM), considering the
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trajectories to be generated by a mixture of the HMMs. HMMs with above average prior

probabilities are considered to model normal behaviour. An observed trajectory is classi-

fied as unusual if its probability of being generated by a mixture of the normal models falls

below a threshold; the threshold is determined by the minimum probability of a normal

training trajectory being generated by a mixture of the normal models. Quantitative ex-

perimental results are presented. However, the method requires complete trajectories and

cannot detect unusual trajectories in progress.

Sillito and Fisher proposed a semi-supervised method for learning normal trajectories

and detecting unusual behaviour [47]. A trajectory is represented by the control points

of an approximating cubic spline, plus the elapsed time. During the training phase, a

one-class classifier based on a Gaussian mixture model is incrementally learned. The

incremental learning is semi-supervised: when a training trajectory is classified as unusual

by the mixture model learned so far, the human operator is prompted to decide whether

or not the trajectory is normal. Training trajectories that are classified as normal by

the model learned so far do not trigger human intervention. A trajectory is classified

as unusual if its Mahalanobis distance to the closest component of the Gaussian mixture

model exceeds a threshold conditioned on the number of samples used to train the mixture

model. Quantitative experimental results are presented, including Receiver Operating

Characteristic (ROC) curves to illustrate the trade-off between false positives and false

negatives. However, the classifier requires complete trajectories and cannot detect unusual

trajectories in progress.

The work in this thesis is inspired by the recent approach of Dee and Hogg, in which

individuals in the scene are modelled as intelligent agents with intentionality instead of

simply “objects” [9, 10, 11]. Detection of unusual behaviour then becomes a problem of

determining whether an agent’s trajectory is explicable in terms of known spatial goals.

The greater the goal-directedness of a trajectory, the more likely it represents normal

behaviour. In [9], the goal-directedness of a trajectory is determined by the degree to

which its constituent flow vectors are geometrically oriented towards spatial goals and

subgoals, taking manually specified obstacles into account. Dee and Hogg later extended
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this work to incorporate two human navigational strategies: shortest path and simplest

path [10]. The shortest path to a goal is the one that minimizes total travel distance; the

simplest path minimizes the total number of subgoals, or changes in direction. An observed

trajectory is compared with the shortest and simplest paths to all possible spatial goals. A

monotonic Hausdorff distance measure is used to determine the closest simplest or shortest

path, and the goal-directedness of the observed trajectory is determined by the angular

disparity between the observed trajectory and this ideal path.

Invasion of privacy is always a potential concern when deploying surveillance systems in

public areas. To protect the privacy of individuals as far as possible, a surveillance system

should collect the minimum amount of personal information necessary to achieve its ob-

jectives [5]. An advantage of trajectory-based methods for detecting suspicious behaviour

is that they do not require any appearance information of the individuals in the scene.

Trajectory-based methods should also integrate easily with privacy-enhancing surveillance

technologies that encrypt the output of tracking algorithms [34].

2.2 Unusual behaviour detection in dense crowds

Trajectory-based methods for unusual behaviour detection are applicable in settings in

which individuals can be tracked with reasonable accuracy. However, these methods may be

unsuitable in scenes with very high-density crowds in which traditional tracking algorithms

cannot be used. The detection of unusual behaviour in dense crowds is an emerging research

area, and although beyond the scope of this work, a brief description of some of the work

in this area is presented for completeness. In general, these methods use optical flow or

other holistic scene features to track overall crowd movement without explicitly tracking

individuals in the crowd.

Boghossian and Velastin proposed an early optical flow based method to detect crowd-

related emergencies [4]. Circular flows near exits are used to detect crowd evacuation, as

exits become bottlenecks during an evacuation. Diverging flows outwards from a region are

indicative of local danger. Both the circular and diverging flows are detected using Hough
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transforms. Motion-free regions isolated within homogeneous flows indicate obstructions.

Flows in the scene are segmented using a region-growing segmentation method.

Xiang and Gong took a similarly holistic approach analyzing temporal patterns in

foreground blobs or “scene-events” to detect normal and unusual events [50]. Scene-events

are represented by feature vectors comprising blob centroid, shape, and motion features,

and fitted to a Gaussian mixture model. The “behaviour pattern” in a video segment is

encoded by a sequence of vectors, one per frame, of the posterior probability of each scene-

event class (component in the Gaussian mixture model). Each behaviour pattern is then

used to train a Multi-Observation HMM (MOHMM). The MOHMMs are used to calculate

a pairwise similarity matrix over the behaviour patterns, allowing the behaviour patterns to

be grouped using spectral clustering. Finally, the resulting clusters of behaviour patterns

are used to train another mixture of MOHMMs that constitutes the normal behaviour

model. During system operation, an observed behaviour pattern is classified as unusual if

its likelihood given the normal behaviour model falls below a threshold.

For the task of detecting unusual crowd behaviour, Ihaddadene and Djeraba defined a

measure based on optical flow features [20]. A KLT tracker [46] is used to track Harris

corners in areas of high motion. A measure of entropy is then calculated based on the

area of moving blobs, the direction and magnitude variances of optical flow vectors, and

the dominant directions of optical flow. This measure is thresholded to classify crowd

behaviour as normal or unusual.

Ali and Shah proposed a crowd flow segmentation algorithm based on Lagrangian

particle dynamics [2]. A grid of particles is overlaid on the scene and advected using

optical flow. The motion of the particles is used to construct flow maps in the horizontal

and vertical directions. Spatial gradients in the flow maps are used to calculate a Finite

Time Lyapunov Exponent (FTLE) field. Ridges in the FTLE field segment the crowd flow

into regions with similar flow dynamics. In addition, instabilities or abnormalities in the

crowd flow are detected by changes in the number of flow segments.

Mehran et al. detected unusual crowd behaviour by analyzing “interaction forces” over

time [35]. Their approach is inspired by the Social Force model of crowd behaviour [17], in
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which the motion of individuals is determined by both their desired motion and interaction

forces from the environment or the crowd. Instead of tracking individuals in a dense crowd,

Mehran et al.’s method applies Ali and Shah’s particle advection framework [2] to capture

the crowd flow. The interaction force on a particle is defined as a function of both the

current optical flow and a spatially and temporally smoothed optical flow. The current

optical flow represents the particle’s desired motion under the Social Force model, and

the spatially and temporally smoothed optical flow represents the particle’s actual motion

under the Social Force model. A classifier is trained on spatio-temporal volumes of normal

interaction force magnitudes.

2.3 Summary

In summary, several methods for trajectory-based unusual behaviour detection have been

proposed in the literature. Although each method has application and merit, a few recur-

ring issues can be observed to varying degree: the requirement of the number of clusters

in a clustering step to be known a priori; inability to evaluate trajectories in progress, and

hence to detect unusual behaviour as it is occurring instead of only after it has completed;

lack of quantitative experimental validation; and lack of characterization of the trade-off

between false positives and false negatives. Table 2.1 shows a summary of these issues.

Most traditional approaches to trajectory-based detection of unusual behaviour also

rely on low-level trajectory features such as flow vectors or control points. As a result,

they ignore the fact that the trajectories are generated by humans with specific goals and

intentions. No attempt is made to model the higher-level psychology of the individuals

in the scene, which could be instrumental in the task of detecting unusual behaviour. In

contrast, Dee and Hogg’s recent goal-based approach makes use of higher-level features of

intentionality. Individuals in the scene are modelled as intelligent agents and trajectories

are evaluated based on their explicability with respect to spatial goals. The following

chapter elaborates on the contributions of this thesis to the goal-based approach.
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Table 2.1: Summary of recurring issues in trajectory-based unusual behaviour detection.

A checkmark indicates successful inclusion in the work.

Evaluates trajec-

tories in progress?

Number of clusters

not required a priori?

Quantitative valida-

tion of unusual tra-

jectory detection?

Trade-off between

false positives and

false negatives?

Johnson and Hogg [25] X

Owens and Hunter [40] X X

Stauffer and Grimson [48] X

Hu et al. [19] X X

Makris and Ellis [32, 33] X X

Fernyhough et al. [14] X X

Piciarelli and Foresti [41] X

Piciarelli et al. [42] X X

Junejo et al. [26] X

Naftel and Khalid [39] X

Jiang et al. [24] X X

Sillito and Fisher [47] X X X

Dee and Hogg [11] X X X X
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Chapter 3

Proposed Method

This chapter begins by detailing the contributions of this thesis and the broader significance

of the research. Subsequent sections then elaborate on the proposed method in terms of

the three main contributions.

3.1 Contribution details and broader significance

As mentioned in Section 1.3, the key objectives of this thesis are to further develop the

goal-based approach of Dee and Hogg in three important ways.

First, as described in Section 3.2, the proposed method learns a spatial scene model in

a training phase. Dee and Hogg’s scene model comprises goals, which correspond to exit

regions, and subgoals, which correspond to intermediate turning regions induced by the

obstacles in the scene. Dee and Hogg’s obstacles are manually specified using a polygonal

model, and subgoals are recursively calculated based on tangential obstacle vertices as-

suming linear travel from one subgoal to the next. An advantage of their approach is that

learning subgoals requires no training. However, the manual crafting of polygonal obstacle

models for every scene is time-consuming from a usability perspective and may be subject

to bias. Moreover, if the camera is moved, the entire scene model must be re-specified by

hand. The proposed method’s automatic learning of spatial regions in the scene reduces

the human involvement required in training the system.
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Second, as described in Section 3.3, the proposed method learns a transition model that

describes normal agent movement between spatial regions. In particular, the relative fre-

quency of region transitions and the normal speeds of travel between regions are encoded.

This is a unique contribution that is not present in the original method. These additions

incorporate richer semantic information about the scene and extend the scope of the types

of unusual behaviour that the system can detect. For example, an agent using a common

spatial route but moving at an unusually high speed may be identified as behaving unusu-

ally. Hence, the proposed method incorporates not only the spatial characteristics but also

the temporal characteristics of the agent’s behaviour.

Third, as described in Section 3.4 the proposed method classifies trajectories in progress

in a probabilistic framework using particle filtering. The probabilistic approach is also

novel with respect to the original method. Particle filtering is a well-established method for

probabilistic reasoning over time. The framework allows the proposed method to efficiently

maintain multiple hypotheses about the goals of the agents in the scene over time, and

offers a natural way to integrate the learned transition model.

Developing and extending the goal-based paradigm has the potential to open promising

new avenues in intelligent surveillance research. For example, researchers have recently

started to focus on natural language description of surveillance events [18]. The aim of

this branch of research is to take the results of the behaviour analysis and translate them

into a form that a human can readily understand. Traditional methods relying on low-

level trajectory features such as flow vectors or control points risk producing black-box

results that are not easy to interpret by human surveillance operators. On the other hand,

describing behaviour in terms of spatial goals is natural and intuitive for humans. For

instance, a human readily understands a statement such as “The individual is walking

from the main entrance towards the elevators.” In contrast, to interpret an individual’s

trajectory following a spline, set of control points, or flow vectors is not easy.

The semantic-rich description of behaviour using goals is also useful for content-based

surveillance video retrieval [18]. A surveillance operator may need to retrieve all instances

of individuals entering a restricted zone or leaving at a particular exit, for example.
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This ability to describe trajectories in terms of spatial goals has potential applica-

tions beyond security surveillance as well. For example, it could be used by architects

in evaluating a designed space. Architectural assessment typically involves analysing the

paths people take with respect to design elements in the environment (e.g., fountains,

walkways, steps). The task has traditionally required manual observation and annotation,

but recently a system that incorporates simple computer vision based tracking has been

proposed [53].

3.2 Modelling the scene structure

3.2.1 Overview

The proposed method models the spatial scene structure by learning three separate Gaus-

sian mixture models (GMMs) from the training trajectories: one GMM each for the sets

of all entry points, all turning points, and all exit points. The entry, turning, and exit

points are 2-D coordinates, so each mixture component is a 2-D Gaussian distribution.

Entry and exit points are straightforward: these are simply the first and last points in the

trajectories. Turning points refer to locations at which agents make significant changes in

direction, such as at road bends or intersections. Turning locations are detected using im-

age processing techniques described later in this section. Modelling entry and exit regions

using GMMs has precedent in the works of Makris and Ellis [32, 33] as well as Dee and

Hogg [9, 10, 11].

In the current implementation, all training trajectories are assumed to correspond to

normal behaviour. However, in future work, investigating ways to automatically detect

and remove outlier trajectories from the training set will be valuable.
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3.2.2 Fitting GMMs using Expectation Maximization

In general, a mixture distribution is a weighted combination of multiple distributions, or

components, and is given by [44]

P (x) =
∑

i

wi P (x|C = i) (3.1)

where x is a generic data point, C denotes a component, and wi = P (C = i) is the weight or

prior probability of component i. A GMM in particular consists of Gaussian components,

and in the case of 2-D Gaussians is given by

P (x) =
∑

i

wi
1

2π|Σi|1/2
exp(−1

2
(x− µi)

T Σ−1
i (x− µi)) (3.2)

where µi is the mean and Σi the covariance of Gaussian component i.

The GMMs are fit to the training data using the Expectation Maximization (EM)

algorithm [44]. The EM algorithm is an iterative method for estimating model parameters

from incomplete sample data. Each iteration involves an E (expectation) step and an M

(maximization) step. In the E step, the current estimated model parameters are used

to calculate the expected values of the hidden variables, with which we would have the

complete data to describe the problem. In the M step, the model parameters are updated

to maximize the log likelihood of the data. The process repeats until convergence. For

fitting a GMM to the training data, the E and M steps are as follows [44]:

E : For each data point and Gaussian component, calculate the probability pij that data

point xj is generated by Gaussian component i:

pij = P (C = i|xj) = αP (xj|C = i)P (C = i) (3.3)

by Bayes’ rule, where α is a normalization constant and the other terms are evaluated

according to the current estimated GMM.

M : Update the model parameters by

µi =

∑
j pijxj∑

j pij

(3.4)
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Σi =

∑
j pij(xj − µi)(xj − µi)

T∑
j pij

(3.5)

wi =
∑

j

pij (3.6)

3.2.3 Determining an appropriate number of mixture compo-

nents

For Makris and Ellis [32, 33] as well as Dee and Hogg [9, 10, 11], the number of entry

and exit regions, and hence the number of mixture components in the GMMs, is manually

specified. The proposed method reduces the human involvement required to train the

system by automatically determining an appropriate number of mixture components using

the Bayesian Information Criterion (BIC) [45]. The automatic estimation of an appropriate

number of mixture components is especially important for fitting the turning region GMM,

as this information would be difficult to obtain a priori in most practical settings.

BIC is a penalized likelihood criterion used for model selection. In general, when

fitting a model to training data, the likelihood of the training data can be increased by

increasing the model’s complexity in terms of the number of model parameters. However,

as the number of parameters in the model increases, so does the risk of over-fitting the

data. The purpose of a penalized likelihood criterion is to penalize model complexity

(large numbers of parameters) [6]. Another established penalized likelihood criterion is

the Akaike Information Criterion [1], which has been used, for example, to determine the

appropriate number of histogram bins in the context of object tracking [23].

BIC can be applied to determine an appropriate number of components for a GMM. The

BIC value is evaluated for candidate models with varying number of mixture components,

and the model corresponding to the maximum BIC value is selected. In the case of the

proposed method, GMMs are fit to the data (entry points, turning points, or exit points)

with incrementally increasing number of mixture components, and the model corresponding

to the first local maximum BIC value is selected. GMM selection based on the maximum

BIC value has been previously used in the pattern recognition literature with success [51].
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3.2.4 Detecting turning points

In an early implementation of the proposed method, turning points were detected based

on the cosine of the angle between the direction vectors before and after a point. Denoting

the direction vectors as u1 and u2, the cosine can be calculated by

cos θ =
u1 · u2

|u1||u2|
(3.7)

If the cosine value falls below a threshold, then the point is considered a turning point.

To reduce the effects of noise in the trajectory, v1 and v2 can be averaged over a fixed

number of points, or window. This simple approach is sensitive to the window size and

is appropriate only when turns occur at the same scale for all trajectories. The approach

is not very effective when turns occur at different scales, which can be expected in most

real-world surveillance situations.

To robustly detect turning points at varying scales, the proposed method adapts an

existing algorithm from the image processing literature. Many image processing researchers

have worked on the problem of detecting corners in curves, which in the context of the

proposed method corresponds to detecting turning points in trajectories. Curvature scale

space (CSS) [36, 43] is one popular tool for detecting corners at varying scales. CSS

methods find candidate corner points by smoothing the curve at different scales, typically

by convolving the curve with Gaussians of different standard deviations, and finding local

maxima of curvature. The curvature κ at a point P is defined as the differential change in

the angle ψ with respect to arclength s at that point [43]:

κ =
dψ

ds
(3.8)

where ψ is the angle subtended by the tangent at P with the x-axis. Given a curve in the

spatial plane, denoted in parametric form (x(s), y(s)), the curvature can be calculated by

[43]

κ(s) =
ẋ(s)ÿ(s)− ẍ(s)ẏ(s)

(ẋ2(s) + ẏ2(s))3/2
(3.9)

where ẋ(s) and ẏ(s) denote the first derivatives of x and y, and ẍ(s) and ÿ(s) denote

the second derivatives. The curvature of a curve smoothed by a Gaussian with standard
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deviation σ can be calculated by [36, 43]

κ(s, σ) =
ẋs(s, σ)ÿs(s, σ)− ẍs(s, σ)ẏs(s, σ)

(ẋ2
s(s, σ) + ẏ2

s(s, σ))3/2
(3.10)

After finding the candidate corner points, different CSS methods use varying techniques

for identifying and removing false corners.

The proposed method adapts He and Yung’s CSS corner detector [16], which removes

false corners based on an adaptive threshold and a dynamic region of support. He and

Yung’s CSS corner detector normally removes wide, or “rounded”, corners from consider-

ation by using an adaptive local threshold. However, in the case of the proposed method,

wide turns are valid and should be kept. This modification is easily achieved by setting

He and Yung’s constant C to 1 (as pointed out in Section 3.1 of [16]). The rest of He and

Yung’s CSS corner detector is unmodified. In particular, false corners are identified by

checking the angle based on a dynamic region of support. Using the terminology from the

previous discussion of the cosine approach, the region of support is essentially the window

around a candidate corner point. In He and Yung’s algorithm, the region of support is

defined dynamically by the nearest corner candidates.

Figure 3.1 shows a few sample corner detection results. The detected corners are marked

with green asterisks.

3.2.5 Examples

Figure 3.2 illustrates the overall scene modelling approach on some sample training sets

from Piciarelli et al.’s synthetic dataset [42]. The training trajectories are overlaid in gray.

Entry, turning, and exit points are indicated by blue, green, and red points respectively.

The asterisks denote the mixture component means of the entry, turning, and exit GMMs.

3.3 Learning a region transition model

To encode information about travel patterns between entry, turning, and exit regions, a

transition model is learned in terms of region-to-region segments, which will be referred
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Figure 3.1: Sample corner detection results on trajectories from Dee and Hogg’s carpark

dataset [9, 10, 11]. Detected corners are marked with green asterisks.
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Figure 3.2: Sample learned scene models for training sets from Piciarelli et al.’s synthetic

dataset [42]. Entry, turning, and exit points are indicated by blue, green, and red points

respectively. Asterisks denote the component means of the entry, turning, and exit GMMs.
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to as path segments. For example, if an agent enters the scene at entry region 1, proceeds

to turning region 5, continues to turning region 7, and finally exits at exit region 10, then

the agent traverses the path segments 1-5, 5-7, and 7-10. The transition model is used

to predict the next path segment (and hence the next destination region) that the agent

will choose upon arriving at his/her current destination region. As will be discussed in

Section 3.4, this prediction does not have to be made deterministically: it can be made

probabilistically in a particle filtering framework, which allows multiple hypotheses to be

efficiently maintained and evaluated.

To keep the prediction tractable, the Markov assumption is made: the current state

depends on a finite history of previous states [44]. The proposed method adopts the

transition model for a simple second-order Markov process. In other words, the probability

of an agent choosing a particular path segment depends only on the current and the

previous path segments.

The path segment transition probabilities are estimated by performing frequency count-

ing on the training trajectories. As an extremely simplistic example, suppose there are five

training trajectories. A training trajectory contains an entry point, an exit point, and zero

or more turning points, each of which can be associated with one of the learned regions

in the scene model as described in Section 3.2. Call the sequence of regions corresponding

to these significant points the region sequence of the trajectory. Recalling the previous ex-

ample of an agent traversing regions 1, 5, 7, and 10, the region sequence of that trajectory

would be 1-5-7-10. Suppose the five training trajectories have region sequences of 1-5-7-10,

1-5-7-10, 1-5-7-9, 1-3-7-10, and 1-3-7-9. The resulting transition model would estimate the

conditional probability of an agent choosing to take path segment 7-10 to be 2/3 given that

the current path segment is 5-7 and the previous path segment is 1-5; or to be 1/2 given

that the current segment is 3-7 and the previous path segment is 1-3. A null region is used

as necessary if there is no previous or current path segment: for example, the conditional

probability of an agent choosing to take path segment 1-5 is 3/5 given that the previous

and current path segments are both null.

The mean and standard deviation of agent speeds are also calculated for travel within

25



each path segment. To reduce the effect of noisy outliers due to tracking errors, the top

and bottom 5% of speeds are removed before calculating the mean and standard deviation

measures. This speed information is used in the inference engine described in the following

section, and will be referred to as the speed model. The purpose of calculating speed

statistics on a per path segment basis instead of globally is to allow for the possibility of

different speed expectations in different parts of the scene; that is, normal speed behaviour

may be non-stationary in the scene.

3.4 Classifying observed trajectories

3.4.1 Particle filtering

Particle filtering is a well-established and efficient algorithm for probabilistic reasoning

over time [44]. Before elaborating on the algorithm, this subsection briefly reviews the key

terminology in probabilistic inference over time. Most of the following discussion is based

on the treatment of the topic in [44] and [49].

The state comprises the random variables of interest; the state at time t is denoted xt.

An observation zt is a measurement that provides information about the state at time t.

The evolution of the state over time is governed by the state transition model p(xt|x0:t−1),

which specifies the conditional probability of xt given all the prior states x0:t−1. If the state

is assumed to be complete - that is, if we assume each state xt contains all information

required to predict the next state, without need of previous states - then the transition

model simplifies to p(xt|xt−1). Using the terminology in Section 3.3, assuming complete-

ness implies making the Markov assumption and treating the state evolution over time as

a first-order Markov process.

The conditional probability p(zt|xt) is referred to as the sensor model or measurement

model. The sensor model describes how measurements are affected by the actual state.

Measurements can be thought of as “noisy projections of the state” [49].

Finally, the posterior probability distribution over the current state, conditioned on all

26



Table 3.1: An iteration of the Bayes filtering algorithm [49]

Input: bel(xt−1), zt

for all xt do

b̄el(xt) =
∫
p(xt|xt−1)bel(xt−1)dxt−1

bel(xt) = ηp(zt|xt)b̄el(xt)

end for

return bel(xt)

observations so far, is referred to as the belief : bel(xt) = p(xt|z1:t) . The objective of a

probabilistic filtering algorithm is to compute the belief.

The most general probabilistic filtering algorithm is the Bayes filter, which is shown in

Table 3.1. The Bayes filter recursively calculates the current belief based on the previous

belief. Two steps are involved in each iteration: a prediction step and a correction step.

The prediction step computes b̄el(xt), which predicts xt based on the previous state xt−1

according to the state transition model. The prediction is then corrected by incorporating

the observation zt according to the sensor model. The constant η is a normalization

constant to ensure bel(xt) integrates to 1.

The Bayes filter as stated above is computationally feasible for only very simple prob-

lems. It is the theoretical basis for a number of approximations that are more computa-

tionally practical, including the Kalman filter, the information filter, the histogram filter,

and the particle filter.

The particle filtering algorithm approximates the belief distribution using a finite num-

ber of samples drawn from the belief distribution. The samples are referred to as particles.

Each particle encapsulates an instantiation of the state. A particle can also be interpreted

as a hypothesis about the true state [49]. This sample-based representation of the belief

gives the particle filtering algorithm the flexibility to approximate arbitrary, multi-modal

belief distributions, as well as handle complex, non-linear state transitions over time.
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Table 3.2: An iteration of the particle filtering algorithm [44, 49]

Inputs: particle set Xt−1, observation zt

Denote the number of particles in the particle set as M .

for each particle xi
t−1 ∈ Xt−1 do

Sample xi
t ∼ p(xt|xt−1)

Calculate particle weight wi = p(zt|xt)

end for

Create Xt by drawing (with replacement) M particles, in which the probability of draw-

ing particle i is proportional to wi

return Xt

The particle filtering algorithm is summarized in Table 3.2. Similar to the basic Bayes

filter, the particle filter involves a prediction step followed by a correction step. In the

prediction step, the particles are propagated forwards according to the state transition

model p(xt|xt−1). The resulting set of particles is an approximation of b̄el(xt). In addition,

a weight or importance factor is computed for each particle. The weight of a particle is

given by its observation likelihood p(zt|xt). Next, in the correction step, the observation is

incorporated by resampling the particles based on the computed weights: a new particle

set is created by drawing particles with replacement, in which the probability of a particle

being drawn is proportional to its weight. The new particle set contains the same number

of particles as the original particle set and is not weighted.

Figure 3.3 illustrates a simplistic example of the particle filtering algorithm in action.

Suppose we are tracking an object in 2-D space. Figure 3.3(a) shows the particle ap-

proximation of the belief of the object’s position at a particular time t − 1. The actual

position of the object is (2, 2) but there is some spread representing the uncertainty of the

localization. At time t, we wish to update the belief distribution. First, the particles are

propagated forwards according to a state transition model. Depending on the application,

the state transition model might be as simple as a constant velocity model, or it can be
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Figure 3.3: Illustrative example of the particle filtering algorithm (see text for details): (a)

initial particles at time t - 1; (b) particles after prediction using state transition model; (c)

particle weights based on observation likelihood; (d) final particles after weighted resam-

pling.
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Figure 3.4: Illustration of low-variance resampling, adapted from [49].

a more complex non-linear model. Figure 3.3(b) shows the updated particle set after the

prediction. The new observation zt is incorporated by assigning weights to the particles

and performing a weighted resampling. Figure 3.3(c) shows the observation zt and the re-

sulting weights that are assigned to the particles. Darker particles indicate higher weights.

Particles that are in closer agreement with the observation are more heavily weighted. Fig-

ure 3.3(d) illustrates the new particle set after resampling. This new particle set represents

the updated belief at time t.

The algorithm as discussed so far is the basic form of the particle filtering algorithm.

The implementation of the proposed method adopts a slightly extended version of the basic

algorithm in which low-variance resampling is performed. One of the inherent limitations

of any random sampling method is sampling variance, or sampling error: statistics derived

from the samples will vary slightly from the true statistics [49]. Repeated resampling, as

performed in each iteration or time step of the particle filtering algorithm, adds to the

sampling variance. Sampling variance can be reduced by using a low-variance sampling

method, such as the one summarized in Table 3.3. The idea is illustrated in Figure 3.4.

Instead of generating M numbers at random, a single random number is generated and

used to systematically cover the sample space, while still sampling particles with proba-

bility proportional to their weights. An additional advantage of this sampling method is

computational efficiency: the sampling of M particles requires only O(M) time.

The particle filtering algorithm and its variants have been applied successfully in a

variety of research domains, including in object tracking [21, 22, 31], as well as in robotics

for simultaneous localization and mapping [37, 38].
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Table 3.3: Low-variance resampling method for particle filtering [49]

Input: particle set X, weights W

Denote the number of particles in the particle set as M . Denote the weight of particle i

as wi

Sample r from the interval [0,M−1]

c = w1

i = 1

for m = 1 to M do

U = r + (m− 1)×M−1

while U > c do

i = i+ 1

c = c+ wi

end while

Add xi to the new particle set X ′

end for

return X ′
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3.4.2 Inference details

In the proposed method, the state xt at time t consists of the agent’s position st, speed vt,

current path segment e1
t , current path segment end position dt, and previous path segment

e0
t :

xt =
(
st, vt, e

1
t , dt, e

0
t

)T

(3.11)

Recall that a path segment is defined by a start region and an end region. The specific role

of the current path segment end position dt is discussed later in the description of the state

transition model, but intuitively it represents the location within the current path segment’s

end region to which the agent is predicted to be heading. Agent velocity is implicit given

the speed: following Dee and Hogg’s goal-based paradigm, the agent is assumed to travel

linearly between regions. This linearity assumption might seem restrictive at first glance,

but at least three reasons can be given for its validity. First, the turning points by definition

capture significant changes in direction; hence, travel between pairs of entry, turning, or exit

points should be reasonably linear. Second, transportation research suggests that shortest

distance and fewest turns are among the top path planning strategies for humans [10, 11].

Third, the incorporation of a process noise covariance in the state transition model accounts

for small deviations from linear travel.

The state transition model p(xt|xt−1) is defined as follows; a summary in flowchart form

can be found in Figure 3.5.

If the distance to the path segment end position dt−1 is greater than the speed vt−1,

the new position st is calculated by projecting the particle a distance of vt−1 towards

dt−1. Otherwise, the current path segment is completed and the next path segment is

sampled according to the path segment transition model, conditioned on the current and

previous path segments e1
t−1 and e0

t−1. Note that this sampling involves selecting both a

path segment and a path segment end position. The end position is sampled based on

the GMM component of the selected path segment’s end region. Hence, e1
t , e

0
t , and dt

are all updated. Any remaining speed is then used to project the particle towards dt.

When updating the position st in either case, random zero-mean Gaussian noise based on

a process noise covariance R is added to st, to account for deviations from the linear travel
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Figure 3.5: Summary flowchart of state transition model
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assumption.

The speed vt is sampled from the learned speed model conditioned on the current path

segment e1
t . Recall that the speed model specifies the mean and standard deviation of

travel speed for each path segment. The speed is sampled from the Gaussian distribution

with this mean and standard deviation.

Any state variables that are not explicitly changed as indicated above remain unmodi-

fied by the state transition.

The particle weights are assigned according to the observation likelihood function

p(zt|st) = N(0, Q), where Q is the measurement noise covariance. In the current im-

plementation, the measurement noise covariance is set empirically. The notation N(µ,Σ)

refers to the Gaussian probability distribution with mean µ and covariance Σ. The particles

are then resampled using the low-variance resampling method previously described.

An observed trajectory in progress is classified as unusual if the maximum observation

likelihood (or particle weight) in the particle set falls below a threshold. This threshold can

be adjusted to shift the balance between false negatives and false positives, and is varied

in the experiments to generate the Receiver Operator Characteristic (ROC) curves (more

details follow in Section 4.1).

Table 3.4 summarizes the proposed inference method as described above.

The inference is initialized as follows. The starting point of the trajectory is classified

into one of the entry regions according to the learned entry model. Specifically, a Maximum

a Posteriori (MAP) classification is performed on the starting point to determine the ap-

propriate mixture component in the entry GMM. A MAP classifier selects the most likely

class (in this case, a component of the entry GMM) given a data point. More formally, the

MAP classification rule can be stated as follows:

Assign data point x to class Ci iff P (Ci|x) > P (Cj|x) ∀j, i 6= j

Using Bayes’ rule, this condition is equivalent to p(x|Ci)P (Ci) > p(x|Cj)P (Cj) ∀j, i 6= j,

which can be readily evaluated according to the learned GMM.

To identify unusual entries, the Mahalanobis distance to the classified GMM component
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Table 3.4: An iteration of the proposed inference method using particle filtering

Inputs: particle set Xt−1, observation zt

for each particle xi
t−1 ∈ Xt−1 do

if |dt−1 − st−1| < vt−1 then

if e1
t−1 is an exit region then

st =∞

else

Sample e1
t ∼ p(e|e1

t−1, e
0
t−1)

Sample dt based on scene model and end region of e1
t

e0
t = e1

t−1

st = dt−1 + (dt − dt−1)/|dt − dt−1| × (vt−1 − |dt−1 − st−1|) + εR

end if

else

st = st−1 + (dt−1 − st−1)/|dt−1 − st−1| × vk−1 + εR

end if

Sample vt ∼ p(v|e1
t )

Calculate particle weight wi = p(zt|st) = N(zt : st, Q)

end for

Create Xt by performing low variance resampling (Table 3.3)

return Xt
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is also computed. The Mahalanobis distance, also known as the Generalized Euclidean

distance, is a distance measure that takes into account the shape of the cluster and is

defined by

d2
GED(x,m) = (x−m)TS−1(x−m) (3.12)

where m is the sample mean and S the sample covariance of the cluster. Intuitively, the

Mahalanobis distance is scaled based on the spread of the cluster as characterized by its

covariance. A Mahalanobis distance of 2, for example, may be interpreted as 2σ from the

cluster mean.

To enforce the spatial constraints of the entry regions, a trajectory is immediately

flagged as unusual if the Mahalanobis distance between the entry point and the MAP-

classified entry region exceeds 4 (i.e., the entry point is more than 4σ from the mean of

the MAP-classified entry GMM component). Otherwise, the particle set is created and uni-

formly initialized to e1 = (null, i), e0 = (null, null), d = (entry point), s = (entry point), v = ε

(where ε is a very small positive value). This initialization causes the particle filter to sam-

ple the path segments starting from the entry region in the first iteration.

If the trajectory is still classified as normal by its conclusion, then the exit point is also

checked for consistency with the spatial constraints of the exit regions. If the exit point

is not within a Mahalanobis distance of 4 of an exit region represented in the particle set,

then the trajectory classification is changed to unusual.

3.5 Summary

In summary, the proposed method learns context-specific patterns of normal behaviour

from training trajectories. A spatial scene model consisting of three GMMs is created:

one each for all entry, all turning, and all exit regions. BIC is used to determine an

appropriate number of Gaussian components in each GMM. Turning points are detected

using a curvature scale space corner detector. A transition model is learned to encode

statistics of travel between regions. During system operation, a probabilistic inference

method using particle filtering is used to efficiently maintain multiple hypotheses about
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the goals of the agents in the scene. This framework is used to classify trajectories in

progress, allowing unusual behaviour to be detected as it is occurring instead of only after

it has completed.
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Chapter 4

Experimental Results

The experimental validation of this thesis aims to resolve two main questions. First,

can the proposed learning approach achieve the same classification accuracy as the original

approach that uses a manually specified obstacle map? Second, can the goal-based method

provide good classification performance in comparison to traditional methods based on low-

level trajectory features?

The first question is addressed by validating the proposed method using Dee and Hogg’s

carpark dataset and comparing to prior results [11]. The second question is addressed

through experiments with Piciarelli et al.’s synthetic dataset [42] and Naftel and Khalid’s

real-world laboratory dataset [39]. Hence, all three datasets used in these experiments

are published by third-party researchers working on trajectory-based unusual behaviour

detection. The following subsections describe the experimental methodology and illustrate

the performance of the proposed method on the three datasets.

4.1 Methodology

The proposed method classifies observed trajectories as normal or unusual. In general, a

classifier can be validated by partitioning the data into two sets, and using one to train

the classifier and the other to test the classifier. In many practical real-world situations,

the amount of data is limited. For example, data collection may be expensive or the data
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of interest may occur infrequently. When data is limited, classifier performance can be

assessed using m-cross validation or the leave-one-out technique [13]. In m-cross validation,

m separate training and testing sets are generated from the data and used to train and test

the classifier. Results are averaged over the m cases. The leave-one-out method, also known

as the jack-knifing method, is the limiting case of m-cross validation in which m equals

the number of data points N . Each classifier is trained on N − 1 data points and tested

on one data point, and the results are averaged over the N cases. Leave-one-out is used in

the experiments with the two real-world datasets. The synthetic dataset comprises data

partitioned into large training and testing sets, so basic (1-cross) validation is appropriate

for those experiments.

The parameters of classification algorithms can often be adjusted to shift the balance

between false negatives and false positives. In many real-world situations, the cost of a

false negative may be different from the cost of a false positive. In the particular case of an

intelligent surveillance system, the cost of missing a suspiciously behaving individual may

be different from the cost of unnecessarily drawing the attention of the human operator. In

such situations, to simply minimize the probability of error is not appropriate. Rather, it is

more appropriate to characterize the trade-off between false negatives and false positives.

A standard technique to communicate this characterization is to use a Receiver Operating

Characteristic (ROC) curve. A ROC curve plots the probability of detection (true positive)

PD on the vertical axis against the probability of false alarm (false positive) PF on the

horizontal axis. Points on the ROC curve represent attainable (PF , PD) combinations. An

ideal classifier approaches the(PF , PD) = (0, 1) point representing no false alarms and 100%

probability of detection; a mediocre classifier approaches the diagonal (0, 0) to (1, 1). ROC

curves are used in the reporting of experimental results for all three datasets below.

4.2 Piciarelli et al.’s synthetic dataset [42]

Since instances of suspicious behaviour are uncommon in real-world data, synthetic trajec-

tory data are a good starting point for validating the proposed method. Experiments were
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conducted using the synthetic dataset published by Piciarelli et al. in their work applying

single-class SVM to detect unusual trajectories [42]. The objective of this set of experi-

ments is to verify that the proposed method can identify anomalies in sets of relatively

idealized trajectories.

Piciarelli et al.’s synthetic dataset contains training and testing sets for various com-

binations of the number of normal trajectory clusters (1 though 10) and the number of

unusual trajectories (1 through 10). Figure 3.2 in Section 3.2.5 previously showed several

sample training sets. The proposed algorithm is tested on 10 combinations, in which the

number of normal trajectory clusters is varied from 1 to 10 and the number of unusual

trajectories is kept fixed at the maximum 10. Since each combination is represented by 10

separate training and testing sets in the synthetic dataset, the proposed method is tested

on a total of 100 training and testing sets.

Figures 4.1 and 4.2 shows the ROC curves for the ten combinations. A direct compari-

son with Piciarelli et al.’s reported results is not strictly possible, as their single-class SVM

method includes a mechanism to detect and remove unusual trajectories from the training

set, whereas in these experiments only the normal trajectories are used in training. Never-

theless, to provide a general benchmark for performance, the experimental result reported

by Piciarelli et al. is indicated by an asterisk in the ROC plots. Recall that an ideal clas-

sification result approaches the (PF , PD) = (0, 1) point representing no false alarms and

100% probability of detection. As of the time of writing, no other papers appear to have

used this dataset for validation.

Overall, the proposed method produces very encouraging classification results. For

example, a detection rate of 95% can be achieved with the following false alarm rates: 0%,

0.2%, 0.1%, 1.5%, 0.3%, 0.1%, 0.7%, 0.3%, 0.2%, and 1.8%, respectively, for 1 to 10 normal

trajectory clusters.

The ROC curves show a trend of slight decline in classification performance as the

number of normal trajectory clusters increases. This trend is expected: as the range of

normal trajectories increases, synthetic trajectories generated from random parameters are

less likely to appear unusual. The result is a slight drop in the probability of detection. The
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Figure 4.1: ROC curves for Piciarelli et al.’s synthetic dataset [42], varying the number of

normal trajectory clusters from 1 to 6 (a-f, respectively).
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Figure 4.2: ROC curves for Piciarelli et al.’s synthetic dataset [42], varying the number of

normal trajectory clusters from 7 to 10 (a-d, respectively).
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Figure 4.3: Examples of false negatives in Piciarelli et al.’s synthetic dataset [42], with

two missed unusual trajectories highlighted in red and highly similar normal trajectory

clusters highlighted in yellow. Trajectory entry and exit points are indicated by blue and

red points, respectively.

same trend can be seen in the experimental results reported by Piciarelli et al. [42]. Figure

4.3 shows two examples of synthetic unusual trajectories (unusual according to ground

truth) that the proposed method misclassifies as normal due to their high similarity to many

normal trajectories. In each example, the misclassified unusual trajectory is highlighted in

red, and a highly similar cluster of normal trajectories is shown in yellow. Following the

colour conventions in Section 3.2, trajectory entry and exit points are indicated by blue

and red points, respectively.

4.3 Naftel and Khalid’s laboratory dataset [39]

Further validation of the proposed method was performed using the real-world dataset

developed by Naftel and Khalid [39]. The trajectories in Naftel and Khalid’s dataset are

derived from video of people walking around their laboratory. The dataset consists of

152 normal trajectories falling into four pre-planned underlying classes and eight unusual

trajectories. Although the trajectory classes are pre-planned, there is still significant spatial
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and temporal variation in the trajectories, including instances of loitering and sudden

changes in movement. Figure 4.4 shows the trajectories after pre-processing with a Kalman

filter. The first four subplots highlight the four pre-planned trajectory classes, and the fifth

subplot highlights the unusual trajectories. The objective of this set of experiments is to

validate the proposed method on a trajectory dataset derived from real-world surveillance

video but in a somewhat controlled environment.

The leave-one-out technique is applied to validate this dataset. Only the normal trajec-

tories are used in the training phase: as mentioned in Section 3.2, all training trajectories

are assumed to reflect normal behaviours.

Figure 4.5 shows the ROC curve for this dataset. The proposed method detects all

unusual trajectories with eight false positives (5% probability of false alarm). In compari-

son, Piciarelli et al. also validated their method on this dataset and reported detecting all

unusual trajectories with only two false positives [42]. Naftel and Khalid do not explicitly

report the number of false positives. Therefore, in comparison, the proposed method has a

higher tendency to issue false alarms on this dataset. However, the proposed method can

offer at least two advantages. First, the proposed method is able to evaluate trajectories

in progress, enabling suspicious behaviour to be detected as it is occurring instead of only

after it has completed: both Piciarelli et al.’s method and Naftel and Khalid’s method

operate on complete trajectories. Second, the proposed method’s goal-based approach al-

lows for more intuitive natural language description of observed behaviours (as discussed

in Chapter 3.1). For example, an individual in the scene might be described as “walking

from the main entrance towards the work station”.

4.4 Dee and Hogg’s carpark dataset [9, 10, 11]

Since the proposed method is built on the foundation works of Dee and Hogg, validation

using the carpark dataset used by Dee and Hogg in their experiments is appropriate.

The carpark dataset is a challenging real-world dataset in which, in contrast to Naftel

and Khalid’s laboratory dataset, the normal trajectories are completely unscripted. The

44



50 100 150 200 250 300

100

150

200

250

50 100 150 200 250 300

100

150

200

250

50 100 150 200 250 300

100

150

200

250

50 100 150 200 250 300

100

150

200

250

50 100 150 200 250 300

100

150

200

250

Figure 4.4: Overlays of the trajectories in Naftel and Khalid’s laboratory dataset [39];

the top four subplots highlight the pre-planned trajectory classes and the fifth subplot

highlights the unusual trajectories.
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Figure 4.5: ROC curve for Naftel and Khalid’s laboratory dataset [39].

dataset consists of 262 normal trajectories from surveillance video captured over an hour

and six trajectories of volunteers instructed to “behave in a suspicious fashion” though

without any knowledge of Dee and Hogg’s goal-based method of analysis [11]. Ground

plane coordinates are used. The objective of this set of experiments is to validate the

proposed method on a trajectory dataset derived from challenging real-world surveillance

video that has also been used in the development of the foundation.

The trajectories are subsampled at 3 frames per second and as in Dee and Hogg’s

experiments, smoothed using a Kalman filter to reduce the effects of noise. Manual editing

of trajectories to correct tracking errors was not performed as in [9, 10, 11]. Figure 4.6

shows the filtered carpark trajectories in the ground plane. The unusual trajectories are

highlighted in red. Similar to the Naftel and Khalid dataset, the leave-one-out technique

is applied and only the normal trajectories are used in the training phase.

Figure 4.7 shows the ROC curve for this dataset. Besides Dee and Hogg, the carpark

dataset has also been used for experimental validation by Sillito and Fisher [47]. Sillito

and Fisher’s work was described earlier in Section 2.1. The proposed method detects all

unusual trajectories with 22% probability of false alarm, which is comparable to both Dee

and Hogg’s method [11] and Sillito and Fisher’s method [47] (approximately 25% and 24%,

respectively).
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Figure 4.6: Overlay of the trajectories in Dee and Hogg’s carpark dataset [9, 10, 11], with

the unusual trajectories highlighted in red.
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Figure 4.7: ROC curve for Dee and Hogg’s carpark dataset [9, 10, 11].

4.5 Discussion and limitations

The results of the carpark experiments indicate that the performance of the classifier de-

pends on the completeness of the training set. In many cases, the false positives correspond

to trajectories that do actually appear novel with respect to the rest of the carpark dataset.

A human might view the agent’s trajectory as normal based on prior domain knowledge

about how people generally behave in carparks or similar outdoor settings. However, an

intelligent surveillance system has to build most of this domain knowledge from scratch

using training samples. If the training samples are not sufficiently representative of the

types of behaviour that should be considered normal, then the system is likely to issue false

alarms. This limitation pertains to any machine learning or pattern recognition algorithm

that uses exemplar-based learning. The collection of more training data is a straightfor-

ward strategy to mitigate this risk. In the case of intelligent surveillance, this strategy is

practical assuming the cost of monitoring the scene using a tracking algorithm does not

increase significantly with duration. The assumption is reasonable since tracking algo-

rithms do not normally require human intervention beyond initialization. In the general

case, the strategy may not be practical when obtaining training samples is expensive. A

second way to address the limitation would be to encode additional domain knowledge by
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incorporating a rule-based knowledge base, as in an expert system [44]. For example, in

the context of intelligent surveillance, a heuristic rule based on domain knowledge might

be to issue an alarm if groups of agents suddenly stop, or if an agent loiters in front of a

bank machine [12].

One of the limitations of any trajectory-based method for unusual behaviour detection

is that some forms of suspicious behaviour cannot be detected using trajectory features

alone. Events of surveillance interest such as theft or abandoned baggage may not be

accompanied by overall unusual trajectories. Detecting these events or actions may require

other techniques, ranging from simple background subtraction [48] to specialized human

action recognition methods [3]. Trajectory analysis can still contribute in many cases. For

example, a common pattern seen with theft is that the perpetrator will approach the target,

circle or examine it, and then retreat before striking [12]. A robust intelligent surveillance

system will likely require the fusion of both trajectory and action analyses.

Although not included in this work, some methods in the literature incorporate stopping

regions in their scene model [33]. In many surveillance settings, constructing a map of

normal or expected stopping regions may provide useful scene knowledge. For instance,

in an outdoor courtyard it may be expected for individuals to sit down at a fountain or

on benches. Temporal constraints may be applicable: an individual waiting at a train

platform for excessive time - even after several trains have passed - should probably be

flagged as suspicious [12].

Goal-based trajectory analysis has applications beyond intelligent surveillance. Liao et

al.’s work [29, 30] demonstrates the broader applicability of this research in such areas as

geomatics and intelligent transportation systems. Liao et al. applied a geographic goal-

based approach to analyze user trajectories at the city scale. Agent location is estimated

using portable GPS and motion is constrained to the streets in a street map. Probabilistic

inference is performed using Rao-Blackwellized particle filtering. The authors envision

their work to be applied in personal guidance systems and just-in-time transportation

information services.
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Chapter 5

Conclusion and Future Work

Many traditional methods for trajectory-based unusual behaviour detection rely on low-

level features such as flow vectors or control points. In contrast, Dee and Hogg’s goal-

based approach models individuals in the scene as intelligent agents with intentionality,

and detects unusual behaviour by evaluating the explicability of the agent’s trajectory with

respect to known spatial goals. This thesis advances the goal-based framework in three

main ways: the spatial scene model is learned in a training phase; a region transition model

is learned to incorporate statistics of movement between spatial regions; and trajectories

in progress are classified in a probabilistic framework using particle filtering. Experimental

results on three datasets published by third-party researchers in trajectory-based unusual

behaviour detection demonstrate the validity of the proposed approach.

In the present implementation of this thesis, training trajectories are assumed to cor-

respond to normal behaviour. As future work it would be valuable to investigate methods

for automatically detecting and removing outlier trajectories from the training set. As

discussed in Section 4.5, the incorporation of stopping regions in the scene model can also

be investigated. Finally, the fusion of trajectory and action recognition analyses is an

important research direction in the long term for robust behaviour analysis in intelligent

surveillance systems.
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