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Abstract

Image noise reduction, or denoising, is an active area of research, although many

of the techniques cited in the literature mainly target additive white noise. With

an emphasis on signal-dependent noise, this thesis presents the General Adaptive

Monte Carlo Bayesian Image Denoising (GAMBID) algorithm, a model-free ap-

proach based on random sampling. Testing is conducted on synthetic images with

two different signal-dependent noise types as well as on real synthetic aperture radar

and ultrasound images. Results show that GAMBID can achieve state-of-the-art

performance, but suffers from some limitations in dealing with textures and fine

low-contrast features. These aspects can by addressed in future iterations when

GAMBID is expanded to become a versatile denoising framework.
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Chapter 1

Introduction

Images are a natural way for humans to think about spatial information, and dig-

ital images are a natural representation of spatial data. Like all recorded signals,

digital images are often corrupted by noise, increasing the difficulty with which

human observers or computer algorithms are able to extract the useful underlying

information. Although noise can be mitigated by improved image acquisition hard-

ware, in some modalities, such as coherent imaging, the noise is an inherent part

of the imaging process.

However, information content may be preserved even at high noise levels, as

can be seen in Figure 1.1, which shows images corrupted by correlated speckle

noise. With some effort, one can still discern the structural details in the presence

of noise. Thus, the goal of noise filtering, or image denoising, is to exploit the

available information in the observed image to obtain an estimate of the noise-free

signal.

There are two main purposes for obtaining this estimate. First, the noise filter-

ing can be performed as a pre-processing step for further machine analysis, such as

scene segmentation, object detection, or visual tracking. Secondly, denoised images

are easier to interpret by human observers, aiding in tasks such as classifying ice

types in SAR images, or assessing arterial disease in ultrasound images.

The topic of image denoising is an active area of research in image processing
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(a) (b)

(c)

Figure 1.1: Examples of speckle. (a) Synthetic aperture radar image of sea ice

(source: Canadian Ice Service). (b) Ultrasound image of fetus (source: DHD mul-

timedia gallery [1]). (c) Confocal laser scan of human retina (source: Bueno et

al. [2]).
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and computer vision. Many techniques have been proposed, ranging from spatial

filters [3, 4, 5, 6], frequency-domain filters [7, 8], to multiscale wavelet filters [9, 10].

Many of the popular methods work under the assumption of signal-independent

additive noise. However, some imaging modalities give rise to noise models that

are signal-dependent. This is especially true in coherent imaging systems, where

the images are characterized by an optical phenomenon known as speckle [11]. Fig-

ure 1.1 shows examples of speckle images, produced by synthetic aperture radar [12],

ultrasound [13], and confocal laser scanning ophthalmoscopy [2].

We propose a versatile statistical algorithm for image denoising technique called

General Adaptive Monte Carlo Bayesian Image Denoising (GAMBID). The idea

behind GAMBID is to produce a Bayesian least squares estimate of the signal,

assuming that the posterior probability distribution of a pixel is conditioned around

the observed values in its spatial neighbourhood. This conditional posterior density

is approximated by Monte Carlo sampling of the other image pixels and assigning

an appropriate weight to each sample. The advantage of this model-free approach

is its flexibility to various noise models.

This thesis is structured as follows. First, the background and literature review

are given in Chapter 2, where the image denoising problem is described, noise mod-

els for imaging systems are introduced, and state-of-the-art denoising methods are

described with an emphasis on signal-dependent noise. Next, Chapter 3 describes a

Markov model of the noisy image and the development of the GAMBID algorithm.

Test results on synthetic noisy images and real images are described in Chapter 4.

Finally, conclusions and recommendations for future work are given in Chapter 5.
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Chapter 2

Background

2.1 Image Denoising Problem

The image denoising problem is formulated as follows. Let L be a discrete rectan-

gular lattice and S be the set of indices into the lattice. Individual pixel values are

indexed by x = [i j]T ∈ S. Let the ideal image be r and the observed intensity be

the random field I, both defined on the lattice L. The goal of image denoising is

to obtain an estimate r̂ of the ideal image r from I. This formulation is illustrated

in Figure 2.1 and will be used in the remainder of thesis. The distribution of I

depends on the specifics of the imaging system, and some models are described in

Section 2.2. Current denoising methods, that is, methods to obtain an estimate r̂,

are described in Section 2.3.

2.2 Data Models

The characteristics of the image noise is a function of the imaging modality. Based

on the underlying image formation process, each modality is described by a different

data model that includes statistical properties of the noise.
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Noise Process

Denoising

Ideal image
r

Observed intensity
I

Noise-free estimate
r̂

r ( x )

Figure 2.1: Problem formulation and notation. The goal is to obtain the denoised

estimate r̂ from the observed image I, whose distribution is conditioned on the

noise-free image r. All the images are defined on a lattice indexed by x = [i j]T .
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2.2.1 Electro-optical

The most common type of electro-optical imaging technology is the charged-couple

device (CCD) [14]. These sensors are governed by three principal noise sources:

1. shot noise: caused by a finite number of photons hitting the sensor,

2. dark/obscurity noise: spurious photons generated by the circuit, and

3. read-out noise: electronic noise.

These components are additive, and gives the model for image formation in CCDs [3]

I = r + c
√
rn0 + n1 + n2, (2.1)

where n0, n1, and n2 are signal-independent noise processes and c is a constant.

The overall noise is signal-dependent due to the c
√
rn0 term. An alternative model

for infrared clutter has been proposed based on both scene and noise statistics

I = r · [nm ∗ h] + na (2.2)

where the multiplicative noise term nm is gamma-distributed and na is a zero-mean

Gaussian process [15].

2.2.2 Synthetic Aperture Radar (SAR)

SAR images are formed from the backscattered signal from an electromagnetic wave.

These images are characterized by a noise-like phenomenon known as speckle, which

arises from the summation of random phases due to presence of multiple scatters

in each resolution cell [12]. Although speckle is a real electromagnetic quality that

is not technically noise, the observed intensity (power) of a SAR image can be

modelled by a multiplicative noise model

I = [r · n] ∗ h (2.3)

where r is a measure of the average reflectivity of the resolution cell, n is a gamma-

distributed random process, and h is the point-spread function (PSF) of the SAR

system.
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2.2.3 Ultrasound

Sonograms are generated by measuring the backscattered echo from an ultrasound

signal. Like SAR, ultrasound images exhibit a speckle pattern. The statistical

model is actually identical to single-look SAR amplitude signals. Although some

sources use a product model (Equation 2.3) [13], this is not strictly accurate, as the

signal amplitude for fully-developed speckle follows a Rayleigh distribution given

by the conditional density [16]

p(I|r) =
I

r
exp

(
− I2

2r2

)
, (2.4)

with the noise variance is equal to 4−π
2
r2.

2.2.4 Magnetic resonance imaging (MRI)

The noise characteristics of the MR signal are Gaussian. The complex MR image

is generated by the Fourier transform of the data preserving the Gaussian charac-

teristics. To avoid phase artifacts, the magnitude image is used and the phase is

discarded. It can be shown that Gaussian white noise in the real and imaginary

components give rise to a Rice distribution in the magnitude image I [17]

p(I|r) =
I

σ2
exp

[
−I + r2

2σ2

]
J0

[
r · I
σ2

]
(2.5)

where J0 is the Bessel function of the first kind and σ is the standard deviation of

the Gaussian noise in the real and imaginary components.

2.3 State-of-the-Art Denoising Methods

Image denoising is one of the fundamental challenges in image processing and com-

puter vision, since many of the image noise sources, both intrinsic and extrinsic,

cannot be avoided. Thus, many denoising algorithms have been developed to re-

cover the noise-free image from a noisy input. The methods described in this
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section can be categorized into two main types. The first type of denoising filters

are obtained under the assumption that noise is additive and signal-independent

(typically Gaussian). An overview of the methods in this category is given in the

next section. The second type assume signal-dependent noise. The applications for

the second type are of greater relevance to this work and will be described in more

detail in the remainder of this section.

2.3.1 Additive noise reduction

Additive noise suppression methods can be further broken down into two classes.

The first class, transform domain methods, perform noise reduction based on the

transform domain coefficients. Methods in this class include Wiener filtering [8],

collaborative Wiener filtering [7], Gaussian scale mixture denoising [10], and wavelet

shrinkage [18]. The second class, spatial domain methods, utilize spatial informa-

tion redundancy. Methods in this class include Gaussian filtering [19], anisotropic

filtering [6], bilateral filtering [4], and nonlocal means [3].

2.3.2 Signal-dependent noise reduction

Adaptive local statistics filter

A widely-used class of speckle reduction filters perform estimation based on the

local statistics within a sliding window. These include local linear minimum mean

squared error (LLMMSE) and Bayesian filters.

The LLMMSE approach was employed in the filters proposed by Lee [20, 21],

Frost [22] et al., and Kuan et al. [5]. The estimate is obtained from the first-order

Taylor expansion of the local mean Ī, that is

r̂LLMMSE = Ī + k(I − Ī), (2.6)

where k is chosen based on the local statistics (mean and variance) to minimize the

mean squared-error between the estimate and the noise-free image.
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These LLMMSE filters are derived according to the scene and noise models. The

Lee filter assumes that both the scene and the speckle are spatially uncorrelated.

The method proposed by Frost incorporates correlation properties of the speckle

based on the system PSF. The Kuan filter further incorporates correlation prop-

erties of both the scene and the speckle. Since only the local mean and variances

are considered, all three filters make an implicit assumption that the image signal

is Gaussian-distributed. To address the tradeoff between speckle attenuation and

feature preservation, Lopes et al. [23] proposed an enhanced version of the Lee filter

that classifies each pixel as belonging to a homogeneous region, textured region, or

point target. Although motivated by signal-dependent noise, LLMMSE filters can

also formulated for additive noise or a combination of additive and signal-dependent

noise.

The product model from Equation 2.3 can be explicitly used to derive local

Bayesian estimators, where non-Gaussian forms for the scene and noise processes

can be assumed. These include Γ-MAP [5, 24], suitable for image with gamma-

distributed speckle (e.g. SAR), and Rayleigh maximum likelihood [13], suitable for

signals image that can be modelled as Rayleigh processes (e.g. ultrasound signal in

Equation 2.4).

Median filter

Median filters are another popular method for speckle suppression. However, since

median filtering tends to suppress image details as well as speckle, adaptive median

filtering methods based on local variation are usually employed [25].

Anisotropic diffusion

Anisotropic diffusion is an image smoothing and denoising approach based on the

partial differential equation [26] ∂I
∂t

= div [c(‖∇I‖) · ∇I]

I(t = 0) = I0
(2.7)

9



where div denotes the divergence operator, c(·) is the diffusion coefficient, and I0 is

the initial image. The diffusion coefficient is chosen to promote smoothing within

regions inhibit smoothing across edges. Multiple iterations of the PDE can be

applied until the desired level of smoothing is achieved. Linking this approach with

the LLMMSE filters of Lee and Frost, speckle-reducing anisotropic diffusion was

developed by Yu and Acton [27].

Multiscale denoising

Since image features and noise are usually prominent in different scales, various

wavelet domain despeckling methods have been proposed. Achim et al. modelled

the wavelet coefficients of speckled images using heavy-tailed distributions, per-

formed denoising using Bayesian shrinkage [9]. The multiscale method employed

by Yue et al. is iterative and noise is reduced by diffusion of the wavelet co-

efficients [28]. Another related method performs classification based on wavelet

coefficients to derive the statistics of the image (GenLik) [29], which has been to

shown to work on both speckle and Rician noise (with bias correction as a separate

step).

2.4 Rationale

A large body of research currently exists concerning the filtering of additive white

noise. These methods, for the most part, provide excellent results when the additive

assumption holds.

The issue becomes more complex when discussing signal-dependent noise sup-

pression, as the noise characteristics vary greatly depending on the image modality.

Firstly, the data models for ultrasound (Rayleigh) and MR (Rice) have signal-

dependent means. Consequently, the denoising methods described within this chap-

ter will give a biased estimate of the noise-free image, with the exception of Rayleigh

maximum likelihood, which explicitly takes the model into account. Secondly, while

10



some denoising methods employ specific data models (such as the aforementioned

Rayleigh maximum likelihood), others depend on the signal being some form of

multiplicative noise (e.g, SRAD). Other methods have been shown to be appro-

priate for a variety of different noise types (e.g. GenLik, Lee). The focus of this

work will be on this latter class of signal-dependent noise because it allows greater

opportunities for advancements in the field.

2.5 Objectives

This work proposes a versatile denoising method called General Adaptive Monte-

Carlo Bayesian Image Denoising (GAMBID). The goal of GAMBID is to provide

a denoising method that relaxes some of the modelling assumptions (e.g. Rayleigh

or gamma-distributed noise, purely multiplicative or additive noise). Hence, we

wish to show that GAMBID can achieve state-of-the-art denoising performance

in a variety of signal-dependent noise cases as compared to other current methods.

This performance is evaluated objectively on images with artificial noise of different

types: (1) pure speckle following the model for SAR data in Equation 2.3; and (2)

combined speckle and additive noise following the proposed model for infrared data

in Equation 2.1. In addition, the performance will be evaluated subjectively on real

SAR and ultrasound images. For the purposes of the the evaluation, the bias in

the ultrasound estimates are ignored. In practice, the bias can be corrected as a

separate step.

11



Chapter 3

General Adaptive Monte Carlo

Bayesian Image Denoising

3.1 Overview

This thesis proposes a new non-local spatial denoising technique based on Monte

Carlo estimation, called GAMBID. Since the method makes only weak assumptions

about the underlying signal and noise models, it is well-suited to handle signal-

dependent noise. The algorithm has three main steps, performed for each pixel of

the image:

1. For the target pixel, sample pixels and their neighbourhoods are drawn at

random.

2. Each sample is given an importance weight.

3. A posterior density estimate is generated from all the samples and their re-

spective weights, and a Bayesian least-squares estimate for the target pixel is

obtained through weighted averaging.

An overview of the GAMBID algorithm is shown in Figure 3.1. A detailed devel-

opment of the algorithm is given in the following sections.
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Target pixel

Sample pixels/neighbourhoods

1. Sampling

3. Estimation

I (x) r (x)

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

Wi

2. Weighting ^

Figure 3.1: Overview of the GAMBID algorithm, where the intensity of the target

pixel is to be estimated. 1. Sample pixels and their neighbourhoods are drawn at

random. 2. Each sample is given an importance weight. 3. A posterior density

estimate is generated from all the samples and their respective weights, and a

Bayesian least-squares estimate is obtained through weighted averaging. (Although

this figure illustrates the process for one pixel, the full noisy and denoised images

are shown.)
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3.2 Bayesian Framework

Let xc be the target pixel to be estimated and N be the set of neighbouring indices.

For notational simplicity we will use r and r̂ refer to the ideal and estimated values

at xc respectively. Let I = {I(x),x ∈ N} be the vector of intensity values in a

neighbourhood around xc, where N is assumed to be contiguous and symmetric

about xc.

First, the image is modelled as a hidden Markov process, in which the un-

observed state (the noise-free value) at a pixel is conditionally dependent on the

observed intensity neighbourhood.

p(r) = p(r|I). (3.1)

Next, we formulate the noise filtering as a Bayesian least squares problem:

r̂ = arg min
r̂

{
E[(r̂ − r)2|I]

}
(3.2)

Performing this minimization (details given in Appendix A), we get

r̂ =

∫
rp(r|I) dr = E [r|I] . (3.3)

Thus, the Bayesian least squares estimate is the expected intensity value given its

neighbourhood intensities.

3.3 Posterior Estimation via Sampling

One possible approach is to assume the form of p(r|I) (e.g. gamma-distributed

neighbourhood model), obtain the maximum likelihood estimate of the parameters,

and proceed with the integration [12]. However, we may not wish to assume a

distribution given the non-stationary statistics of many images.

This thesis proposes a non-parametric estimator in which the form of the pos-

terior p(r|I) is unknown, and E [r|I] is estimated using an adaptive Monte Carlo

14



technique, made possible by exploiting the high level of information redundancy

found in most images.

The first central assumption is that the maximum likelihood estimate of a single

pixel’s true value is the observed intensity at that location, so we let

r̂∗ = I. (3.4)

The assumption holds in cases where E[I] = r, such as in SAR and CCD images.

Otherwise, we will obtain a biased estimate. In the cases where the assumption

breaks down (e.g. MRI), the bias must be corrected using an explicit noise model.

Next, we draw M random indices from the image lattice, ξ1, ..., ξM , with inten-

sity values r̂∗1, ..., r̂
∗
M and neighbourhood intensities I1, ..., IM . These values comprise

samples drawn from a (rough) posterior estimate p∗(r|I). The obvious limitation

of this density estimate is that the sample neighbourhoods may not correspond

to the target neighbourhood. Thus, to refine the density estimate, each sample is

assigned a weight Wi proportional to the likelihood that it is drawn from the actual

posterior p(r|I). The method for determining the weights is discussed in detail the

next section.

The Monte Carlo estimate of the posterior distribution is composed of a weighted

Dirac delta function located at each intensity sample

p̂MC(r|I) =

∑M
i=1Wiδ(r − r̂∗i )∑M

i=1Wi

. (3.5)

Evaluating Equation 3.3 substituting p̂MC(r|I) for p(r|I), we get

r̂MC =

∫
rp̂MC(r|I) dr =

∑M
i=1Wir̂

∗
i∑M

i=1Wi

, (3.6)

using the fact that δ(r − r̂∗) = 1 only when r = r̂∗.

3.4 Sample Weighting

We wish to weight the sample given by the centre intensity r̂∗i given the neigh-

bourhood intensities Ii proportional to the likelihood that it belongs to the same

15



distribution as the target pixel

Wi ∝ P (r̂∗i ∼ p(r|I)) . (3.7)

We use the squared difference between two intensity values ε = |I1 − I2|2 as

the similarity measure. Although pε(ε) depends on the distribution of the intensity

values, we make the second major assumption that ε follows a negative exponential

distribution

pε(ε) =
1

β
e−βε, ε ≥ 0 (3.8)

which can be shown empirically to give reasonable results.

Extending upon this, for two neighbourhoods I1 and I2 each containing N pixels,

the likelihood for the set of pairwise intensity differences is given by

p(ε1, ε2, ..., εN) =
N∏
t=1

1

β
exp
{
−βεt

}
=

1

βN
exp
{ N∑
t=1

−βεt
}

=
1

βN
exp
{
−β

N∑
t=1

|I1(t)− I2(t)|2
}
. (3.9)

Setting the weight of each sample Wi to be equal to the above likelihood for the

target and sample neighbourhoods, it becomes a Gibbs measure [30]

Wi =
1

Z
exp
{
−βΦ(I, Ii)

}
or

Wi =
1

Z
exp
{
−Φ(I, Ii)

η2

}
, (3.10)

where η is a smoothing factor and Z is a normalizing factor. As was shown in

the posterior estimation step in Equation 3.5, the value of Z is does not affect the

outcome because it is cancelled out. The “energy” function

Φ(I, Ii) =
N∑
t=1

|I(t)− Ii(t)|2 (3.11)
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is a sum of squared differences (SSD) of pixel intensities between the target neigh-

bourhood and the sample neighbourhood.

Figure 3.2 gives an example of the posterior estimates using this weighting

scheme. The synthetic image in the centre has intensities modelled as, clockwise

from top-left, gamma, Gaussian, exponential, and uniform random processes. The

yellow squares denote 100 randomly sampled pixels, and the red squares denote the

locations for which the estimates were obtained. The four plots show the estimated

posterior density p̂MC(r|I) (vertical bars) overlayed with the ideal pdf at each of

these locations. While the estimates are not perfect, they manage to capture the

general characteristics of the ideal pdfs, such as the mean and overall shape.

Figure 3.3 demonstrates how the weighting scheme favours pixels with similar

neighbourhoods, thereby allowing for nonlocal sampling from larger spaces while

preserving the features. The yellow squares denote the randomly sampled pixels,

and the red squares denote the locations at which the weights were calculated. The

blue bars in the bottom two portions show the weights Wi at each sample pixel

location. In the left case, the sample pixel resides in a homogeneous area, so all

other samples in that area are given relatively high weights. In the right case, the

sample pixel is on an edge, so other pixel samples on the same edge are given the

highest weights.

3.5 Implementation

The GAMBID algorithm is relatively straightforward to implement directly from

Equations 3.6 and 3.10. The smoothing parameter η is chosen based on the desired

amount of smoothing, and should be proportional to the noise level. In practice,

the noise standard deviation (for constant SNR) or the coefficient of variation (for

multiplicative noise) are found to be effective choices for η. The neighbourhoods

N are 9× 9 centred at the target pixel. The samples are generated from a uniform

distribution in a 21× 21 pixel sample space around each pixel, with a maximum of
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Figure 3.2: Example of posterior distribution estimates. For each of the four inten-

sity regions, the set of sample pixels indicated by the yellow markers are used to

generate impulse-based estimated posterior density functions. The dotted red lines

plot the ideal continuous distribution functions.
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Figure 3.3: Sample weights as function of pixel location. Top: Synthetic image

with sampled pixels in yellow. Bottom row: sample weights Wi. In the left case,

the sample pixel (red) resides in a homogeneous area, so all other samples in that

area are given relatively high weights. In the right case, the sample pixel is on an

edge, so other pixel samples on the same edge are given the highest weights.
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M ≤ 200 unique samples.

With a square image of size p×p, and using square n×n neighbourhoods and a

maximum of M samples per pixel, the complexity of GAMBID is O(p2n2M). This

is significantly more complex than the popular LLMMSE filters, which are O(p2n).
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Chapter 4

Experimental Results

4.1 Testing Methodology

The proposed GAMBID is demonstrated to be a versatile denoising method that

can achieve state-of-the-art performance in comparison to existing methods under

different signal-dependent noise conditions. Firstly, the performance is evaluated

objectively using synthetic images. Two types of simulated noise are tested:

• Type I: Multiplicative gamma-distributed noise, which simulates cases where

the image is dominated by speckle-like noise sources (e.g. SAR, ultrasound,

and other coherent imaging).

• Type II: Combined multiplicative and additive noise, which simulates cases

where multiple different noise sources are present (e.g. electro-optical mea-

surements).

Secondly, real SAR and ultrasound images are evaluated. The difficulty lies in a

lack of ground truth, so objective measures are impossible. Thus, these images are

evaluated in a subjective visual manner based on the level of noise reduction and

preservation of perceptual details.
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Table 4.1: Tested denoising algorithms

Name Type Data model

Lee filter [20,

24]

Local statistics Multiplicative or combined

additive and multiplicative

noise (Gaussian white)

Γ-MAP [5] Local statistics Gamma distributed noise

SRAD [27] Partial differential equation Multiplicative noise

BM3D [7] Transform domain filtering Additive white noise

GenLik [29] Wavelet domain filtering General

GAMBID Stochastic Bayesian least squares General

The denoising algorithms tested comprise a cross-section of current methods,

listed in Table 4.1. The state-of-the-art additive noise suppression algorithm is

known to be collaborative Wiener filtering (BM3D) [7]. Although BM3D is not

theoretically justified for signal-dependent noise filtering, it as been applied suc-

cessfully in practical applications to speckled images [31]. From the LLMMSE

filters, the enhanced Lee filter [23] and the Lee filter [20] for combined additive

and multiplicative noise were chosen. Other tested methods for reducing signal-

dependent noise are Γ-MAP [5] and anisotropic diffusion (SRAD) [27]. Lastly, the

wavelet domain general likelihood method (GenLik) [29] was tested.

4.1.1 Parameter selection

To mimic operational conditions where the noise properties of the image are un-

known, some filter parameters are estimated from the noisy image. The Lee,

Gamma-MAP, and SRAD filters require as a parameter the number of looks L =

Ī2/σ2
I , where Ī is the local mean and σ2

I is the local variance. These values are

estimated by manually selecting a relatively homogeneous region in the image. The

BM3D method requires the noise standard deviation, so the local standard devi-

ation in the aforementioned region is used. GAMBID’s smoothing parameter η is
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Table 4.2: Algorithm parameters

Parameters Selection

Lee filter
window size 5× 5

number of looks Ī2/σ2
I from homogeneous region

Γ-MAP
window size 5× 5

number of looks Ī2/σ2
I from homogeneous region

SRAD

number of iterations variable (until convergence)

timestep 0.5

number of looks Ī2/σ2
I from homogeneous region

BM3D noise standard deviation σI from homogeneous region

GenLik window size 5× 5

GAMBID smoothing factor β CV 2 in homogeneous region

set to the squared coefficient of variation CV 2 = 1/L = σ2
I/Ī

2. These and any

additional parameters are listed in Table 4.2.

4.1.2 Synthetic images

Test images

Synthetic noisy images are generated according to the noise model containing cor-

related multiplicative noise and white Gaussian additive noise

I = [r · nmult] ∗ h+ nadd, (4.1)

where r is a noise-free reference image, and nmult is an uncorrelated gamma process

p(nmult) =
LLnL−1

mult

(L− 1)!
exp [−Lnmult] . (4.2)

The convolution kernel h used is a 2D Gaussian function simulating the system

point-spread function (PSF). The level of multiplicative noise is controlled by the

number of looks L, where a higher number of looks produces lower noise variance.
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Table 4.3: Tested noise levels

Looks L Additive noise σadd

Type I

N1 16 0

N2 8 0

N3 4 0

N4 2 0

Type II

N5 4 0.01

N6 4 0.05

N7 4 0.1

N8 4 0.2

nadd is a white zero-mean Gaussian process with standard deviation σadd. Using this

model, two types of noisy images are generated. Type I contains multiplicative noise

only, simulating images dominated by speckle (where σadd = 0) for L = 16, 8, 4, 2.

Type II contains a combination of multiplicative and additive noise where L = 4

and σadd = 0.01, 0.05, 0.1, 0.2. These are listed in Table 4.3.

The reference images are chosen to test two scenarios present in remote sens-

ing, shown in Figure 4.1. The first image, “Texture”, is a mosaic of four textures

previously used as the segmentation benchmark T4 by Qin and Clausi [32]. The

textures are originals or composites of images from the Brodatz set [33]. This image

is generated using, clockwise from top-left, D5, 0.5*D8 + 0.5*D84, D84 and D921.

The second image, “Structure”, consists of homogenous areas of constant reflectiv-

ity, where the features of interest are structural details in the form of boundaries

(edges) and thin elements. The dimensions of both reference images are 512× 512

pixels.

The reference images are grey level images in the range [0, 255]. However, the

long tail of the gamma-distributed noise will result in many values exceeding 255.

The noisy test images will have increased dynamic range compared to the original

1The D* refers to the numbering system used in the Brodatz album.
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Figure 4.1: Reference images (512× 512) used in synthetic noise tests. Left: “Tex-

ture”. Right: “Structure”.

and are processed without clipping. To make visual comparison to the reference

images easier and to maintain the contrast, the grey value mapping in the printed

images is in the original [0, 255], where saturating values are clipped.

Evaluation metrics

The synthetic images provide ground truth with which we can evaluate denoising

performance under two main criteria:

1. Fidelity to the original signal as measured by the peak signal-to-noise ratio

(PSNR)

PSNR = 10 log10

(
MAX2

I

MSE

)
, (4.3)

where

MSE =
1

|S|
∑
x∈S

[r(x)− r̂(x)]2 , (4.4)

MAXI = 255 for 8-bit greyscale images, and |S| is the total number of pixels

in the image.

2. Visual quality as measured by the structural similarity measure (SSIM) [34],

which is sensitive to the distortions that are significant to human perception.

25



4.1.3 Real images

Two sets of real speckled images are used. The first consists of RADARSAT-2

synthetic aperture radar images of arctic sea ice. These two images, denoted by

SAR1 and SAR2, measure 1209×865 and 599×635 respectively and are provided by

the Canadian Ice Service. These images are assumed to contain some form of speckle

noise like all SAR images, although the actual noise model is unknown, and the

clutter is most likely a combination of fluctuations in the reflectivity (an underlying

texture) as well as noise [12]. The second set consists of two publicly-available

medical ultrasound images obtained from the DHD multimedia gallery [1], denoted

by “Embryo” and “Prostate”, and measure 394×454 and 430×288 respectively. The

ultrasound images contain highly-correlated noise due to the log-polar transform

used to rectify them for display.

Since there are no noise-free reference images, the metrics listed in Section 4.1.2

cannot be used. Thus, these are evaluated on a subjective visual basis. The subjec-

tive visual quality is based on the amount of noise attenuation and preservation of

structural information. Since the SAR images follow a multiplicative noise model,

we can also examine the noise field estimate n̂mult = I/r̂, which is ideally indepen-

dent of the underlying reflectivity, meaning that it should appear to be a stationary

process with no structural information. To quantify the tradeoff between structure

preservation and smoothing, we also calculate a variant of the contrast-to-noise

ratio (CNR) [35]

CNR =
σedge
σnoise

, (4.5)

where σedge is the local standard deviation averaged over 10 manually-selected edge

pixels and σnoise is standard deviation at a manually-selected homogeneous region.
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Table 4.4: Image quality metrics for “Texture” image with Type I noise (see Fig-

ure 4.2)

PSNR

Noise level L Lee Γ-MAP SRAD BM3D GenLik GAMBID

N1 16 18.48 21.67 18.80 22.24 19.02 22.33

N2 8 18.21 20.17 18.28 21.28 18.27 21.10

N3 4 17.60 18.60 17.95 19.90 17.59 19.66

N4 2 17.29 16.63 17.51 18.73 17.01 17.91

SSIM

Noise level L Lee Γ-MAP SRAD BM3D GenLik GAMBID

N1 16 0.68 0.86 0.71 0.92 0.71 0.90

N2 8 0.66 0.83 0.67 0.89 0.65 0.85

N3 4 0.63 0.75 0.66 0.82 0.59 0.78

N4 2 0.61 0.72 0.62 0.77 0.54 0.70

4.2 Results

4.2.1 Synthetic images

Type I: Pure multiplicative noise

The metrics for the “Texture” image tests under Type I noise are given in Figure 4.2

and Table 4.4. The BM3D algorithm, despite being designed for additive white

noise, performs very well even on an image contaminated by multiplicative noise.

This is a trend that can be seen in the rest of the results shown in this chapter.

Save BM3D, the metrics show that GAMBID outperforms all the other methods,

except in the high-noise L = 2 case, where the SSIM is comparable to Γ-MAP.

The test images and the denoised results for “Texture” under the high noise

case N4 (L = 2) are shown in Figure 4.3. Despite the high PSNR and SSIM

measures, GAMBID appears to over-flatten the texture details. This is especially

27



16 8 4 2
10

12

14

16

18

20

22

24

26

28

30

Number of looks L

P
SN

R

 

 

Lee
Γ−MAP
SRAD
BM3D
GenLik
GAMBID

16 8 4 2
0

0.2

0.4

0.6

0.8

1

Number of looks L

SS
IM

 

 

Lee
Γ−MAP
SRAD
BM3D
GenLik
GAMBID

Figure 4.2: Image quality metrics for “Texture” image with Type I noise; top:

PSNR, bottom: SSIM. BM3D, despite being designed for additive white noise,

performs very well even on image contaminated by multiplicative noise. This is a

trend that can be seen in the rest of the results shown in this chapter. Save BM3D,

the metrics show that GAMBID outperforms all the other methods, except in the

high-noise L = 2 case, where the SSIM is comparable to Γ-MAP.
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Table 4.5: Image quality metrics for “Structure” image with Type I noise (see

Figure 4.4)

PSNR

Noise level L Lee Γ-MAP SRAD BM3D GenLik GAMBID

N1 16 25.63 26.61 29.32 28.82 26.59 28.69

N2 8 24.65 24.48 26.73 26.22 24.71 26.94

N3 4 23.63 21.77 24.58 23.19 23.07 24.74

N4 2 22.18 19.61 22.45 22.04 21.68 21.46

SSIM

Noise level L Lee Γ-MAP SRAD BM3D GenLik GAMBID

N1 16 0.86 0.89 0.87 0.89 0.90 0.94

N2 8 0.81 0.83 0.82 0.84 0.84 0.90

N3 4 0.74 0.73 0.76 0.75 0.76 0.84

N4 2 0.66 0.63 0.67 0.72 0.68 0.75

apparent in the top-right section. Although BM3D performs quite well visually, it

does introduce subtle distortion artifacts which are most noticeable in the top-left

region. The Γ-MAP result has strong noise in the edge regions which is not heavily

penalized in the SSIM measure, but does decrease the PSNR.

The metrics for the “Structure” image under Type I noise are given in Figure 4.4

and Table 4.5. In terms of PSNR, the GAMBID is comparable, but not necessarily

superior to the other methods. GAMBID is particularly weak in the L = 2 case

for PSNR. However, it does outperform all the competing methods in terms of

perceptual quality as given by SSIM.

The test images and the denoised results for “Structure” under the high noise

case N4 (L = 2) are shown in Figure 4.5. Visually, GAMBID applies a high level of

smoothing in the homogeneous regions while maintaining edge contrast. However,

some of the finer low-contrast features are blurred out. This is obvious in the wavy

cross-hatch pattern near the top-right, which some of the competing methods are
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(a) Original (b) Noisy

(c) Lee (d) Γ-MAP (e) SRAD

(f) BM3D (g) GenLik (h) GAMBID

Figure 4.3: “Texture” image with Type I noise L = 2 (N4). Despite the high PSNR

and SSIM measures, GAMBID appears to over-flatten the texture details. This is

especially apparent in the top-right section. Although BM3D also performs quite

well visually, it does introduce subtle distortion artifacts which are most noticeable

in the top-left region. The Γ-MAP result has strong noise in the edge regions which

is not heavily penalized in the SSIM measure, but does decrease the PSNR.
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Figure 4.4: Image quality metrics for “Structure” image with Type I noise; top:

PSNR, bottom: SSIM. GAMBID is comparable, but not necessarily superior to

the other methods. GAMBID is particularly weak in the L = 2 case for PSNR.

However, it does outperform all the competing methods in terms of perceptual

quality as given by SSIM.
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Table 4.6: Image quality metrics for “Texture” image with Type II noise (see

Figure 4.6)

PSNR

Noise level σadd Lee Γ-MAP SRAD BM3D GenLik GAMBID

N5 0.01 17.23 18.00 17.89 20.23 17.61 18.47

N6 0.05 17.23 18.23 17.92 20.04 17.39 18.69

N7 0.1 17.18 17.33 17.80 19.80 17.05 18.69

N8 0.2 17.05 14.86 17.34 19.16 16.78 17.97

SSIM

Noise level σadd Lee Γ-MAP SRAD BM3D GenLik GAMBID

N5 0.01 0.60 0.80 0.64 0.85 0.59 0.81

N6 0.05 0.60 0.78 0.65 0.84 0.57 0.80

N7 0.1 0.60 0.77 0.64 0.82 0.54 0.77

N8 0.2 0.59 0.72 0.60 0.79 0.51 0.68

better at preserving.

Type II: Combined additive and multiplicative noise

The metrics for the “Texture” image tests for Type II noise are given in Figure 4.6

and Table 4.6. Increasing additive noise level up to 0.1 does not significantly reduce

the performance of the tested algorithms. Here, GAMBID is able to outperform

all the methods except BM3D in terms of PSNR. BM3D, GAMBID, and Γ-MAP

show the strongest SSIM numbers.

The test images and the denoised results for “Texture” under noise level N8

(σadd = 0.2) are shown in Figure 4.7. Visually, these results are comparable to

those with only multiplicative noise applied (seen in Figure 4.3). Again, GAMBID

results in a flattening of the texture detail. Although Γ-MAP is comparable to

GAMBID in terms of SSIM, the edge region noise residual is quite pronounced

(more so here than the Type I case in Figure 4.3).
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(a) Original (b) Noisy

(c) Lee (d) Γ-MAP (e) SRAD

(f) BM3D (g) GenLik (h) GAMBID

Figure 4.5: “‘Structure” image with Type I noise L = 2 (N4). Visually, GAMBID

applies a high level of smoothing in the homogeneous regions while maintaining

edge contrast. However, some of the finer low-contrast features are blurred out.

This is obvious in the wavy cross-hatch pattern near the top-right, which some of

the competing methods are better at preserving.
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Figure 4.6: Image quality metrics for “Texture” image with Type II noise, top:

PSNR, bottom: SSIM. Increasing additive noise level up to 0.1 does not significantly

reduce the performance of the tested algorithms. GAMBID is able to outperform

all the methods except BM3D in terms of PSNR. BM3D, GAMBID, and Γ-MAP

show the strongest SSIM numbers.
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(a) Original (b) Noisy

(c) Lee (d) Γ-MAP (e) SRAD

(f) BM3D (g) GenLik (h) GAMBID

Figure 4.7: “Texture” image with Type II with σadd = 0.2 (N8). Visually, these

results are comparable to those with only multiplicative noise applied (Figure 4.3).

Again, GAMBID results in a flattening of the texture detail. Although Γ-MAP is

comparable to GAMBID in terms of SSIM and slightly better when σadd = 0.2,

the edge region noise residual is more pronounced here than the Type I case in

Figure 4.3
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Table 4.7: Image quality metrics for “Structure” image with Type II noise (see

Figure 4.8)

PSNR

Noise level σadd Lee Γ-MAP SRAD BM3D GenLik GAMBID

N5 0.01 21.33 22.05 24.62 23.93 23.15 24.67

N6 0.05 21.29 22.41 23.91 24.43 22.66 24.57

N7 0.1 21.21 21.02 22.88 24.64 22.15 24.20

N8 0.2 20.85 16.09 20.50 23.66 21.37 22.77

SSIM

Noise level σadd Lee Γ-MAP SRAD BM3D GenLik GAMBID

N5 0.01 0.69 0.74 0.75 0.78 0.77 0.84

N6 0.05 0.67 0.73 0.72 0.79 0.75 0.84

N7 0.1 0.65 0.65 0.69 0.80 0.72 0.83

N8 0.2 0.60 0.47 0.63 0.77 0.66 0.77

The metrics for the “Structure” image under Type II noise are given in Fig-

ure 4.8 and Table 4.7. GAMBID produces favourable PSNR values compared to

the other methods, with BM3D producing better PSNR for σadd = 0.1, 0.2. Un-

like the “Texture” image results, combined noise in the homogeneous regions poses

problems with the competing methods, as can be seen in Figure 4.7.

The test images and the denoised results for “Structure” under noise level N8

(σadd = 0.2) are shown in Figure 4.9. In this case, Γ-MAP and SRAD do not

sufficiently suppress the noise. This is especially obvious in the black region, where

the noise is essentially intact. Although GAMBID successfully removes the noise

in these regions, it doesn’t preserve the fine structures.

4.2.2 Synthetic Aperture Radar Images

The full images and the GAMBID results, with comparisons showing 128 × 128

extracted regions, are given in Figures 4.10 to 4.13. The grey levels in the noise
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Figure 4.8: Image quality metrics for “Structure image” with Type II noise. GAM-

BID produces favourable PSNR values compared to the other methods, with BM3D

producing better PSNR for σadd = 0.1, 0.2. Unlike the “Texture” image results,

combined noise in the homogeneous regions poses problems with the competing

methods, as can be seen in Figure 4.7.
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(a) Original (b) Noisy

(c) Lee (d) Γ-MAP (e) SRAD

(f) BM3D (g) GenLik (h) GAMBID

Figure 4.9: “Structure” image with Type II noise at noise level N8 (with σadd = 0.2).

Γ-MAP and SRAD do not sufficiently suppress the noise. This is especially obvious

in the black region, where the noise is essentially intact. Although GAMBID suc-

cessfully removes the noise in these regions, it doesn’t preserve the fine structures.
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field estimates are mapped to [0.5,1.5].

As shown in the detail of SAR1 in Figure 4.12, GAMBID and BM3D are able

to remove speckle while retaining structural features better than Lee, SRAD, and

GenLik, while Γ-MAP leaves very noisy edges. Beside each denoised image, we also

show the noise signal estimates n̂mult. Some structure is evident in the GAMBID

n̂mult, though not to the extent of Lee, SRAD, GenLik, and Γ-MAP. The BM3D

n̂mult exhibits some subtle nonstationarities across different regions.

The results from SAR2 in Figure 4.13 are similar to those from SAR1, in that

GAMBID and BM3D are able to remove speckle while retaining structural features

better than Lee, SRAD, and GenLik. Here, some structural details, the fine fissures,

appear in noise estimate for GAMBID. In this case, as it is with SAR1, choosing

between the BM3D and GAMBID results based on purely visual inspection is dif-

ficult.

4.2.3 Ultrasound images

In the “Embryo” image in Figure 4.14, none of the methods save SRAD and GAM-

BID provides any significant noise attenuation, but GAMBID produces sharper

edges than SRAD.

In the “Prostate” image in Figure 4.15, the Lee and SRAD filters are visually

inferior as they oversmooth the image. Of the remaining filters, GAMBID provides

the highest amount of speckle attenuation while retaining all the features visible in

the Γ-MAP, BM3D and GenLik results. A significant amount of correlated noise

remains in all the results.

4.3 Discussion

The first main testing objective is to demonstrate the viability of GAMBID using

synthetic images using two noise types at varying noise levels. In general, GAMBID
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(a) Original

(b) GAMBID

Figure 4.10: SAR1 processed with GAMBID (1209×865). A comparison of results

for this image is given in Figure 4.12
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(a) Original

(b) GAMBID

Figure 4.11: SAR2 processed with GAMBID (599× 635). A comparison of results

for this image is given in Figure 4.13
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(a) Original CNR = 4.40

(b) Lee CNR = 3.61 (c) Γ-MAP CNR = 13.16

(d) SRAD CNR = 5.92 (e) BM3D CNR = 13.12

(f) GenLik CNR = 5.93 (g) GAMBID CNR = 29.25

Figure 4.12: Detail of SAR1. GAMBID and BM3D are able to remove speckle while

retaining structural features better than Lee, SRAD, and GenLik, while Γ-MAP

leaves very noisy edges. Beside each denoised image, we also show the noise signal

estimates n̂mult = I/r̂. Some structure is evident in the GAMBID noise estimate,

though not to the extent of Lee, SRAD, GenLik, and Γ-MAP. The BM3D noise

estimate exhibits some subtle nonstationarities across different regions.
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(a) Original CNR = 1.96

(b) Lee CNR = 1.67 (c) Γ-MAP CNR = 3.41

(d) SRAD CNR = 2.00 (e) BM3D CNR = 3.63

(f) GenLik CNR = 2.58 (g) GAMBID CNR = 5.56

Figure 4.13: Detail of SAR2. GAMBID and BM3D are able to remove speckle

while retaining structural features better than Lee, SRAD, and GenLik. Here,

some structural details, the fine fissures, appear in noise estimate for GAMBID. In

this case, as it is with SAR1, choosing between the BM3D and GAMBID results

based on purely visual inspection is difficult.
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(a) “Embryo” CNR = 0.98 (b) Lee CNR = 1.15 (c) Γ-MAP CNR = 1.30

(d) SRAD CNR = 0.94 (e) BM3D CNR = 1.09 (f) GenLik CNR = 1.05

(g) GAMBID CNR = 1.53

Figure 4.14: “Embryo” ultrasound image. None of the methods save SRAD

and GAMBID provides any significant noise attenuation, but GAMBID produces

sharper edges than SRAD. Unlike with SAR data, the noise signal estimates are

not shown because they cannot be obtained by a simple ratio because ultrasound

images do not follow the product model.

44



(a) “Prostate” CNR = 0.80 (b) Lee CNR = 0.75

(c) Γ-MAP CNR = 1.06 (d) SRAD CNR = 0.88

(e) BM3D CNR = 0.82 (f) GenLik CNR = 0.82

(g) GAMBID CNR = 1.20

Figure 4.15: “Prostate” ultrasound image. The Lee and SRAD filters are visually

inferior as they oversmooth the image. Of the remaining filters, GAMBID provides

the highest amount of speckle attenuation while retaining all the features visible in

the Γ-MAP, BM3D and GenLik results. A significant amount of correlated noise

remains in all the results.
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provides consistent performance across the two noise types, which is a quality shared

with Lee, GenLik and BM3D (where the Lee filter was adapted depending on the

type of noise). Of these methods, GAMBID and BM3D consistently outperform

Lee and GenLik. Although BM3D was developed for additive white noise, these

tests show that it can be used to denoise multiplicative noise as well, often providing

the strongest results. However, the metrics generated do not support arguments for

which algorithm is the “best”, as the PSNR and SSIM can give conflicting numbers,

where a method can score high in one metric and low in the other. Also, the metrics

do not adequately capture the cases where GAMBID provides less than satisfactory

results.

The synthetic test results show that GAMBID suffers from two limitations.

In the “Texture” test, there is a loss of texture contrast, resulting in flat-looking

images. This seems to indicate that the design of GAMBID favours homogeneous

regions due to the estimation being based on intensity only. Although the weights

calculated from neighbourhood differences could account for some of the texture

information, this aspect will need to be improved, perhaps by incorporating texture

characteristics such as entropy. The other limitation can be seen the “Structure”

tests, where some of the fine details are lost in the GAMBID results, such as the

wavy cross-hatch in near the top-right of the image, although other methods suffer

from a similar limitation. For some reason, fine, low-contrast features are not

captured by the estimator.

The second main testing objective is to demonstrate the viability of GAMBID

with real signal-dependent noise, in this case SAR and ultrasound speckle. For

the four tested images, GAMBID and BM3D provided the best results in terms

of edge preservation and noise attenuation, as evaluated subjectively. However,

none of the tested methods can fully restore ultrasound images due to the high

level of spatially-varying correlation. Although GAMBID performs well for these

images, decorrelation is required for proper restoration of ultrasound images, which

is beyond the scope of this thesis.
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From the tests, we can conclude that the proposed GAMBID algorithm is com-

petitive with current methods in terms of the main objectives: denoising of (1)

pure artificial speckle, (2) combined multiplicative and additive noise, and (3) real

SAR and ultrasound speckle. However, the current implementation over-smooths

textures and fine structural details. These problems can be addressed in future

iterations, which are discussed in Chapter 5.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we presented GAMBID, a general adaptive Monte Carlo Bayesian

image denoising algorithm. GAMBID works by building a posterior distribution

estimate for each pixel via random sampling. This approach does not depend on

any particular image model, and thus can be applied to different noise types, both

signal-dependent and signal-independent.

The testing demonstrates that GAMBID is viable under two types of signal-

dependent noise and with two types of synthetic images, as well as with real SAR

and ultrasound imagery. In the synthetic image tests, GAMBID produced compet-

itive and consistent (albeit not always superior) results in terms of objective quality

metrics, but over-smooths textures and fine details. In the SAR and ultrasound

image tests, GAMBID outperforms current methods in terms subjective evalua-

tion of edge preservation and noise attenuation. However, some correlated speckle

remains in the ultrasound results for all methods, indicating that the ultrasound

data needs to be decorrelated and denoising should be performed in the log-normal

domain where the correlation does not vary spatially.

Because it is a model-free approach, GAMBID can potentially be applied in
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a wide variety of applications. These include remote sensing, medical imaging,

computer vision, and video denoising.

5.2 Recommendations for Future Work

An advantage offered by GAMBID method is that it can be expanded to become a

general framework instead of a fixed algorithm. While still maintaining the Monte

Carlo Bayesian least squares approach, GAMBID can be adapted in two main ways.

Firstly, it is not necessary to perform the estimation purely in the spatial domain.

GAMBID can be applied in the wavelet domain, for example, to better capture the

statistics that exist at different scales and spatial frequencies. Secondly, the weights

used in the posterior density estimation do not have to be based on neighbourhood

intensity differences. Other image features, such as texture features, can be used in

the weighting. Also, heuristics can be incorporated into the weighting in a manner

similar to the Enhanced Lee Filter (i.e. classification of the pixels into homoge-

neous, point-target, and textured types). With these adaptations, we can address

the limitations in texture and small-scale detail preservation in the current imple-

mentation. Furthermore, the adaptability of GAMBID offers additional versatility

for other denoising applications not discussed here.

The GAMBID framework is currently formulated for single-channel images.

However, multichannel images are common in many applications, such as colour

images and polarimetric data. GAMBID can be extended to take advantage of any

correlation in the noise between channels by considering the each pixel as a vector-

valued observation. Additionally, it can also be extended to three-dimensional data

such as video or volumes by sampling along the third axis.
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Appendix A

Mathematical Derivations

In the Bayesian least squares problem, the goal is to minimize the expected value

of the squared error (difference between the estimate and the true value), given the

observed neighbourhood intensities I

r̂ = arg min
r̂

{
E[(r̂ − r)2|I]

}
. (A.1)

Differentiating the objective function with respect to the estimate r̂,

∂

∂r̂
E[(r̂ − r)2|I] =

∂

∂r̂

∫
(r̂ − r)2 p(r|I) dr

=

∫
∂

∂r̂
(r̂ − r)2 p(r|I) dr

=

∫
1

2
(r̂ − r) p(r|I) dr

=
1

2

∫
r̂p(r|I) dr − 1

2

∫
rp(r|I) dr

=
1

2
r̂ − 1

2

∫
rp(r|I) dr.

To find the minimum, we set the derivative of the objective function to zero

1

2
r̂ − 1

2

∫
rp(r|I) dr = 0

r̂ =

∫
rp(r|I) dr = E[r|I]. (A.2)
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