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Abstract

There has been a growth in demand for advancing algorithms in surveillance

applications concerning moving vehicles where analysis of traffic has a potential

application to security, traffic management (congestion and accident detection),

speed measurement, car counting and statistics, as well as turning movement at

intersections. This research focuses on multiple-vehicle detection, recognition, and

tracking in urban environments based on video sequences obtained from a single

CCD camera mounted on a pole at urban highways and crossroads. The proposed

system integrates several modules including segmentation, object detection, object

recognition and classification, and tracking. Background segmentation, based on

Gaussian Mixture models, is used to extract moving objects from images using

the respective foreground object information such as location, size, and color dis-

tribution. To recognize vehicles, a 3D polyhedral car model described by a set

of parameters is built and mapped to the 2D edge information attained from the

video sequence. The matching process is then used to classify the foreground object

obtained into vehicles and non-vehicles. The output from the recognition model

is used in tracking multiple cars based on a deterministic data association method

that takes place between consecutive frame information.

The multiple-vehicle surveillance system developed in this thesis, based on in-

tegrating different modules, provides a novel approach for vehicle monitoring. Fur-

thermore, the system makes use of minimal a priori knowledge about vehicle lo-

cation, size, type, numbers, and pathways. The system implemented in this work

functions well under various camera perspectives, background clutter, vehicle view-

points, road types, scale changes, image noise, image resolutions, and lighting con-

ditions.
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Chapter 1

Introduction

1.1 Problem Definition

There has been active research in recent years to develop automatic real-time

surveillance systems that aim at detecting and tracking various objects such as

cars in video sequences obtained from stationary cameras. The ultimate goal of

the research is to replace traditional methods of video surveillance where human

operators monitor a large number of screens and the amount of constant attention

needed exceeds human capability [17].

Popular methods for extracting moving objects range from using optical flows

[24][27] which do not return exact vehicle locations to adaptive background sub-

traction techniques whose accuracy depend on the number of frames available [51].

Vehicle representation techniques vary from simple blob representations that do not

allow good distinction among different extracted objects to 3D model approaches

that are more complex but are more robust to occlusion and permit the categoriza-

tion of objects more accurately [24]. Tracking methods range from particle filtering

approaches that require accurate target initialization and termination making it

difficult to track an unknown number of objects in complex environments to data

association methods that are computationally expensive [29].

To increase efficiency and decrease human error, an automatic visual surveil-

lance system is proposed which uses video sequences of road traffic to detect, recog-

nize, and track multiple cars in various urban environmental conditions (different

road types, light conditions, and various camera perspectives). The multiple-object

tracking system proposed uses background subtraction techniques for object detec-

tion, 3D models for vehicle representation, and data association tracking methods.
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1.2 Challenges

The proposed system integrates several modules including object extraction (im-

age segmentation and analysis), object recognition and classification, and multiple

object tracking. Each of these modules has some challenges that must be dealt

with in addition to the difficulties that arise when integrating the different modules

together. Here is a list of challenges that must be addressed by each module to

obtain a successful surveillance system.

• Light and Weather Conditions: Changes in the lighting of the road affects the

way the vehicles appear. Light conditions may vary from a sunny bright day to

a gloomy day where the former might result in more reflections off the metallic

body of the cars and the latter might make the cars seem darker thus making

them blend in with a dark surrounding. Such pixel color variations make

it very challenging to segment the vehicles out of the image. Furthermore,

weather conditions ranging from a sunny bright day to one that is rainy or

snowy might also drastically make the segmentation process more difficult

due to the reflection of the car and the water or snow causing everything to

appear homogeneous.

• Image Noise: Another challenge arises from image noise. The data collected

about the urban environment is done via a common video camera that might

not have high resolution and might vibrate when the weather conditions are

unfavorable. This increases the amount of image noise and distortions in

the frames which in turn makes image segmentation and object extraction

more prone to error. For example, if the noise increases substantially, edge

extraction becomes more difficult since the edges do not appear clear-cut as

in a noise-free image.

• Image Resolution: To save memory space, some of the cameras operate at

lower resolutions. Furthermore, older cameras usually support lower reso-

lution video recording. Therefore, a surveillance system should be able to

support a range of different image or video resolutions in order to be practi-

cal.

• Background Clutter: Most real-world scenes include background clutter such

as trees, buildings, traffic lights, trash cans, and so on, which makes object

segmentation and extraction even more challenging, particularly in scenes

where there are multiple objects.
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• Camera Perspective: The camera, mounted on different poles and recording

the data of the different sections of the highways and intersections, may vary

in perspective, zoom, and height from one pole to another. With different

camera perspectives, vehicle appearances (upper view, side view, ... etc)

and size change. Furthermore, the extent to which one camera covers one

particular location (field-of-view) affects the degree of appearance change of

a car within one scene. For example, if a camera’s field-of-view covers several

kilometers of a highway, the cars will appear very small at first and become

extremely large as they approach the camera closer.

• Occlusion: Depending on the camera perspective, different types of occlusion

may also occur. If the camera height is low, some parts of the vehicle may be

obscured by another vehicle. Additionally, some objects may exist between

the camera and the road (eg. trees) that occlude the view of the car.

• Vehicle Viewpoint Changes: The car may appear different every time it

changes its location with respect to the camera position. The camera records

one perspective per each car which means that the car’s front parts occlude

its other parts. This results in many unique appearances for each vehicle

view; thus, this makes car recognition a more challenging task.

• Intra-class Variation: Another main challenge for the recognition system and

classification is the variety of different vehicle types: sedans, jeeps, trucks,

buses, ... etc. Each type of car may share common features with other classes

in geometry, appearance, and texture yet differ enough to create a need to

introduce a new description for this class type in the recognition system.

• 3D Information Loss: Once the camera records the information, all 3D infor-

mation is reduced to 2D. Therefore, there is no depth and height information

in the 2D images.

• Multiple Tracking: When a large number of cars is in the scene, it becomes

difficult to keep track of all the cars at once and retain track information

per car. Problems arise due to challenges pertaining to systems that the

tracker depends on — namely the recognition system that is facing occlusion,

viewpoint changes, interclass variation, and information loss challenges and

the segmentation system that faces problems in weather conditions, occlusion,

and image noise. Furthermore, the tracker faces the problem of multiple

car association which is answering the question ’Which car is which in the

3



previous frame?’. This can especially become hard when cars change direction

haphazardly.

1.3 Thesis Objectives

Many of the challenges that are faced by automatic surveillance systems have been

mentioned in the previous section. However, not all of the challenges are addressed

in this thesis. Furthermore, the implemented system provides solutions to the chal-

lenges under some assumptions that are mentioned in the following list. Following

the list of assumptions, a numbered list of goals that this research targets is given.

Assumptions:

1. The camera obtaining the video sequences is fixed at a height exceeding the

height of a car. Once the camera is installed at a particular location, it

remains fixed for the entire time of a video sequence. However, different

cameras in different locations may vary in the tilt and zoom of the location

being monitored.

2. The camera type and specifications (focal length) are assumed to be known.

3. The camera perspective is also assumed to be known. Therefore, the tilt of

the camera and its height from the road is assumed to be a priori knowledge.

4. The camera plane with respect to the road plane is also assumed. In other

words, the camera tilt with respect to the road (and not only to the pole) is

assumed.

Objectives:

1. The implemented system must perform successfully under different road types

such as highways and intersections.

2. The implemented system must be invariant to camera perspective.

3. The implemented system should work under varying vehicle viewpoints.

4. The implemented system should function under various types of background

clutter
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5. The implemented system should operate under many light conditions such as

brighter days, gloomier days, evening times, and foggy weather.

6. The implemented system should be able to process noisy (point noise) images.

7. The implemented system should be capable of operating with different video

resolutions as long as the resolutions maintain an image quality whereby the

car is still recognizable.

8. The implemented system should work even in cases of occlusion.

9. The implemented system must be a multiple tracker that is able to track

several objects simultaneously. Since humans can track up to eight objects

simultaneously [2], the multiple tracker should be able to track at least eight

objects at the same time to make is as efficient as the human visual system.

10. The implemented system should process each frame within a few seconds.

Moreover, a few additional constraints are targeted within this research. The

first constraint is that the proposed system has no prior knowledge about the car

size, type, or location. Also, there is no prior knowledge about the number of

vehicles on the road and minimal information about the road structure.

Having discussed the general challenges that a surveillance system faces and

specified the goals and assumptions of this research, the next section explains the

overall proposed system.

1.4 System Overview

The first step in building an automatic surveillance system is the identification of

moving objects based on the video sequence obtained from the camera. Therefore,

after the breakdown of the video sequence into individual frames for analysis, the

system should first filter the image to improve the signal to noise ratio and extract

potential useful information from the frames. The first module — object extraction

— uses Gaussian Mixture models to segment the different frames into foreground

and background layers (refer to 1a in Figure 1.1). The foreground result is then

analyzed (part 1b Figure 1.1) whereby the different foreground object information

— such as pixel color distributions, size, initial orientation estimate, and position

— is acquired per object from the result of the Gaussian Mixture Model as well

as the original image (which is needed to acquire pixel color values). Meanwhile
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the second module (refer to 2 in Figure 1.1) has a generic polyhedral wireframe

model for a car. In order to recognize whether each object is a car, the information

from the first module — particularly the size, orientation estimate, and location

of each foreground object — is sent to the object recognition module where the

edges of the different objects at each location are extracted. Edge-based vehicle

detection has been chosen to be used for its enhanced performance [7][22] compared

to other background removal or thresholding methods especially because edges

remain salient in a variety of ambient lighting [23]. Having obtained the edges

of the real object, they can be compared to the generic rescaled model. If a match

occurs, then the vehicle type is classified. The classification information from the

second module as well as the rest of the information extracted in the first module

are sent to the final module — multiple tracker(refer to 3 in Figure 1.1). The tracker

uses an association matrix to keep track of the best matches between consecutive

frames — current frame and the past frame. As each new frame is received, the

track per each car is updated based on this data association method.

A block diagram of the system is given in Figure 1.1. A video sequence captured

by a video camera is the input. This is then split into frames that are analyzed by

the three previously described modules. Each of the module boxes in the diagram

contain a number to refer to in the text as well as the chapter that explains it in

more detail.

1.5 Thesis Contributions

This thesis presents an alternative approach to multiple-vehicle surveillance systems

by integrating various modules (Gaussian Mixture Model and temporal differenc-

ing for motion detection, 3D vehicle recognition based on Hausdorff measure, and

deterministic data method for tracking which is able to deal with entering, leav-

ing, and disappearing cars) in a way that has not been integrated before. This

novel system is a simpler approach compared to other state-of-the-art surveillance

systems that use 3D models (refer to Section 2.4). Furthermore, the system is capa-

ble of functioning under different camera perspectives, background clutter, vehicle

viewpoints, road types, scale changes, image noise, image resolutions, and lighting

conditions. Another important aspect of the proposed system is its minimal amount

of a priori knowledge given to the system — no a priori knowledge of vehicle size,

vehicle pathways, or detected object type is given, and the vehicle locations are

automatically detected by the system.
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Figure 1.1: System overview diagram of the proposed system showing the major modules
that make up the surveillance system.
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1.6 Thesis Outline

Chapter 2 offers a survey of the different research in the fields of object detection,

object classification, and tracking and also provides an overview of the state-of-the-

art research and thesis contribution in the domain of video surveillance of vehicles.

The first module — object extraction — is explained in detail in Chapter 3. Three

approaches are described for background modeling and some results of this module

are demonstrated along with the advantages and the drawbacks. Chapter 4 moves

on to explain the object recognition module. The generic 3D model used is shown,

model-to-data matching method is explained, and classification implementation

methods are scrutinized. The last module — multiple tracker — is described in

Chapter 5. The overall results of the system and the performance with regards to

different challenges are shown in Chapter 6. Chapter 7 discusses the conclusions,

future work, and contributions of this research.
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Chapter 2

Literature Review

Recently, there has been considerable focus in advancing surveillance systems that

monitor moving objects such as pedestrians and cars, which have a wide variety of

applications such as human identification, congestion and car counting statistics,

detection of un-natural behavior, and so on [16] [17] [23] [37] [48]. These surveil-

lance system frameworks build upon several main components which include motion

detection, object classification, and object tracking. In what follows, a review of

recent developments in each of these components is presented. Finally, a state-of-

the-art vehicle surveillance system is discussed followed by the contributions of this

work.

2.1 Motion Detection

Different techniques have been used in various studies for the purpose of moving-

object detection. Among these methods is the use of edge-complexity detection

[16], optical flow methods [24][27], temporal differencing [9], and background sub-

traction [51]. Edge-complexity detection methods basically detect a car by the edge

complexity on the road which can be computed by the use of histograms [23]. The

latter three methods are more common and are thus described in more detail in

the following sections.

2.1.1 Optical Flow

Optical flow (or image velocity) based motion segmentation is the perceived motion

of 3D-object surface points (that are projected unto a 2D image) in terms of image
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displacements or image flow vectors [5]. Optical flow methods are useful for de-

tecting motion even if the recording camera is itself moving. However, optical flow

approaches suffer from being computationally expensive as well as being sensitive to

noise [27]. Furthermore, the optical flow estimated vector does not always represent

the actual object movement rate in cases of optical flow discontinuities that occur

when greyscale pixels disappear due to occlusion or illumination [37]. Another case

where optical flow might fail is in areas where texture is not predominant and thus

an object might appear to be not moving[37].

Despite the disadvantages of the method, optical flow was used by various re-

searchers in creating a vehicle surveillance system. One of the more related works

to this thesis is that by Haag and Nagel [15] where they incorporate the optical flow

motion segmentation for 3D-model-based tracking of vehicles [37]. Using optical

flow, the velocity of the object as well as its orientation can be computed. For more

detailed information, refer to [15][37].

2.1.2 Temporal Differencing

Frame by frame differencing or temporal differencing approaches are based on sub-

tracting consecutive frames to determine possible regions of moving objects [30].

There are several benefits from using a temporal differencing approach. First, it is

computationally inexpensive. Second, it is quite effective at eliminating immobile

objects from the scene and leaving only regions of moving objects. Also, when

an object starts moving, it is able to detect it at the moment it starts displace-

ment and does not need additional frames to adjust its output. Furthermore, it

is adaptive to changing environmental conditions [17]. Nevertheless, the method

fails to extract the whole object especially when an object has similar uniform

regions as that of the background [23]. To solve the problem, a method using a

two-component mixture density, where one component represents the background

and the other represents the moving object, is presented in [38]. In most cases, tem-

poral differencing has been applied to cases of stationary cameras [23] [38]; however,

interframe differencing can also be applied to cases of moving cameras when joined

with other algorithms such as motion compensation for background subtraction

algorithms used for human silhouette extraction from dynamic backgrounds [43].

A more detailed re-evaluation of frame difference in motion detection is presented

in [31].

Temporal differencing was implemented in this thesis and is explained in detail

in Chapter 3. The method applied is explained and the different benefits and

10



drawbacks of the approach are demonstrated.

2.1.3 Background Subtraction

The simplest method to perform background subtraction is pixel-by-pixel subtrac-

tion of the current image from a previously known background image [32]. However,

in most practical applications, the background image is not given as a priori knowl-

edge. In that case, several other methods have been used to extract moving objects.

On the more trivial end, there is background subtraction based on an averaged back-

ground image over N frames [23]. Although this is a straightforward method, it

does not accurately represent the background — ghosting of slow moving objects

is produced as well as the background histogram does not necessarily represent the

histogram of the background in the current image. Other fairly more complicated

methods include the use of Gaussian Mixture Models (GMM) [51] which are also

used in this thesis. The Gaussian Mixture Model is explained in more detail in

Chapter 3, along with its advantages, disadvantages, and results.

2.2 Object Classification

Once an object is detected, the next stage is to classify it since not all moving regions

necessarily belong to the same category of objects. For example, in this thesis,

movement on roads may be due to vehicles, humans, trees swaying in the wind,

...etc. According to Hu and Tan [17], there are currently two major approaches for

object classification — shape based and motion based classification.

The former — shape based classification — is based on using shape information

about the moving regions that constitute of boxes, silhouettes, blobs, points, or

edges [17]. Various researchers use shape based classification. For instance, [44]

silhouette blobs in the shape of vehicles can be used to scan the image and find any

existing vehicles in the image. Yet another shape-based classification methodology

uses templates which are made of silhouettes or basic shapes. Though templates

are effective at describing the object since they use spatial as well as appearance

information [48], they are computationally expensive because each template only

records a single view of the object and recognizing the object would require match-

ing it up against templates with all possible views. Edge extraction of detected

vehicles and grouping the edges together to obtain the boundary of the detected
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object is another approach. Using this method, the detection of vehicles or obsta-

cles can vary from consisting of finding rectangles that enclose the boundary of the

object to creating a more complex detected shape such as the entire car [48]. For

instance, [37][24][27] use 3D generic vehicle models to describe different car cate-

gories — trucks, SUVs, sedans, and buses. Based on the edges of the detected car

shapes and the degree of match between the detected car and each type of vehicle

model, a classification of the detected car can take place. Edge-based vehicle de-

tection is more robust to changes in ambient lighting and therefore performs better

than background removal and thresholding approaches [48].

Motion-based classification takes advantage of periodic or repetitive motion pat-

terns that can distinguish one object from another. The authors in [32] used motion

classification to learn the behavior of the background moving door and discriminate

the door from other object or human motion. As for [26], Lipton used the concept

of residual flow to separate rigid objects such as vehicles that have little residual

flow from non-rigid objects such as humans that have a higher residual flow.

In this thesis, the type of recognition and classification is shape-based — specifi-

cally based on edges and 3D models. The details of the method of object recognition

is included in Chapter 4. Extra features are also combined to the shape based clas-

sification such as size of detected object and bounding box to create a more accurate

classification system. The latter features are useful as the first round elimination

of illogically large objects or small objects that could not possibly represent a car.

The remaining car candidates then undergo the second stage of classification based

on 3D models.

2.3 Tracking

The purpose of most surveillance systems is to monitor a target object by tracking

it over a sequence of frames. Yilmaz et al. [48] details the different categories of ob-

ject tracking currently being used. According to the categories outlined, there are

three main ones: point tracking, kernel tracking, and silhouette tracking. The for-

mer tracking method is based on associating different detected points’ information

(position and motion) from one frame to another. Kernel tracking tracks objects by

calculating the motion of an object’s shape and appearance in successive frames.

Silhouette tracking uses information inside the silhouette’s region in the form of

edge maps to track the object using shape matching [48].

In this thesis, the tracking is based mostly on point tracking; thus, a brief
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overview of point tracking will be covered and the tracker used in this thesis will

be mentioned.

Point tracking faces various challenges that include misdetections, occlusions,

exit and entries of the objects [48]. According to Yilmaz et al., there are two

categories of point tracking: deterministic methods and probabilistic models. De-

terministic methods formulate the frame-to-frame object association problem as an

optimization case whereby a solution consists of minimizing the correspondence cost

resulting in one-to-one correspondences among all possible associations. Among the

algorithms that employ this method is the Hungarian method [48]. The Hungarian

approach can use several constraints to define the problem including proximity and

maximum velocity constraints that state that the object will not move drastically

from one frame to another and there is an upper bound on an object’s velocity. In

[39], the authors solve the optimization problem by proposing a greedy approach

after using optical flow to obtain the initial correspondences. This method however

does not work in cases of entry or exit of objects. A variant of the Hungarian

approach proposed in [20] for the purpose of stem-cell tracking allows entry and

exit of the cells. Another work by [41] uses graph approaches to formulate the

correspondences among objects and find the best path in the graph.

Statistical methods, on the other hand, estimate the object state as a function

of the measurement and model uncertainties. Among various statistical methods,

the most common ones are the Kalman filters [21] (where a state is assumed to

be a Gaussian) and Particle filters [3] (which overcomes Kalman’s Gaussian distri-

bution assumption). However, those two filters are usually applied to track single

objects. If they are to be extended to track multiple objects, their most likely

measurements should be associated using deterministic approaches previously ex-

plained [48]. An additional method for multiple vehicle tracking is that proposed

in [29] where a stochastic framework based on Monte Carlo Markov Chain Associ-

ation (MCMCDA) is used to develop a system capable of automatically initializing

and terminating an unknown number of vehicle tracks in scenes of occlusion and

clutter. Other statistical approaches to track multiple objects using data associa-

tions include Joint Probability Data Association Filtering (JPDAF) and Multiple

Hypothesis Tracking (MHT) [4]. JPDAF is able to assign objects to tracks using

probabilistic methods, but it is not able to function under entering and leaving

objects in the image [48]. Multiple Hypothesis Tracking stores several hypotheses

for each object at every frame and at the end of the observation of a track, the

best possible object track is created based on these hypotheses. Though it is able

to handle occlusions, and entering and leaving objects, the algorithm consumes
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large memory spaces and requires exponential processing times to run due to the

amount of potential hypotheses required to be searched in order to determine the

most possible set of assignments [10].

2.4 State-of-the-Art

The previous sections have provided an overview of different available methods to

handle the different stages of a surveillance system: object detection, object recog-

nition/classification, and object tracking. This section provides a brief overview

of the most recent systems developed using 3D-model classification which is the

method employed by this work. Afterward, the advantages and disadvantages of

the system are outlined.

Based on Hu et al. [17], there is no significant number of references to 3D-

model vehicle tracking since Haag and Nagel [15]. 3D wireframe vehicle models

where a ground-plane constraint (GPC) is assumed to reduce the degrees of free-

dom of a vehicle’s pose have been used [27]. In [47], a localization algorithm is

proposed where a pose evaluation formula is used to compute the match between

the image edge points and the projected model [17]. The most recent known ad-

vancement is that by Nagel (2007)[37], where a fully automatic system is proposed

which uses edge-element and optical flow to determine locations of motion. A 3D

automatic classification system is used to categorize the vehicles automatically into

four different vehicle types. The tracking takes place using a Kalman filter with a

motion-model that assumes a straight line or circular movement [37] which limits

the application to these types of vehicle behaviors (straight or circular).

With respect to other types of approaches used to build surveillance systems, 3D

model-based surveillance systems have several advantages. First, prior knowledge

of the 3D shape of the object results in better performance under occlusion. Also,

once the 3D world to image projection is established, the 3D pose of the objects

can be acquired easily [17]. Furthermore, 3D models can be applied even if objects

change their orientation during the motion. Another benefit of using model based

models and edges to describe the object detected is the ability of edges to be robust

to lightning changes. On the other hand, model based approaches can have higher

computational costs than methods that do not involve model matching.
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2.5 Contribution

Sections 2.1 to 2.3 are a brief review on the various methods used by different re-

searchers for each module of the system outlined in Figure 1.1. Section 2.4 provides

an overview of the state-of-the-art vehicle surveillance systems developed by other

researchers. This section compares the method used in this thesis to several other

recent approaches and underlines the contribution of this work.

Most of the 3D-model based vehicle surveillance systems developed are sub-

divided into modules that include a motion detection module, object recognition

module, and a tracking module. However, various surveillance systems differ by

having different approaches used per each module. Next, a comparison between

the method used in this thesis to the most recent known surveillance systems based

on vehicle modeling is presented.

For the first module — motion detection, Nagel et al. [15][37] as well as others

[24] use optical flow methods to detect the regions of vehicle motions. On the other

hand, Yiu et al. [49] use adaptive background subtraction models to detect the

approximate location of the vehicle. This thesis builds upon using the background

subtraction method — specifically Gaussian Mixture Models — as the main mode

of object detection over video sequences with an implemented adjusted temporal

differencing system which obtains the differenced result of images and enhances

the output by using the OR operator and filling in gaps (Chapter 3). The latter

system is used as a backup method whenever the Gaussian Mixture Model fails by

returning extensively noisy results.

For the second module — object recognition, [15][24][27][37][47] use similar 3D

wireframe models to model a vehicle; however, [49] uses simple 3D cuboid models

with a width, height, and length description per model. To match the models

to the vehicles in the 2D images, [15][37] use the Mahalanobis method to match

the model to the vehicle edge information, [27][47] use the point-to-line segment

distance to match the model to vehicle edges, and [49] use the Chamfer distance

to compare the detected shape of the vehicle to the contour vehicle model. The

system implemented in this thesis uses a generic 3D model similar to [24]; however,

it is slightly simplified by eliminating an extra vector that describes the 3D model

vehicles distance from base to ground. Various experiments demonstrated that this

vector only increases complexity of the model and does not increase the accuracy.

For this reason, it was eliminated. Furthermore, the matching method used between

the projected 3D model and image vehicle edge segments is the Hausdorff distance.
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For the tracking module, all of [15][27][37] use Kalman filtering methods for the

purpose of tracking. [37] assume that the motion of vehicles are either circular or

straight in accordance to the data sets that they use. This thesis on the other hand,

investigates extended deterministic point tracking methods where the optimization

problem constitutes of minimizing the cost function with minimal amount of con-

straints imposed. The cost minimization function takes into consideration several

vehicle features that are associated among frames. Among those features is the

general color of the vehicle, the position, and velocity. The algorithm proposed

is able to handle entering and leaving cars. Also, the tracker deals with cases of

error (such as a car disappearing in mid-road). Furthermore, it is computationally

inexpensive and is able to function in real-time. In addition, no motion models

are given a priori to predict where the vehicle will be next based on knowledge of

potential vehicle pathways for a particular road (Chapter 5).

Therefore, this thesis has several contributions as listed below.

• Different methods for each module have been integrated in a novel manner

to build a system that is based on background subtraction (GMM)/temporal

difference module, 3D vehicle models with Hausdorff matching method, and

optimization-based vehicle tracking that uses minimal amount of constraints

to solve the tracking problem. Therefore, this work provides an alternative

approach to other state-of-the-art methods for vehicle monitoring which in-

tegrates different modules that have not been integrated in such a manner

before. Furthermore, the method used in this work is overall simpler com-

pared to other state-of-the-art surveillance systems using 3D models.

• The background subtraction (GMM), which is adaptive and robust to light

changes, was introduced with an enhanced ’OR’ temporal difference motion

detection method that can be used as backup system for the former method.

• The system is automatic with minimal need for input from the user. The

vehicles are automatically detected, recognized, and tracked as they enter

and leave the scene. No vehicle size, vehicle types, vehicle numbers, vehicle

location, or vehicle travel pathway is known a priori. Also, the system func-

tions well under different camera perspectives, vehicle viewpoints, road types,

scale changes, image noise, image resolutions, and lighting conditions. How-

ever, the assumptions needed for this system are based on prior knowledge of

fixed camera location, camera type, and camera tilt with respect to the road,

which is acceptable for the applications targeted in this thesis.
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In the next chapters, the methodology of the proposed and implemented auto-

matic surveillance system is explained in details.
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Chapter 3

Motion Detection

Among the initial steps of any automatic surveillance system is distinguishing target

objects from a given video sequence. To detect moving objects, motion detection

can be implemented by several methods such as image difference and background

subtraction. In this research, both approaches are investigated; the former method

is explained in Section 3.1, whereas the latter method which uses Gaussian mix-

ture models for background subtraction is discussed in Section 3.2. Furthermore,

an image segmentation approach — statistical region merging — for the purpose

of object detection in explained briefly in Section 3.3. The advantages and disad-

vantages of all methods are discussed and the three methods are briefly compared

to each other in Section 3.4. Section 3.5 explains the process of vital information

extraction per detected object.

3.1 Image Difference

One of the methods for motion detection is temporal differencing which is adaptive

to changes in dynamic backgrounds [9]. The implementation of temporal differ-

encing, namely image differencing, in this research is discussed in the next section

followed by a section summarizing the advantages and drawbacks of this approach.

3.1.1 Methodology

Image differencing is the difference between consecutive frames, frame at time t

and another frame at time t − 1. Subtracting consecutive frames from each other

results in an image showing any changes or motion that has occurred between the
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two frames while eliminating the stationary background. Consecutive frames have

the advantage of having similar backgrounds since not enough time has passed

for the background to change significantly. This allows more accurate removal of

non-moving objects. For this reason, temporal differencing is effective in motion

detection in dynamic environments.

Image differencing suffers from several drawbacks. First, it extracts only part of

the object features. When an object moves from one coordinate in the first frame

to the another coordinate in the next frame, there is an overlapping region of the

object that is still common between the two frames. The overlap is removed in the

subtraction of the two frames and only the increment of the moved object remains

in the result. The second problem with image differencing is ghosting [31]. After

the object moves and the images are subtracted, only the parts of the car that

have moved remain in the result — as mentioned earlier. However, some of the

parts correspond to the location of the car in the past. This region is referred to

as a ghosting effect. Both phenomena discussed are illustrated in Figure 3.1. In

the figure, Frame 1 is considered to be equivalent to time t − 1 and Frame 2 is at

current time t.

Figure 3.1: Image Difference: Partial object extraction and ghosting phenomena.
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The initial algorithm for the image differencing method implemented in this

research project targets to solve the partial object extraction problem shown in

Figure 3.1. The algorithm proceeds to obtain the individual greyscale images of

both frames at time t and at time t− 1. This can be done by converting the RGB

images into greyscale using Otsu’s method [36]. Each of the images undergo a

pre-processing stage where individual pixels are removed and singleton background

pixels in dense foreground neighborhoods are set to belong to foreground as well.

Such pre-processing eliminates potential noise and ensures that minimal noise is

propagated to the image-differenced result. The second step is to undergo frame-

to-frame subtraction. This involves subtracting the previous frame from the current

frame. Let P (x, y) represent a previous frame and C(x, y) represent the current

frame where x and y are the row and columns of pixels coordinates and both images

are of MxN size. The equation below outlines the image subtraction.

The general frame-to-frame subtraction is illustrated by equation 3.1 where the

previous frame is removed from the current frame.

R(x, y) = C(x, y)− P (x, y)∀(x, y) ∈ {1, ...,M} × {1, ..., N} (3.1)

Such image differencing will result in values ranging from negative to positive.

The negative values belong to the previous frame that are not found in the current

frame. Therefore, given that the same objects are moving slightly from one frame

to the other, the negative values pertain to the locations where the objects were in

the previous frame and are no longer there in the current frame. For this reason,

the negative values are isolated and called the ’Past Change’. On the other hand,

positive values in the differenced image result belong to the moving object in the

current frame at locations where the object was not yet previously. In other words,

positive values indicate the number of pixels moved since the previous frame. The

object movement in this case is referred to ’Present Increment’. Both situations

are summarized in equations 3.2 and 3.3.

PastChange(x, y) =

{
|R(x, y)| when R(x, y) < 0

0 otherwise
(3.2)

PresentIncrement(x, y) =

{
R(x, y) when R(x, y) > 0

0 otherwise
(3.3)

A note can be made that such image differencing retains the information of ob-

ject movement and not the whole object itself. This means that common areas with
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some features of the object in the previous and current frames are subtracted out,

which explains the partial object problem discussed earlier. The image differences

are then converted into binary images. Conversion into binary images occurs by

setting all pixel values that are less than a threshold T to 0 (black) and anything

above T to 1 (white). The binary results of the image differences illustrating the

past change and current increment are shown in Figure 3.3 a and b.

To solve the partiality problem, the two binary image differences obtained are

passed through an OR operator. The logic behind this is that by obtaining the

OR of both image differences, the common area is engulfed by the change made

by the object. This engulfment causes a capsule that can be easily filled using

morphological operators (such as imfill in Matlab) to obtain a homogeneous area

representing the object. The result of the OR operation is shown in Figure 3.3 c.

3.1.2 Conclusions, Advantages, and Drawbacks

The image differencing method used in this project is based on subtracting consec-

utive frames from each other and obtaining the result of applying OR operator on

the differenced image. After filling the gaps in the result of the OR operator, the

moving objects are extracted as illustrated in Figure 3.3 d.

This method has many advantages:

• The method is straightforward to implement.

• The computational complexity of the algorithm is low and therefore runs

quickly (within a second per frame).

• Using previous frame to approximate the background in the image is more

accurate since there is high probability that the background did not change

within the limited time frame that has passed between one frame and the

other (1/30 second). On average, the displacement of the vehicles from one

frame to its consecutive frame can vary from being one pixel if the camera

perspective is zoomed out to ten pixels if the camera perspective is a closeup of

the road. Frame-to-frame differencing can have temporal sampling of every

3 to 4 frames (every 3/30 or 4/30 of a second) to effectively capture the

vehicle movement while the background remains constant. Such sampling

would decrease computational times for processing the entire video sequence.

• Image differencing technique does not need training or large sequence of im-

ages to obtain a solution.
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Figure 3.2: a) The current frame in RGB. b) The previous frame in RGB. c)The black
and white results of the current frame. d) The black and white version of the previous
frame.
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Figure 3.3: a) The Past Change that results from the image difference of the images
shown in Figure 3.2. b) The Present Increment that results from the image difference of
the images in Figure 3.2. c) The result of using an OR operator and filling in the gaps.
d) The equivalent result of 3.3c in RGB.
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• Image differencing can capture the movement of objects that were not moving

for a long time. For example if a car has been still for 60 frames and suddenly

starts moving, the image difference is able to capture that movement.

There are also several disadvantages to this method:

• The size of the extracted object includes some of the past history and is

therefore sometimes inaccurate. Furthermore, when the history is included,

the shape of the object also changes which could increase probability of error

in classification of the detected object.

• Stationary vehicles are not detected using temporal differencing because the

method captures movement which is not present with stopped vehicles. How-

ever, this disadvantage is not considered vital in this thesis because the work

primarily deals with detection, recognition, and tracking of moving vehicles.

• Some of the very small objects such as a car at a very far distance may

be missed by the algorithm when pre-processing of the images occurs using

morphological processes. However, this disadvantage is not important because

distant cars eventually drive toward the camera and grow in scale at which

point they can be detected.

To solve some of the disadvantages of this method, other techniques for object

extraction were investigated. Among those techniques are the statistical region

merging and background subtracting using Gaussian mixture models. Both meth-

ods are described in more details in the next section.

3.2 Gaussian Mixture Model Method

Background subtraction, the difference between current frame and a reference back-

ground image, is a common approach to extract moving objects from surveillance

videos [30]. The most straightforward implementation of background subtraction

is removing a priori known background from the current scene. However, such a

solution is not feasible for many surveillance problems where the background is not

known a priori. This research uses the Gaussian Mixture Model (GMM) method

for background subtraction explained next.
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3.2.1 Background

By using the GMM technique, the values of each particular pixel in the image is

modeled as a mixture of Gaussians. Based on the repetitiveness and variance of

each of the Gaussians of the mixture, Gaussians that correspond to the background

can be determined [45].

Mathematically, a history of each pixel, {X1, . . . , Xt}, can be modeled by K

Gaussian distributions [51]. The probability of the value of the current pixel Xt is:

P (Xt) =
K∑
i=1

ωi,t ∗ η (Xt, µi,t,Σi,t) (3.4)

where K is the number of distributions, ωi,t is the weight of the amount of data

represented by the ith Gaussian in the mixture at time t, µi,t is the mean of the

ith Gaussian at time t and Σi,t is the ith covariance at time t. η is the Gaussian

probability density function such that

η (Xt, µ,Σ) =
1

(2π)
n
2 |Σ|1/2

e−1/2(Xt−µt)
T Σ−1(Xt−µt) (3.5)

Each time a new sample is obtained, the set, {X1, . . . , Xt}, is updated and the

distribution is re-estimated [51]. To simplify computations, the covariance matrix

is assumed to be Σk,t = σ2I which assumes that the RGB values of the pixels are

independent with identical variances [45].

K is usually selected based on the memory and computational power available

[45]. However, in this research, a GMM method is used where the model’s param-

eters are constantly updated in a recursive manner and the appropriate number

of components for each pixel is selected based on an adaptive method developed

by Zivkovich [50],[51]. To update the parameters of the Gaussian Mixture Model

(weight, mean, and variance), a Mahalanobis distance is obtained from the sample

to a particular component. The threshold that determines whether the Mahalanobis

distance between the sample to a component is close or not was chosen to be three

similar to the authors who proposed this GMM method [50][51]. ’Closeness’ of a

sample to a component is represented by o which is set to 1 if the Mahalanobis

distance is less than 3 and thus the sample is considered to be ’close’ to the compo-

nent and is set to 0 otherwise. If there are no ’close’ components, a new component

is created. Based on whether it is close or not to the component, the parameters
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are then updated as illustrated in the equations below. The Mahalanobis distance

can be formulated as in equation 3.6.

D2
i =

(xt − µi)T (xt − µi)
σ2
i

(3.6)

If D2
i > 3, weight, mean, and variance are updated as in equation 3.7.

ωi ←− ωi + α (oi,t − ωi)

µi ←− µi + oi,t (α/ωi) (xt − µi)

σ2
i ←− σ2

i + oi,t (α/ωi)
(

(xt − µi)T (xt − µi)− σ2
i

)
(3.7)

where α = 1/T is an asymptotically decaying function that decreases the influence

of old samples. Having updated the parameters, all components are sorted accord-

ing to decreasing weights and the background model is approximated using the first

B largest clusters [50].

B = argminb

(
b∑
i=1

ωi > (1− cf )

)
(3.8)

where cf is the maximum amount of data that can belong to the foreground without

influencing the background model.

3.2.2 Sample Results and Conclusions

One of the advantages of using Gaussian Mixture Models (GMM) for background

subtraction is its ability to adapt to changing illumination such as weather and

day conditions in the video sequence as well as entering and leaving moving objects

from the scene [50]. Furthermore, it has the advantage of returning the entire

object extracted compared to the image differencing technique discussed in section

3.1. The result of GMM for the same current frame used for the image differencing

illustration is shown in the Figure 3.4.

GMM needs to learn many frame samples before the background subtraction

actually provides good accuracy. Cases exist when only a few frames are available.

For example, if the system is running in real time, at startup, it has only a few

frames of the video sequence available that it can use to process from. Another
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Figure 3.4: a) The current original RGB image. b) The result of GMM in black and
white. White locations indicate the detected foreground objects. c) The equivalent of
the BW result in RGB.

example is providing the system with a video sequence of tens of frames to process.

When only a few frames are provided, results tend to be noisy as shown in Figure

3.6a.

Figure 3.5: Original Frame.

Therefore, to eliminate such extra noise in the frames, some post-processing of

the GMM results is needed. Morphological operators such as removing isolated

pixels, dilating detected objects to enlarge them, filling the holes inside the objects,

and finally eroding the objects by same operator as used by dilation to shrink them

back to original size are applied to clean the image. Figure 3.6b shows the result

of post-processing.

The next section explains the statistical region merging method followed by a

section of comparison of the three different methods.
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Figure 3.6: a) The result of the Gaussian Mixture Model after only a few first frames.
Note that the results appear to include a lot of noise. b) The result of GMM after
post-processing the noisy GMM results using morphological operators.

3.3 Statistical Region Merging

Nock and Nielsen in [34] proposed the method of statistical region merging which is

a statistical image segmentation method that merges regions in a particular chosen

order. A theoretical unknown (true) image is assumed with pixels referred to as

”statistical pixels” which are characterized by distributions from which sampling of

the observed image occurs. Merging of regions is based on the similarity of different

pixel statistical expectations. Each pixel color channel is replaced by the number

of independent positive random variables specified by parameter Q. The statistical

complexity of the scene is modified by using the parameter Q which also controls

the coarseness of the image segmentation [34].

Nock and Nielsen provide a C-code implementation of their algorithm which was

used to test on the data sets used in this thesis. Although the algorithm decreases

the number of undermerged regions, the amount of overmerging is excessive. Fur-

thermore, the merging frequently merges distinct objects together as well as merges

foreground targets with the background. To test the implementation, it was ap-

plied on intersection images with varying Q values: 6, 20, 32, 72, 218, and 686.

The smaller Q is, the more merging occurs and the less numerous the regions are in

the output [34]. According to [34], Q=32 seems to be sufficient to ’nicely’ segment

many of the images [35]. For this reason, Q=32 was selected as one of the values to

test the implementation along with random values that ranged from small (Q=6)

to high (Q=686) that would illustrate the algorithm’s segmentation performance

into a few regions as well as numerous. Figures 3.7 to 3.10 illustrate the results.
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Figure 3.7: Original image used for testing SRM.

Figure 3.8: Results of SRM based on image in Figure 3.7 with varying Q: a) Q=6, b)
Q=20, c) Q=32, d) Q=72, e) Q=218, and f) Q=686.

29



Figure 3.9: Another original image used for testing SRM.

Figure 3.10: Results of SRM based on image in Figure 3.9 with varying Q: a) Q=6, b)
Q=20, c) Q=32, d) Q=72, e) Q=218, and f) Q=686.
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3.4 Comparison of Methods

Three different methods for object detection were discussed in the previous sections:

image differencing, background subtracting using Gaussian Mixture Models, and

statistical region merging. Based on the results in the images of Figures 3.7 to 3.10,

one can note that statistical region merging results in merging that does not provide

any significant information on what regions belong to the foreground or background

as well as overmerges the regions in most cases. Also, the target foreground objects

are usually not segmented as individual objects; instead, they are partly merged

with the background, subdivided into several regions, extracted only partly, or not

detected at all. For all the aforementioned reasons, the statistical region merging

method was abandoned and approaches using time-differencing and background

were considered.

Table 3.1 compares the two remaining methods by referring to their advantages

and disadvantages that have been separately mentioned in the previous sections.

The first column just numbers the rows, the second and third columns indicate the

advantage or disadvantage for each method. A plus or minus sign is used to indicate

whether the point is an advantage or disadvantage with regards to the method.

Table 3.1: Comparison of image difference and GMM

Comparison of Methods

No. Image Difference Proposed Gaussian Mixture Model

1 + Simple Implementation More Complex Implementation –

2 + Low Computational Complexity More Computationally Complex –

3 + Robust to Light Changes Also Robust to Light Changes +

4 + Needs Only two Frames to Function Performance Depends on Number of Frames –

5 + Detects Movement Instantly Needs Several Frames to Detect Sudden Movement –

6 – Results Include Ghosting Results Do Not Include Ghosting +

7 – Does Not Return Entire Object Returns Entire Object +

8 – Does Not Detect Very Small Objects Does Not Detect Very Small Objects –

Although the Gaussian Mixture Model for background subtraction approach is

computationally more expensive and requires more a priori knowledge than image

differencing method, it provides more accurate results when extraction of the whole

moving object is required. However, GMM needs to learn many frame samples

(reaching up to fifty frames) before it can provide good accuracy. If only a few

frames are provided, results tend to be noisy. Thus, the image differencing method

is useful whenever the video sequence is short because image differencing does not
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face any problems with regards to the number of frames provided (as long as there

are more than 2 frames). Furthermore, when an object remains inactive in a scene

for a long time, the GMM method will label it as part of the background. When the

object actually starts moving, the GMM requires several frames to re-adjust the

object’s labels to foreground. This problem is not faced by the image differencing

technique which will simply capture the movement of the object by consecutive

frame subtraction.

Since in this research the size of the object extracted plays an important role for

resizing vehicle models (as will be explained in following chapters), the Gaussian

Mixture Model for background subtraction was used as a default motion detection

technique. In cases where the result of the GMM was too noisy or inaccurate, the

image differencing result was substituted for GMM result for that particular frame.

An image can be assessed as too noisy when an excessive number of small objects

are detected which were not present in the previous frame and which have not

appeared at the sides of an image possibly conveying potential entering vehicles.

3.5 Analysis of Detected Object

In Figure 1.1 of chapter 1, the object extraction module was divided into two differ-

ent processes: background segmentation and foreground detection (or foreground

information extraction). The former — namely time-differencing and Gaussian

Mixture Models for background subtraction — have been discussed in the previous

sections of this chapter. The latter consists of using the information obtained from

the background subtraction algorithm along with the original images in order to

assemble vital information regarding the extracted object’s size/area, position, his-

togram, major and minor axes, initial orientation estimate, as well as the minimum

bounding box needed to encapsulate the foreground object. This is done by labeling

all the foreground detected objects in the black and white (BW) images returned

by the GMM or temporal differencing methods. Labeling takes place by scanning

the BW images column-by-column for 8-connectivity pixels. For each object found,

a number is given greater than 1 if it is foreground (white) and 0 if it is background.

A Matlab function regionprops can then be used to extract different information

about each labeled detected object: bounding box, orientation, centroid, area, and

minor/major axes. The bounding box, the smallest rectangle containing the de-

tected region, is described in terms of [corner width] where corner is the upper left

corner of the bounding box in the form of [x y] for the 2D images used, while width
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is in the form of [widthx widthy] which specifies the width of the rectangle along

the x and y axes respectively. Once the bounding box is obtained, the colors of

the object can be extracted within the region of interest (ROI) constrained by the

bounding box as shown in equation 3.9. I is the original RGB image, [x y] is the

upper left corner of the bounding box, and [widthx widthy] are the width of the

bounding box along x and y axes.

R = I(i, j, 1)∀(i ∈ {x, ..., x+ widthx}, j ∈ {y, ..., y + widthy}) (3.9)

G = I(i, j, 2)∀(i ∈ {x, ..., x+ widthx}, j ∈ {y, ..., y + widthy}) (3.10)

B = I(i, j, 3)∀(i ∈ {x, ..., x+ widthx}, j ∈ {y, ..., y + widthy}) (3.11)

Figure 3.11 illustrates the various aspects of the object under scrutiny.

Figure 3.11: Different aspects of every detected car are extracted and stored. The left
side of the image illustrates that the histograms of each color distribution of detected
object pixels is a useful component to describe the object extracted. The right side of the
image shows other important aspects to be extracted about the detected object: bounding
box, centroid, orientation, area size inside the bounding box, as well as the major and
minor axes.
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3.6 Chapter Summary

Chapter 3 described the first module — object extraction — of the automatic

surveillance system implemented. This module is made up of two major compo-

nents: foreground detection and foreground information extraction. Three meth-

ods for foreground detection — temporal differencing, Gaussian Mixture Models

for background subtracting, and statistical region merging — are investigated and

discussed in sections 3.1, 3.2, and 3.3 respectively along with their advantages and

disadvantages. Section 3.4 compares the three investigated methods and concludes

that the statistical region merging method is not suitable for the construction of

an automatic surveillance system due to its tendency to overmerge and segment

the image into incorrect regions. The remaining two methods are then compared

against each other and the Gaussian Mixture Model for background subtraction is

chosen as the primary method for object detection in this work. Section 3.5 dis-

cusses the second component of the foreground extraction module which involves

extracting useful information about each detected object — such as the color his-

tograms, the minimum bounding box that can engulf the object, area, approximate

orientation, centroid, and major/minor axes. After the information per object is

obtained, it is passed along with the original image to the next module: foreground

recognition which is explained in the Chapter 4.

34



Chapter 4

Foreground Modeling

In the previous chapter, the different methods for the purpose of image differencing,

background subtraction, and target object information extraction that are used

in the first module — object detection — were explained. This chapter focuses

on the second module of the automatic surveillance system — object recognition.

The different steps for vehicle modeling, object recognition, and classification are

explained in the following sections.

4.1 Three-dimensional Models

There are various approaches in the literature that have been used to represent an

object — namely rigid models and non-rigid models [6] [14] [24]. Rigid models,

whereby a large amount of templates are stored and compared to the detected ob-

ject, are extremely computationally expensive [24]. On the other hand, by using

the method of non-rigid models, a parametrized generic vehicle model can be con-

structed and used to determine whether an object in the scene is a vehicle or not.

Parametrized models can vary from being a 3D contour model such as in [49] to a

more detailed vehicle model such as in [17]. In this work, a 3D model car is used

similar to one proposed by Koller [24] and used by Nagel and others [15] [37]. The

model will be explained in the next section followed by a discussion of 3D model

mapping to 2D image information.
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4.1.1 Parametric Car Model

The parametrized polyhedral model that is used as a generic vehicle model con-

stitutes of a vector with 11 different distance parameters unlike Koller’s version

[15] [24] where 12 parameters are used. Based on experiments, it was found that

the distance from ground to car base does not contribute to the overall recognition

process and was thus eliminated. Each of the 11 parameters represent the length,

height, or width of a particular car sector as shown in Figure 4.1.

Figure 4.1: Parametrized Polyhedral Generic Vehicle Model Used in this thesis.

Thus, the vehicle-parameters vector used to represent the generic car model can

be expressed as shown in equation 4.1.

v = {bl, bw, tl, tw, th, fwl, f l, fh, hl, hh,mh} (4.1)

where each of the vehicle parameters are then defined in terms of the three major

variables: H, L, and W . These variables represent the total height, length, and

width (respectively) of the 3D car. By defining the vehicle parameters in terms of

these three variables, it becomes possible to create categories of vehicles (for e.g.

sedan, SUV... etc) by altering the ratios per category. The representations of each

36



of the vector, v, parameters along with the definitions in terms of H, L, and W are

shown in the following list.

◦ bl = L : length of vehicle’s base (total vehicle length)

◦ bw = W : width of vehicle’s base (total vehicle width)

◦ tl = 2.5L/10: length of vehicle’s top

◦ tw = 1.6W/2 : width of vehicle’s top

◦ th = H : height of vehicle from base till top

◦ fwl = 5L/10 : length of vehicle front added to length of front window

◦ fl = 2L/10 : length of vehicle’s front

◦ fh = 2H/4 : height of vehicle’s front to base (thickness of vehicle at front)

◦ hl = 1.5L/10 : length of the vehicle’s rear hood

◦ hh = 2.5H/4 : height of vehicle’s rear hood to base (thickness of vehicle at

the back)

◦ ah = 2.5H/4 : height of vehicle from base to windows on the side (mid-car

height)

Each of the three variables — H, L , and W — are used to scale the 3D

generic model of a vehicle. Those variables are then matched to the car information

obtained from the first module — object extraction. Toward the end of chapter

3, the different data obtained about each object extracted were explained. From

the information that was attained about the foreground object were the size (area

of object), major and minor axes of the ellipse encompassing the object, and the

minimum bounding box needed to overlap the foreground object. This information

aids in calculating the length and width of the object in 2D. Once the measurements

are available for the 2D detected object, the 3D car model can be mapped and

rescaled to match the size of the 2D vehicle. The process of model mapping to 2D

is explained in the next section.
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4.1.2 3D-2D Projection

To map the 3D vehicle model to 2D, a pinhole perspective is assumed to simplify

the perspective projection computations. Although the pinhole model is quite a

straightforward method, it provides an acceptable approximation for the imaging

process [11]. The 3D model can be treated similar to a real-world 3D vehicle

and thus use the same projection matrices to map a real-world object to image

coordinates.

Figure 4.2: 3D model to image coordinates illustration.

Similar to Figure 4.2, the wireframe vehicle model consists of a group of edge

endpoints in the world coordinates (Car X-axis, Car Y-axis, and Car Z-axis) that

need to be projected unto the camera coordinates (Camera X-axis, Camera Y -axis,

and Camera Z-axis) and then project the latter to image coordinates (x,y) whereby

one dimension is lost. To project world coordinates to camera coordinates, some

translations and rotations should take place.

Let’s assume there is a point on an object with coordinates (X1,Y 1,Z1) with

respect to the world coordinates (XW ,YW ,ZW ). If this point is translated by dx,dy,

and dz respectively, the resulting new coordinates of the point (X2,Y 2,Z2) will be

as shown in equations 4.2 to 4.4 [42].
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X2 = X1 + dx (4.2)

Y 2 = Y 1 + dy (4.3)

Z2 = Z1 + dz (4.4)

Those equations can be re-written in matrix form as shown in equations 4.5 and

4.6.


X2

Y 2

Z2

1

 =


1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1



X1

Y 1

Z1

1

 (4.5)


X2

Y 2

Z2

1

 =


1 0 0

0 1 0 T

0 0 1

0 0 0 1



X1

Y 1

Z1

1

 (4.6)

Assume a segment with the endpoint of (X1,Y 1,Z1) is rotated about an angle of

θ around the Z-axis. The final rotation matrices are shown in equations 4.7 and

4.8 [42].


X2

Y 2

Z2

1

 =


cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1



X1

Y 1

Z1

1

 (4.7)


X2

Y 2

Z2

1

 = Rθ


X1

Y 1

Z1

1

 (4.8)

The final general equation that is needed to translate the world coordinates to the

camera coordinates as illustrated in Figure 4.3 is shown in equation 4.9.


XC

YC

ZC

1

 =

[
R T

0T 1

]
XW

YW

ZW

1

 (4.9)
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Figure 4.3: 3D Object Point converted from World Coordinates to Camera Coordinates.

Having converted the world coordinates to camera coordinates, the next step is

to project the camera coordinates unto the image. Let point P in camera coordi-

nates be represented by (x,y,z) for pinhole camera. Let f be the focal length of the

camera and x′,y′ be the equivalent image coordinates of (x,y,z). Figure 4.4 shows

a diagram of the projections and equations 4.10 and 4.11 state the final projections

from the camera to image coordinates [11][46][42].

 x′

y′

1

 =

 1 0 0 0

0 1 0 0

0 0 −1/f 0



x

y

z

1

 (4.10)

 x′

y′

1

 = C


x

y

z

1

 (4.11)

Thus, concatenating the previous matrices for world to camera and camera to image

projections would result in the general equation that is used to project real world

objects to image coordinates as stated in equation 4.12.

[x′] = C [R|T ]

[
X

1

]
(4.12)

Equation 4.12 is the central form that was applied in the work presented in this

thesis where X is the 3D vehicle model being projected to a 2D image. The focal

length of the camera was assumed to be known because it is easily obtainable from

the camera specifications as long as the camera is known. This solves the camera
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Figure 4.4: 3D Camera Coordinates to 2D Image Coordinates.

to image projection. As for the rotations and translations needed for the world

to camera projections, there are basically three different rotations — θ around Z-

axis (which has been mentioned in equation 4.7), β around Y -axis, and α around

X-axis. The most vital one to compute is the rotation around the Z-axis (θ)

because it determines the direction which the car is traveling in. β configures the

amount of tilt of the car to its side (refer to Figure 4.1). As for α, this adjusts

the amount the car is tilting forward or backward (refer to Figure 4.1). In general,

the least that changes among different data sets is the rotation around X-axis, α,

because the camera is mounted on a pole looking downwards with mostly almost

the same range of tilt. Thus, this angle is assumed. Furthermore, to simplify the

amount of iterations needed, the rotation around Y -axis, β is also assumed. The

only angle that is determined per frame when matching the best 3D model to the

car is the θ angle. The matching process will be explained in more details in the

next section. Therefore, the following equations 4.13, 4.14, and 4.15 illustrate the

rotations around Z-axis, Y -axis, and X-axis respectively used in the MATLAB

code to compute the image coordinates of the 3D car model.

Rθ =


cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1

 (4.13)
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Rβ =


cos β 0 sin β 0

0 1 0 0

− sin β 0 cos β 0

0 0 0 1

 (4.14)

Rα =


1 0 0 0

0 cosα − sinα 0

0 sinα cosα 0

0 0 0 1

 (4.15)

The above rotations are then used to calculate the translations needed to project

the 3D car model unto the detected object in the image obtained in the first module

— object extraction. The object extraction module detects the object and returns

the object’s location. The location of the object attained by the first module

is the destination at which the model projection should be overlapped. The 3D

model location is known because it was designed from scratch. Therefore, the

distance increment needed to translate the 3D model object to the location of the

2D detected object can be derived by subtracting one of the rotated coordinates of

the 3D model from the final destination of the detected object in the image. Those

translation and rotations are then used to map the model to image.

4.2 Model Instantiation

In the previous section, the 3D generic wireframe model was explained and the 3D

to 2D projection equations used were stated. In this section, the edge information

extracted from the image per detected object is discussed and the best-model-to

image matching process is explained.

4.2.1 2D Vehicle Edge Detection

The generic polyhedral 3D model used to describe a vehicle is essentially composed

of a group of connected vectors. Therefore, to match the 3D wireframe vehicle

model to the detected object, the best route would be by comparing the edge ele-

ments obtained of the foreground object since it is only logical to compare features

of the same type.
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Once an object is detected by the first module, the object detected within the

bounding box is converted from a color image to a greyscale image using Otsu’s

method [36]. A Canny edge filter [8] is used on the greyscale equivalent of the object

within the bounding box to extract the different edges. An edge detector detects

different major local changes in an image’s intensity levels which are quantified by

the image gradients [1]. In the case of a Canny filter, the gradient is computed

through the use of a Gaussian Filter derivative. The reason for using the Canny

edge detector is due to its good noise invariance and minimal error [8]. The Canny

edge detector that was applied during implementation was that of range between

two thresholds, Υ1=0.1 and Υ2=0.2, whereby the thresholds are required to find

the strong and weak edges which are kept in the output only if they are attached

to strong edges [8]. This method ensures that very weak independent edges are

eliminated from the result. The sigma used to specify the standard deviation of the

Gaussian filter was chosen to be 2 throughout the implementation because based

on experimentation, 2 yielded the most satisfactory results for the purpose of this

work. Figure 4.5 illustrates an example of an original image of a car and the result

of a Canny edge detector applied to the image.

Figure 4.5: a) Cropped image the size of a bounding box around the detected car. b)
Canny edge detector result of greyscale of left image.

After edge detection, the next step is to work on linking and grouping related

edges and separating the rest. This process makes the matching of the model to

image data more feasible. The process of edge linking was implemented through

the use of Kovesi’s functions for Edge linking and line segment fitting [25]. The

function links the edge pixels to each other to form a list per each edge contour.

Contours that amount to being smaller than five pixels long are eliminated. Each

independent contour is then colored in a unique color as shown in Figure 4.6.

The obtained contours can then be fitted using line segments (curves are ap-

proximated by lines) and stored to be later compared with the model lines. The

reason for fitting the contours with lines is simply to make comparison of the model
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Figure 4.6: Edges obtained in right image of Figure 4.5 are linked and distinguished as
unique contours.

edges more practical with that of the image. The function used to obtain the line

filled segments are also part of Kovesi’s functions [25]. Figure 4.7 depicts the result

of line segmenting the image shown in Figure 4.6.

Figure 4.7: Line fitted segments.

With regards to model scaling, the 3D projected model is scaled with respect

to the bounding box attained around the detected foreground object by the first

module. Therefore, whenever there are scale changes within a test set, the detection

phase identifies the object’s size and based on this information the projected 3D

model is changed with accordance. This method ensures that the system functions

under scale changes unlike works where the sizes are assumed constant.

To conclude, this sub-section elaborated on the methods used to extract the

detected object edge information and link them in such a manner as to make the

edges ready to be matched against the projected 3D car model edges. In the next

sub-section (4.2.2), the model matching technique is investigated.

4.2.2 Model to Data Matching

To match the best 3D model to the detected object edges, the 3D model is projected,

scaled, and then iterated over a range of rotations around the Z-axis until the

best match to the detected object’s edges is found. The approach investigated
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for matching is Hausdorff method [40]. The method is discussed in the following

section. Toward the end, the model matching results are presented.

Hausdorff Method Theory

The method examined for the purpose of matching is the Hausdorff distance mea-

sure. The Hausdorff distance is characterized by being the distance between two

point sets where one is the model edge point set and the other is the image edge

point set [40]. The Hausdorff measure computes the extent to which each point of

an image set is close to a point on the model and vice versa [19]. The Hausdorff

distance can be applied to this work to find translated and scaled instances of a

model vehicle even if the image includes multiple objects, noise, occlusion, and

specious features [40]. The 3D projected model is iterated over a range of different

Z-axis rotations while computing the Hausdorff distance at each angle. The mini-

mal Hausdorff distance to the detected object can be considered the best candidate

for the foreground car. The basic form of the Hausdorff distance can be defined as

in equations 4.16-4.17 [18].

Let M be the model point set and I be the image point set.

DH(M, I) = max(h(M, I), h(I,M)) (4.16)

h(M, I) = max
m∈M

min
i∈I
|m− i| (4.17)

where ‖.‖ is the L2 norm.

The basic meaning behind the above equations is that h(M, I) can be calculated

by taking every point in M and getting its distance to the closest point in I and

obtaining the maximum of the set of obtained distances. Then, going over a similar

procedure for computing h(I,M). To get the Hausdorff distance, the maximum of

the two, h(M, I) and h(I,M), is returned [40].

Model Matching Results

The model and image edge points were used as features to be matched up by

the Hausdorff distance method previously covered. The location and scale of the

detected object was obtained from the first module and therefore the translation

that the scaled 3D model had to undergo could be calculated. The vital point
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was to match the vehicle model to the image car with the correct orientation.

Furthermore, the matching process must also be able to distinguish between vehicle

and non-vehicle foreground objects.

A total of 90 images were used to test the Hausdorff measure performance. The

reason why only 90 images were used to test the method is because it is further

tested later on in Chapter 6 when the overall system is examined. The Hausdorff

distance was applied on different training images prior to the testing to determine an

estimate for a threshold that would separate the foreground objects into vehicles

and non-vehicles. Other images were then used to test the Hausdorff matching

process on vehicle and non-vehicle objects. Figure 4.8 illustrate some sample test

sets used.

Table 4.2 reports the results obtained from testing the 90 images on Hausdorff

matching method. The first and second columns state the type of images (non-

vehicle and vehicle) and their number, respectively. The third and fourth columns

declare the number of images as a percentage that were classified as vehicle or

non-vehicle.

Table 4.1: Hausdorff Matching Results

Image

Type

Total Image No. Classified as Vehicle(%) Classified as Non-

vehicle(%)

Vehicle 60 86.7% 13.3%

Non-

vehicle

30 10.0% 90.0%

Figure 4.8: a) Sample vehicles. b) Sample non-vehicles.

Table 4.1 reflects some advantages of using the Hausdorff method. Besides be-

ing a convenient method to compare sets of edge points and being robust in spite
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of occlusion, noise, and multiple objects (as previously mentioned), it also has an

overall performance of successfully classifying objects into vehicle and non-vehicle

of around 88% and is also able to overlap the vehicle model with the correct ori-

entation. Figure 4.9 illustrates additional images of successfully overlapped models

based on the best chosen model by Hausdorff.

Figure 4.9: Additional Examples.

However, the major drawback of the Hausdorff method is its computational

complexity. If two polygons are being matched with n and m vertices, then the

total computational complexity will be O(n+m) [13]. The system can still be made

to work in real-time if frames are skipped (not every frame is processed). Skipping

frames would decrease the amount of processing needed as well as eliminate the

need to repeat the processing for almost identical images (since the change between

consecutive frames is very minute). In other words, if there are F frames in a

video sequence and each frame has P polygons to match to the car-model where

each polygon match has a computational complexity of O(n+m), then the total

computational complexity for the video sequence will be a function of F ,P ,n, and

m. Since P ,n, and m, can not be altered (they are all needed for comparison), F

can be decreased — for instance to F/3 — to decrease the overall time it takes

to process the video sequence. Furthermore, by skipping frames, the system has

more time to finish processing of the current frame before it receives a new frame

to process. In what follows, the process of iteration around the z-axis will be

depicted graphically (Figure 4.10) and then a graph that shows the computational

times versus the degree range covered in the search for the best match angle will

be included in Figure 4.11.

To illustrate the process of iterating over different θ values around the z-axis

and returning the best match based on Hausdorff method — the best match is the

one that has the smallest Hausdorff distance — Figure 4.10 is a series of images

showing the different plausible rotations and the best match chosen for a single car.
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The default angle is the angle that can be computed from the initial orientation

estimate of the foreground object obtained from the first module (refer to chapter

3). A search around the default angle takes place over a search area ranging from

default–ρ to default+ρ where ρ is specified by the user. Experimentally, the best

search range was found to be in the span of 35◦ around the default angle which was

set as a constant in the rest of the surveillance system implemented.

Figure 4.10: Iteration around z-axis and best chosen match.

If more than one car is in the image, the same process of matching the projected

3D model to the edges of a vehicle in the 2D image takes place for each detected

vehicle. The system loops throughout the total number of detected vehicles in the

current image [i = 1 : M , where M is the total number of cars in the current image],

at each iteration performing the Hausdorff matching procedure for the current car

(i), classifying, and assigning the best found orientation of the projected 3D vehicle

model to the vehicle edges of the current car. Then, the loop increments, (i + 1),

until all the vehicles are matched with a model.

Different search ranges were attempted and the computational times needed to

process the first and second modules of the system are recorded. As the search area

increases, the computational time in seconds per frame also increases. Figure 4.11

shows the relationship. A span of 0◦ means that the default value was processed

only. The other ranges are the search areas around the default value and the default

value inclusive.
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Figure 4.11: The graph illustrates the time in seconds needed to process each frame in
Matlab (1.73 GHz single core processor) with respect to the range of degree values tried
in the Hausdorff matching process before arriving at the best orientation. The recorded
times include the processing of the first module — object extraction — and is thus the
total of the time needed to process the first and second modules. According to the graph,
as the search for the best angle increases, the processing time also increases reaching up
to 5 seconds for a large search area of 80 degrees around the initial default angle.

4.3 Chapter Summary

This chapter elaborated on the second module of the system — foreground recog-

nition module. The first section (Section 4.1) explicated the generic 3D vehicle

model used and the needed projections to convert it to 2D. The 3D vehicle model

used in this work is based on a generic wireframe model constructed from using 11

vectors to describe the length, height, and width of different sections of the car.

The 3D model is then projected onto a 2D image using the equations stated in

sub-section 4.1.2. Afterward, the information extracted (namely edges) about the

foreground object was discussed in section 4.2. The Canny edge detector that was

used in this work was briefly explained. Finally, the Hausdorff matching method

used to match the 3D projected model to the image edge information was clarified

in section 4.2.2 and the results of the matching were shown. In Chapter 5, the third

module (tracking) will be examined.

49



Chapter 5

Object Tracking

In the previous chapters, the first two modules — object extraction and object

recognition — responsible for detecting, recognizing, and classifying the object were

discussed. In this chapter, tracking, the third and final module of the surveillance

system, is explained. In the first section, the tracking algorithm implemented is

explicated. Later, the results of the tracking alone are briefly illustrated with a

short discussion.

5.1 Tracking Algorithm

Since multi-object tracking is basically an assignment problem [20], the central

concept used for multi-vehicle tracking in this surveillance system is based on ma-

trix associations that relate previous car information to the cars found in the cur-

rent frame. The problem is formulated similar to that of an optimization problem

whereby the overall cost function is being minimized. Next, the different inputs are

first mentioned, the different information taken into account in the optimization

process are discussed, and finally the general cost function is stated. Figure 5.1 is

a summary of the algorithm described.

After the second module — object recognition — is processed, the classifica-

tion information pertaining to each foreground object is available. The foreground

objects that are classified as vehicles are kept to be processed in the third module

(tracking). For each of these remaining vehicles, information from the first module

regarding the vehicles’ numbers, areas, RGB histograms, and locations is passed

along with the information attained from the second module regarding the best

chosen orientation of the vehicle model and the classification type (vehicle). This
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Figure 5.1: Diagram of the tracking algorithm.
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process takes place for every new frame. The information obtained from each of

these modules is shown in blocks 1a and 1b in Figure 5.1.

For the current frame, the system asks itself whether this is the first frame it

receives or not (block 1c in Figure 5.1). If the current frame is the first frame, then

a new history log is created per each detected object classified as a vehicle (block

2a). The history log is essentially a matrix of size m× n× p, where for each point

in time (i.e. per frame), each row belongs to a particular car and the columns store

the different information of the car (RGB, centroid, type, car status (is the car still

active? did the car leave? is the car just entering?), ... etc). An example of a

history log is illustrated in Figure 5.2. Since this is the first frame, there would be

no past information and the only information that is entered in the history log is

the current information (block 2c).

Figure 5.2: Example of a history log illustrating the attributes inserted in the columns
corresponding to each car (row). This is assimilated for all frames (p frames).

If the current frame is not the first frame, the current cars along with their

information are detected and stored in a temporary matrix. At this point, it is

important to find out whether there are any new cars in the scene or any cars that

have left the scene. The current number of detected vehicles is compared to the

number of vehicles in the previous frame. If the cars are equal in number and no

cars have simultaneously just entered and left the scene (block 3a), then the next

step would be minimizing the cost function by applying nearest neighbor classifier

(block 5). Otherwise, if the cars in the previous frame are not equal to the number

detected in the current frame, this means that there should be some new cars that
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entered the scene or left the scene. The car that has left the scene is identified

from the previous frame information and is eliminated from the matching process

with the current cars. Furthermore, the car that just entered the current frame is

also eliminated from the matching process to the previous cars since it is assigned

a new slot in the history log.

There are only limited ways a car can enter or leave the scene and those consti-

tute of crossing the edge of the image such that it is out of camera view. Thus, the

locations of the cars in the previous frames are scanned to determine if there were

any entering cars or leaving cars. To simplify the problem, prior knowledge about

where the cars leave the scene and where they enter the scene (i.e. prior knowl-

edge about the image extremities as shown in Figure 5.3) was assumed. Similar

assumptions were made about two-lane roads.

Figure 5.3: Example of entering and leaving regions.

If a car is found to be leaving the scene, its status is changed to inactive to

eliminate it from the association process in the next frame. If a car is entering, a

new slot is added for it in the history log with all the new information about it.

Its status is recorded as ’entering car’ in order to eliminate it from the association

process for the current frame (since it did not exist before). Only the cars that

existed previously undergo the association process (block 5).

In case there are fewer cars in the current frame than the previous frame and no

car had left the scene since the previous frame, it means that there is a possibility

that there was a car that got occluded currently. For this reason, the car that has

disappeared from the previous frame is identified by having the worst match to

all the current cars. This car is saved aside along with its information in case an

occlusion is occurring. Later on, when the car reappears, a case occurs where more

cars are in the current frame than in the previous frame. If no car had entered the

scene through the edges of the image, the new car is isolated and labeled as the
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occluded car. This is then linked to the car that was labeled as occluded when a

car suddenly disappeared. Such linking compensates for the occlusion over a few

frames even if there have been failures in the detection module (did not detect car)

and ensures that the tracks are continuous over the video sequence. However, if a

car does not reappear after a few frames, the information about the occluded car

is deleted.

The association process is a minimization process of the cost function that takes

place by using nearest neighbor. A Euclidean distance taking into consideration all

the weighted car attributes is applied on each pair of cars — one past car and one

present car — in order to determine which two cars are associated. Assume there

are P past cars and C current cars.

The cost function to be minimized that was created and implemented in this

thesis is shown in equation 5.1. X and Y are the coordinates of the vehicle’s

centroid, R,G and B are the average colors, Vx and Vy are the velocity components,

and av means average of color intensity for vehicle i or j. The position of the vehicle

gets the highest weighing, followed by the RGB values, and then by the velocity.

cost(i, j) = (w1,1Xi + w1,2Yi + w1,3Ravi + w1,4Gavi + w1,5Bavi + w1,6Vxi + w1,7Vyi)
2

−(w2,1Xj + w2,2Yj + w2,3Ravj + w2,4Gavj + w2,5Bavj + w2,6Vxj + w2,7Vyj)
2

(5.1)

where i ≤ P and j ≤ C

Additional constraints are as follows:

P ≥ 0;C ≥ 0 (5.2)

0 ≤ w1,1, w1,2, w1,3, w1,4, w1,5, w1,6, w1,7 < 1 (5.3)

0 ≤ w2,1, w2,2, w2,3, w2,4, w2,5, w2,6, w2,7 < 1 (5.4)

7∑
k=1

w1,k = 1 (5.5)

7∑
g=1

w2,g = 1 (5.6)

Therefore, the constraints state that the summation of the weights should be max-

imum 1 (with none of the weights being 1) and that the number of cars cannot
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logically go below 0. The cost function is solved by using a nearest neighbor search

(or proximity search) which basically looks for the closest point in the metric spaces.

The associations found are later recorded in a temporary matrix (block 6).

For each pair of associated vehicles (current and past), the past vehicle’s infor-

mation is retrieved from the history log. Since the association basically means that

it is the same car in a new position, the new (or updated) information about the

current position of the car is added in the correct history slot. This searching and

sorting step is vital for the process of keeping the tracks correct. If the vehicle is

recorded in the wrong slot, the plotted tracks would end up being incorrect (block

7).

A pseudo code for the tracking algorithm is outlined in Algorithm 1.

Algorithm 1 Tracking Module Pseudo code

Require: Current image, number of vehicles detected, information extracted about

each vehicle

if first frame of video sequence then

for each detected car in current frame do

INSERT car information (centroid, RGB values, velocity) into a row of the

history matrix

end for

else

if Number of detected cars in current frame = Number of detected cars in

previous frame then

RUN ALGORITHM FOR EQUAL CASE

else if Number of detected cars in current frame > Number of detected cars

in previous frame then

RUN CURRENT CARS MORE THAN PREVIOUS ALGORITHM

else

RUN PREVIOUS CARS MORE THAN CURRENT ALGORITHM

end if

end if
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Algorithm 2 EQUAL CASE ALGORITHM

CHECK if any cars are entering or leaving

if No cars are leaving or entering then

for each detected car in current frame do

FIND best match to car in previous frame using minimization of cost func-

tion

INSERT current car information to matched car information in history ma-

trix

end for

else if A car has left the image and another car entered the image then

FIND the cars that entered the image

LABEL those cars as ’Entering Car’

INSERT current entering car information to new row in the History matrix

and eliminate them from matching procedure

FIND the cars that left the image from previous frame

LABEL those cars as ’Inactive’ and eliminate them from matching procedure

for each detected car in current frame do

MATCH all remaining current detected cars to cars from previous frame

based on minimization of cost function

INSERT remaining current car information to matched car information in

history matrix

end for

end if
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Algorithm 3 CURRENT CARS MORE THAN PREVIOUS ALGORITHM

CHECK if any cars entered the frame

if A car entered the scene then

FIND the cars that entered the image

LABEL those cars as ’Entering Car’

INSERT current entering car information to new row in the History matrix

for each detected car in current frame do

MATCH all remaining current detected cars to cars from previous frame

based on minimization of cost function

INSERT remaining current car information to matched car information in

history matrix

end for

else if A car did not enter the scene then

A possible case of occlusion took place in previous frame

for each detected car in previous frame do

MATCH all previous detected cars to cars from current frame based on

minimization of cost function

IDENTIFY car with worst match and label it as ’OCCLUDED’

CHECK OCCLUDED-matrix to check if this car was OCCLUDED previ-

ously

if The car was occluded then

Match the occluded cars to each other to create a continuous track

else

An error has occurred.

end if

INSERT remaining current car information to matched car information in

history matrix

end for

end if
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Algorithm 4 PREVIOUS CARS MORE THAN CURRENT ALGORITHM

CHECK if any cars left the frame

if A car left the scene then

FIND the cars that left from the previous image

LABEL those cars as ’Leaving Car’

IDENTIFY the car that has left from previous cars and eliminate it from

matching process

for each detected car in current frame do

MATCH all current detected cars to remaining cars from previous frame

based on minimization of cost function

INSERT remaining current car information to matched car information in

history matrix

end for

else if A car did not leave the scene then

A possible case of occlusion is taking place in current frame

for each detected car in current frame do

MATCH all current detected cars to cars from previous frame based on

minimization of cost function

IDENTIFY car with worst match and label it as ’OCCLUDED’

INSERT OCCLUDED car information into OCCLUDED-matrix

INSERT remaining current car information to matched car information in

history matrix

end for

end if
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5.2 Brief Discussion and Results

In the previous section, the algorithm was described in detail. In this section, the

general advantages and drawbacks are outlined followed by a few results.

A few of the advantages are listed below.

◦ The tracker is a multi-object tracker since it deals with proper object associ-

ation.

◦ The tracker incorporates several important conditions. First, it deals with

cars that are entering and leaving the scene by updating the history log ap-

propriately. Furthermore, it is able to conclude that some false detection has

occurred when it finds that the number of current cars are more or less than

previous cars yet no car has just entered or left the scene. In this case, it

matches up all the cars and the odd one is monitored like a new car.

◦ Using these different conditions (outlined in detail in pseudo code in section

5.1), the tracking module is able to identify if an occlusion has occurred for

a few frames. At that point, it links the conditions of the car before total

occlusion to the conditions when it leaves total occlusion state to form a

continuous track.

◦ Since there is no prior prediction model embedded in the system, the tracker

should theoretically deal with ’unpredictable’ behavior such as changing lanes

(although this case has not been tested because no such data was available).

Some drawbacks also exist.

◦ If there is a dense traffic with similar looking cars (similar RGB) at a close

location and traveling at similar speeds, the association matrix might incor-

rectly assign one car to another.

◦ The tracking system depends on the previous two modules. Therefore, if the

first module does not detect the vehicles or the second module misclassifies an

object as a vehicle, then the tracker might also function incorrectly. Although

the tracker does compensate and form continuous tracks for objects that

undergo full occlusion for a few frames, if the full (100%) occlusion extends

over several frames (eg. 5), then the tracking module will eliminate the object

from being tracked. Note that the condition is full occlusion. As long as
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partial occlusion of the car reappears, the tracker can continue tracking the

object.

◦ Though the prediction models can be a drawback because using them would

mean one is assuming knowledge of vehicle behavior, they also provide some

support for cases of occlusion. If a tracker predicts that there should be a

car yet detects none, it can compensate in cases of full occlusion if prediction

is used. On the other hand, the recognition module is the one that handles

cases of partial occlusion.

Figures 5.4 to 5.7 illustrate some sample results of the module. A few results

are shown because more test evaluations are made in the next chapter.

Figure 5.4: Sample frames from a video sequence of successful tracking of a far car in
a monotone background.

5.3 Chapter Summary

In this chapter, the third major module — tracking module — of the implemented

surveillance system was discussed in details. The method used to track is based on
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Figure 5.5: Sample frames from an intersection video sequence of successful tracking of
cars.

Figure 5.6: Sample frames from a zoomed in video sequence of successful tracking of
cars.
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Figure 5.7: The vehicle in the circle was not tracked because it was not detected over
several frames. Therefore, it was eliminated from being tracked by the tracker.

a deterministic matrix association approach whereby a cost function is minimized.

The algorithm used was based on minimizing the euclidean distance of different

vehicle attributes such as position, velocity, and average RGB values. The algorithm

takes into consideration various conditions that might occur during tracking and

solves each of those using the method explicated in the pseudo codes included in

Section 5.1. Section 5.2 outlines the main advantages and drawbacks of the system

and illustrates some examples of tracking.
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Chapter 6

Overall System Results

In the previous chapter, the different modules of the surveillance system — object

extraction, object recognition, and object tracking — were explained in detail.

Some results relating to each individual module were shown in their respective

chapters. This chapter focuses on presenting the results of the overall developed

surveillance system. The first section of this chapter explains the types of data sets

used and the second section discusses the grading scale used to assess the results.

The third section presents the results that are evaluated based on the success rates

in both normal conditions (daylight with original image noise and resolution) as well

as altered conditions with respect to light conditions, image resolution, and image

noise. Furthermore, the proposed system is also tested with respect to various road

types, camera perspectives, and occlusion. The chapter ends with a revisit to the

objectives of the surveillance system and a discussion of results.

6.1 Data Sets Used

The data sets that were used mainly constituted of video sequences of different

types of roads at different camera perspectives. The camera was mounted on a

pole above the different road varieties as depicted in Figure 6.1. The types of

roads included highways and intersections. The camera perspective varied between

being very close range or wide range for the highway data sets and high and middle

altitude for the intersection video sequences. The images that follow illustrate

sample images from each data set used.

The first set of images (Figure 6.2) illustrates the case where the camera is

directed toward the highway at a wider angle away from the horizontal plane parallel
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Figure 6.1: Example of a camera mounted on a pole above highways and recording
video sequences (Source: Texas Transportation Institute).

to the road. In other words, the camera’s viewpoint covers a shorter distance on the

road and cars appear relatively larger than in cases where a larger area is viewed

by the camera as shown in Figure 6.3.

Figure 6.2: Sample Frames from Video Sequence of Close-Range Perspective of a High-
way (Source: Miovision Technologies Inc.).

The second set of images (Figure 6.3) show the data sets where the camera

viewpoint covers a wider section of the highway. Therefore, in this case, the car

scale changes from being very minute to clearly visible as it approaches the location

of the camera.

The following sample images (Figure 6.4) are part of a data set in which the
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Figure 6.3: Sample Frames from Video Sequence of Far-Range Perspective of a Highway
(Source: Miovision Technologies Inc.).

camera tilt and viewpoint are very similar to that of the second data set; however,

the highway design is more complex.

Figure 6.4: Sample Frames from another Video Sequence of Far-Range Perspective of
a Highway (Source: Miovision Technologies Inc.).

In the following two data sets, the road type is an intersection. Two different

camera heights are used. The first intersection case has the highest camera height

(Figure 6.5), whereas the other one has medium camera height respectively (Figure

6.6)

The proposed system was also tested on a data set of a bridge at a distance. In

that case, the cars appear small (few tens of pixels in length) and the viewpoint of
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Figure 6.5: Sample Frames from Video Sequence of an Intersection from a high-mounted
camera perspective (Source: Miovision Technologies Inc.).

Figure 6.6: Sample Frames from Video Sequence of an Intersection from a medium-
height mounted camera perspective (Source: Miovision Technologies Inc.).
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the bridge is sideways (Figure 6.7).

Figure 6.7: Sample Frames from Video Sequence of a bridge from a side-view perspective
(Source: Aimetis).

The total number of test sets amounted to 114 different test sets with a total of

around 19,000 frames . Those tests included 26 test sets with normal conditions, 4

test sets with different resolutions, 13 test sets with 6 different light conditions (78

test sets total), and 6 different test sets with varying image noise.

6.2 Grading Scale

For each of the following sections, the developed system is tested using various test

sets with various road types, camera perspectives, scale change, image resolution,

light conditions, and image noise. In order to determine the performance of the

system, a grading system is developed and used for all the different tests. Several

key points are crucial to examine: background subtraction (first module of the

system), object recognition (second module of the system), tracking (third module

of the system), overall performance, point of breakdown of the system, and reasons

for a test failure. For each of the three modules, a 4 point grade system is used

to determine the module’s performance. Slightly similar to Nagel’s grading system

in [37], results are assessed as ’very good’ (denoted as ’4’), ’good’ (denoted as ’3’),

’tolerable’ (denoted as ’2’), and ’failure’ (denoted as ’1’). It is important to note

that the data sets used did not have ground truth for the vehicles. Therefore, the

tracking was assessed based on visual feedback. Table 6.1 illustrates the four grade

scales in terms of each module.
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Table 6.1: Grading System Explanation

Grading Scale

Grade Module 1: Back-

ground Subtraction

Module 2: Object

Recognition

Module 3: Tracking Overall Performance

’Very

Good’ or 4

Foreground segmenta-

tion encapsulates the

whole vehicle and each

vehicle is represented

by an individual blob.

The car model candi-

date covers the visible

vehicle very well.

A vehicle is correctly

tracked throughout all

the frames of a test se-

quence.

If all the previous

modules take 4 or two

out of the three mod-

ules take a 4 grade and

one takes a 3 grade,

then the overall per-

formance of the sys-

tem for the test set

will amount to being

4.

’Good’ or 3 Foreground segmenta-

tion encapsulates the

majority of the vehi-

cle and each vehicle is

represented by an in-

dividual blob.

The car model can-

didate covers the

visible vehicle with

slight discrepancies

or even a few larger

discrepancies that

have been corrected

automatically.

A vehicle is correctly

tracked over 85% of

the test set frames.

If all the previous

modules take 3 or two

out of the three mod-

ules take a 3 grade and

one takes a 3 grade,

then the overall per-

formance of the sys-

tem for the test set

will amount to being

3.

’Tolerable’

or 2

Foreground segmenta-

tion encapsulates at

least half of the vehi-

cle and each vehicle is

represented by an in-

dividual blob.

The car model can-

didate covers at least

half of the visible

vehicle with slight

discrepancies or

even a few larger

discrepancies that

have been corrected

automatically.

A vehicle is correctly

tracked over 65% of

the test set frames.

If all the previous

modules take 2 or two

out of the three mod-

ules take a 2 grade and

one takes a 1 grade,

then the overall per-

formance of the sys-

tem for the test set

will amount to being

2.

’Failure’ or

1

Foreground segmenta-

tion does not detect

the vehicle or is

merged with another

vehicle throughout

the video sequence.

The vehicle has not

been recognized and

given a model.

A vehicle is correctly

tracked less than 65%

of the test set frames.

If all the previous

modules take 1 or two

out of the three mod-

ules take a 1 grade,

then the overall per-

formance of the sys-

tem for the test set

will amount to being

1.
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Each of the previously explained grades are illustrated in Figures 6.8 and 6.9

where cases for each grade level are shown for the three different modules.

Figure 6.8: The left image is a case where the grade would be 4. The vehicles that are
visible were well detected individually and recognized with the model well encapsulating
them. Furthermore, the tracking has been correct. The right image is an example of a
case when the grade would be 3. Both vehicles are well tracked (grade 4 for module 3)
but the segmentation module gets 3 because the size of the model is not covering the
whole vehicle and recognition model gets a grade 3 because the model overlap is slightly
moved sideways.

Figure 6.9: The left image is an instance of a video sequence where the grade would be
2. The vehicles that are visible were well detected individually, however the size detected
did not cover the whole vehicle (grade 2). The vehicles were recognized and a model was
overlapped, but one of the vehicles was given a wrong model orientation (grade 1). The
tracking is correct, yet slightly jagged (grade 3). However, the model corrects itself in
later frames. The right image is a failure case due to the undetected car behind the red
vehicle and the incorrect overlap of the model for the front most car.
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6.3 Test Results

The previous sections have covered the data sets that are used to test the proposed

system and the grading scale used to evaluate the system. In this section, the actual

test results will be stated in the form of tables accompanied by sample frames

from the test sets. Seven parts make up this section to assess the surveillance

system with regards to different road types, different camera perspectives, scale

changes, image resolution, light conditions, as well as image noise and occlusion.

Test results reported in what follows are based on one generic vehicle model and

thus classification results are not shown in those tables.

6.3.1 Different Road Types

Three major different road types were investigated in this thesis: highways, inter-

sections, and bridges. The results obtained for the different road types are under

normal conditions (no major illumination and day-light conditions). The image

noise found in the test images are due to the real camera movement and resolution.

Such type of noise is treated as part of the normal conditions. The image resolution

used for the highway and intersection test sets is 320 by 240 pixels, whereas the

bridge test set is of 352 by 208 pixels. In total 26 test sets were used for this part

of the performance evaluation: 14 highway tests, 10 intersection tests, and 2 bridge

tests.

Table 6.2 shows the results obtained for this part of testing. For each road type

test, the frames of every case are assessed with respect to modules 1, 2, and 3.

The number of frames that fall under each grade level (1 to 4) is recorded in the

table. Then the overall performance is calculated based on the number of frames

found per grade. If the majority of frames are under a certain grade (for example

4), then the general grade is given in the overall performance as 4 and the specific

percentage of frames that have this grade is stated in parentheses. In other words,

the overall performance is number of frames that obtained ’Very Good’ divided by

the total number of frames. Finally, if any of the frames failed, the general reason

is given in the last column of the table.
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Therefore, overall the results demonstrate that the system works well under

different road types. In turn, this makes the system practical as it may be mounted

on any road type without any significant alterations needed for the system to run.

Out of the 4275 frames tested over 26 different cases, the overall performance for all

test cases in this section is around 95% with 90.8% being in the ’very good’ range.

The frames that have failed were mostly due to incorrect foreground segmentation.

This undetected or incorrectly segmented vehicle resulted in an incorrect model

instantiation and overlap. Furthermore, tracking (third module) is based on the

previous two modules and thus also failed sometimes. Usually, failure in tracking

occurs when a vehicle is not detected at all for many frames. As for failure in

the second module, it can be due to several reasons: incorrect result from first

module, car model orientation chosen to best represent the car is well off the actual

car orientation, or the location/size of the car model is not overlapping the actual

vehicle in the image.

6.3.2 Camera Perspective

For each of the different roads — highway and intersection — various camera per-

spectives are evaluated. The highway road ranged from long range to short range

and the intersections varied from high mounted camera to medium height camera.

The difficulty with the long range cameras is that at some point the cars are so small

that they are not detected. For this reason, the detection, recognition, and tracking

only starts after the vehicles become of visible size (toward third of the image in the

long range case). As for the short range, the vehicles appear quite large; however,

the complexity arises because with closeup perspectives, the cars pass through the

scene at a high speed and many cars enter and leave the scene. Therefore, those

cases are required to be taken care of. As for the high-mounted camera above the

intersection, although the cars appear more distinct from each other, they are also

small and harder to detect. As the altitude of the camera decreases, the view of the

intersection becomes skewed and car-to-car occlusion increases significantly where

in some tests a car may occlude another almost entirely.

For this portion of the testing, 8 different test sets were used to test long range

highway cases, 6 test sets for short range perspectives, 6 various test sets for high

mounted camera over intersection, and another 4 test cases for medium height

camera perspective over intersection. Table 6.3 summarizes the results over the

variety of tests. As in table 6.2, each module is subdivided into 4 different grades

and the number of frames that fall under each grade level is stated. The overall
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Table 6.3: Different Camera Perspectives Result

Different Camera Perspective Test Results

Perspective Total

test

sets

Module 1 Grade (in frames) Module 2 Grade(in frames) Module 3 Grade(in frames) Overall

Perfor-

mance

Failed

Frames

(%)

4 3 2 1 4 3 2 1 4 3 2 1

Long

Range

Highway

8 989 44 6 0 862 127 49 1 1031 8 0 0 4 (92%) 0.03%

Short

Range

Highway

6 771 58 0 0 665 138 26 0 821 8 0 0 4 (91%) 0%

High Inter-

section

6 1173 19 8 49 880 292 49 28 1196 14 0 39 4 (87%) 3%

Medium

Intersec-

tion

4 740 2 3 46 688 57 5 41 778 13 0 0 4 (93%) 5.5%

performance for each camera perspective is then stated with respect to the grade

attained by the majority of the frames (and percentage of frames that attained that

grade). The last column reports the average overall percentage of failed frames in

each of the case types.

Based on the results in table 6.3, a note can be made that the general over-

all percentages are relatively close to each other ranging from 87% to 93% of all

frames tested for being ’very good’. However, the difference between the tests shows

when examining the number of failed frames. More failure occurs in the intersec-

tion tests than the highway cases. The intersection tests in general include more

complex backgrounds; thus it is harder for the background subtraction module to

extract the foreground object correctly. If analyzed with respect to different camera

perspectives, the most change in failure occurs between the two camera perspectives

in the intersection cases. As the camera height decreases, the error increases due

to significant increase of car-to-car occlusions and change scale changes. Therefore,

camera perspective is a vital component with surveillance systems. The higher the

camera view, the lower error occurs due to a distinct view of the vehicles.

Figures 6.10 to 6.13 illustrate the different system results obtained with respect

to different camera perspectives. Figure 6.10 shows the case of a closeup view of

a highway. There are two cars that enter the scene and are correctly detected,

recognized, and tracked until they leave the camera view. With such a perspective,

the vehicles appear larger and the additional clutter due to background surrounding

the roads is avoided. However, scale changes quickly from the beginning of the scene

to the end. Scale change will be tested in more details in the next section.

Figure 6.11 is the case when the camera perspective of the highway becomes
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long-range. It should be noted that for the first third of the scene the vehicles

are ignored because they are too far away and their correct detection becomes

extremely tedious. The background in this scene is more difficult than the first

case (Figure 6.10) and the scale change is more drastic. However, the cars remain

in the scene for larger amount of frames.

Figure 6.10: Close Range Camera Perspective Example.
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Figure 6.11: Long Range Camera Perspective Example.

Figures 6.12 and 6.13 are both of intersection type. In both cases the background

is more complex than the first set of images. However, among the two intersection

cases, more occlusion appears to be in Figure 6.13 (naturally from the trees, poles,

and urban construction) as well as when two cars pass each other. For example, in

Frame 1811 of Figure 6.13, the white car is occluded by the tree branches. In Frame

1835, the white car is approaching to occlude the red car. On the other hand, two

cars can pass each other with less occlusion in the high mode case (Figure 6.12).

Therefore, camera position (height) and angle (long or short range) is important to

take into consideration during testing because each camera is mounted differently

on the road and the surveillance system should function properly under various

perspectives.
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Figure 6.12: High height Camera Perspective Example.
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Figure 6.13: Medium Height Camera Perspective Example.

6.3.3 Scale Change

Many of the test sets used for testing the surveillance system constituted of video

sequences of highways. The camera mode on these highways varied from close range

(covering a small part of the highway) to far range views (covering a large area of

the highway). In each of the different test set types, the car’s scale changed as it

traveled from the beginning of the highway to the last point seen by the camera.

This scale change is dramatic at times reaching up to 500% change of original

car size. Table 6.4 contains some results showing the scale change effect based on

detection, recognition as well as tracking. The tests that are shown in the table are

similar to those in table 6.3; however, the average scale change per car in each case

is shown in the table.

In the following table, scale change is computed as the difference between the

final vehicle size (in pixels) and the initial vehicle size, divided by the initial size.
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Table 6.4: Scale Change Results

Scale Change Test Results per Video Sequence

Road Test

Set

No.

Module 1 Grade (in frames) Module 2 Grade(in frames) Module 3 Grade(in frames) Overall

Per-

for-

mance

Scale Change

(increment)

4 3 2 1 4 3 2 1 4 3 2 1

Highway Case

1

127 1 0 0 96 30 3 0 128 0 0 0 4

(91%)

328%

Highway Case

2

132 48 0 0 138 30 12 0 180 0 0 0 4

(83%)

528%

Highway Case

3

124 4 0 0 83 44 1 0 120 8 0 0 4

(85%)

518%

Highway Case

4

78 0 0 0 70 8 0 0 78 0 0 0 4

(96%)

220%

Highway Case

5

160 5 0 0 138 16 11 0 165 0 0 0 4

(93%)

190%

Highway Case

6

150 0 0 0 140 10 0 0 150 0 0 0 4

(98%)

77%

Highway Case

7

107 1 0 0 60 39 9 0 108 0 0 0 4

(85%)

500%

Highway Case

8

134 7 0 0 131 7 3 0 141 0 0 0 4

(96%)

400%

Highway Case

9

123 0 0 0 115 8 0 0 123 0 0 0 4

(98%)

425%

Highway Case

10

76 12 0 0 72 16 0 0 80 8 0 0 4

(86%)

540%

Highway Case

11

164 2 2 0 144 12 12 0 168 0 0 0 4

(94%)

420%

Highway Case

12

140 6 4 0 135 6 9 0 150 0 0 0 4

(94%)

300%

Highway Case

13

185 13 0 0 155 30 12 1 198 0 0 0 4

(91%)

325%

Highway Case

14

60 3 0 0 50 9 4 0 63 0 0 0 4

(91%)

53%(decrease)

Based on the performance and scale change stated in table 6.4, a plot to illustrate

the relationship between the variables is shown in Figure 6.14. On average, the

scale change that falls between 0.50 (50% decrease in size over frames) to 5 (400%

increase over original size) perform in the range of 90–95%. However, as the scale

change exceeds 5, the performance starts decreases to around 90% and significantly

starts dropping toward 80% after scale change of 6 (the cutoff % indicated in Figure

6.14). This is quite logical because when extreme scale changes occur, it is expected

that initially the size of the vehicle was very small. When foreground objects to be

detected are only a few pixels in length, the background subtraction module would

have difficulty detecting it resulting in lower overall performance. Furthermore,

extreme scale changes requires the recognition module to continuously alter the size

of the model, orientation, and overlap. The more alterations needed, the higher the

probability that an error might occur which also decreases the overall performance.

All in all, the proposed system’s performance remains good as long as the scale
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does not change drastically (more than 6 times original size). A note should be

made that the reason the plot only ranged to 6.5 is because no data exceeding scale

change of 6.5 was available for this work.

Figure 6.14: Plot of System Performance with respect to Scale change. The circle
indicates scale change of 6 as being the cutoff before which the performance exceeds 90%.

6.3.4 Image Resolution

Three different image resolutions were examined: original size(320 by 240 pixels),

80% of the original size (256 by 192 pixels), and 50% of the original size (160 by

120 pixels). The importance of testing of lower resolutions is to check whether the

system proposed is viable under different video camera shooting options. If the

system works with low resolution images, then the cameras can record with lower

resolution to save up memory space and money.

Based on the results attained from table 6.5, as the image resolution decreased,

the overall system performance also decreased from 91% to 72 % (for ’Very Good’

grades) and the failed cases increased from almost nill to 7.8% for the 160 by 120

pixel resolution. This is because as resolution decreases, size of foreground objects
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Table 6.5: Image Resolution Results

Image Resolution Results

Resolution Size Overall Performance (in frames) Overall Performance (%) Failed Frames (%)

4 3 2 1

320 by 240 pixels 1713 128 27 0 4 (91%) 0 %

256 by 192 pixels 206 27 16 6 4 (81%) 2.3 %

160 by 120 pixels 183 34 18 20 4 (72%) 7.8 %

decrease also by 80% and 50% respectively. This makes foreground detection more

difficult. Furthermore, image quality decreases making the edges harder to detect

for the foreground recognition module. Thus, the 3D model matching will result in

less accurate matched outputs and at times even failures.

Although performance decreases with resolution reduction, there are several ad-

vantages as well. Besides that less memory storage is needed to save the images, the

computational speed is also significantly reduced. From an average of 3.6 seconds

per frame for the normal case, the computational speed drops down to 3.2 seconds

per frame for the first resolution (80% of original image size) and to 1.9 seconds

per frame for the second resolution (50% of original image size). This dropdown

is significant especially when large number of frames are being processed in the

system. A note should be made that all computational speeds recorded were based

on a 1.73 GHz single core processor and the application used was MATLAB.

6.3.5 Light Conditions

In order to test the system under daylight, foggy, or evening conditions, numerous

tests were developed with histograms that have more white color bias (to mimic a

bright or foggy day) as well as histograms with bias toward the black in order to

test the system under conditions similar to evening lights.

In details, six different light conditions were tested excluding the normal test

conditions; the first case (denoted as Lighter 1 in table 6.6), converted the original

image histogram from a range of [0 1] to [0.3 1]. The second case (Lighter 2) also

brightened the image by biasing the original image histogram from [0 1] to [0.5 1]

making sure that only brighter colors were in the image. In both cases, the gamma

was left at 1. Figure 6.15 illustrates Lighter 1 and Lighter 2.

Lighter 3 is the case when the histogram range remains the same but the gamma

value is decreased to 0.5 making the image significantly brighter. Darker 3, on the

other hand, represents gamma 2 and same histogram as original [0 1]. Figure 6.16 is
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Figure 6.15: Lighter 1 and Lighter 2 Sample Frames.

an example of the two different gammas. Sample frames of each type are depicted

in Figure 6.16.

Figure 6.16: Lighter 3 and Darker 3 Sample Frames.

Darker 2 denotes when the histogram range changes from [0 1] to [0 0.5] while

keeping the gamma at 1. This makes the picture significantly more biased toward

black. Darker 1, on the other hand, alters the original histogram to the range of [0

0.7]. Both of the cases are shown in Figure 6.17.

Based on the results obtained from the total 78 different test sets (total of 13,662

frames) that had different light conditions (refer to Table 6.6), the proposed system

generally performs better with darker images than brighter ones. To evaluate the

pattern as a whole, the system performs at ’very good’ or ’good’ (grades 4 or 3)

81



Figure 6.17: Darker 2 and Darker 1 Sample Frames.

Table 6.6: Light Condition Results

Light Condition Results

Light Condition Histogram

Range

Gamma

Value

Overall Performance (in frames) and in (%) Frames with Good or

Very Good Grade (3 or 4)

(%)

Failed Frames (%)

4 3 2 1

Lighter 1 [0.3 1] 1 1207

(53.0%)

329

(14.4%)

384

(16.9%)

357

(15.7%)

67.4% 15.7%

Lighter 2 [0.5 1] 1 858

(37.7%)

747

(32.8%)

285

(12.5%)

387

(17.0%)

70.5% 17.0%

Lighter 3 [0 1] 0.5 1559

(68.5%)

233

(10.2%)

291

(12.8%)

194 (8.5%) 78.7% 12.8%

Darker 1 [0 0.7] 1 1906

(83.7%)

151 (6.6%) 152(6.7%) 68(3.0%) 90.3% 3.0%

Darker 2 [0 0.5] 1 1795

(78.8%)

221 (9.7%) 201(8.9%) 60(2.6%) 88.5% 2.6%

Darker 3 [0 1] 2 1703

(74.8%)

205 (9.0%) 164 (7.2%) 205 (9.0%) 83.8% 9.0%

ranging from 90% to 83% of the frames with the varying degrees and types of dark

light conditions. The failure for the darker images span over 3% to 9%. On the

other hand, the lighter images produce significantly lower amount of frames with

’very good’ or ’good’ results reaching down to 67% of the frames only. Furthermore,

error rates increase up to 17%. In all cases, heightened error rates occur due to

increased amount of false negatives. The first major reason for that is lack of

foreground detection. When histograms are brightened or darkened, white cars

and darker cars respectively become more difficult to extract due to their extreme

similarity to the background. Another important reason for lower grade results for

all cases is restriction of the histogram. When the histogram is adjusted such that

to contain a more restricted colormap biased towards the white (for instance 0.3

to 1 or 0.5 to 1) or black (eg. 0 to 0.7 or 0 to 0.5), intensity variance defining

82



the edges becomes less evident. This leads to misdetection of edges and, in turn,

worse model matching outcomes. As for the diversity of results between lighter

and darker images, the lighter (lighter 1 and 2) results are inferior to the darker

(darker 1 and 2) image results because vehicles that should be tracked are mostly

dim on a gloomy grey road. Their colors lean towards black and if they are clipped

by adjusting the histogram to be lighter (0.5 to 1), the intensities found within the

clipped range ( 0 to 0.5) are eliminated. This causes less foreground detection as

well as edge detection. Conversely, this occurs less when brighter ranges are clipped

down to become darker since the brigher pixels are principally found in the sky and

other minor objects.

With regards to images with intensity values from 0 to 1 (Lighter 3 and Darker

3), but varying gamma correction values (0.5 and 2 respectively), the image his-

tograms are remapped to have higher(brighter) output values if gamma is less than

1 and lower(darker) output values if gamma is higher than 2. In gamma variation

tests, the results are quite similar: 83% vs 78% for frames with ’very good or good’

grades and 9% vs 12.8% failure rates for Darker 3 and Lighter 3 respectively. In

both cases the results are not as good as normal conditions because foreground

objects become more blended into the background when it is too dark or too light.

Lastly, the proposed system performs with acceptable failure rates (min. 3% to

max. 17%); in other words, it has above ’tolerable’ results in the range of (max.

97% to min. 83%). However, the ’very good’ results drop down as image intensity

values are increased/decreased (especially increased). Thus, the proposed system is

functional in different light conditions (slightly brighter days, darker days, foggier

days, evenings) but should be improved if it is to be used in extreme conditions

(eg. whiteouts, blizzards...).

6.3.6 Image Noise

Another group test set that took place involved changing noise levels in the images.

Given that the images were already sufficiently noisy (especially the intersection

images), only a few additional tests were performed with regards to image noise

alterations. Two types of image noise were added to the images: salt and pepper

noise and Gaussian noise. Specifically they were added to see how the background

subtraction module would behave and propose a simple solution in case the results

were not satisfactory. The focus is on the background subtraction module because

image noise mostly impacts the foreground extraction process. If the foreground
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objects are not detected well, the rest of the modules will possibly fail at their

tasks. Thus, it is important to ensure that the first module functions properly.

Figure 6.18 is an example of two frames with salt and pepper noise (density of

0.02) and Gaussian noise with 0.005 variance and 0 mean that have been applied

respectively on the original images. Figure 6.19 on the other hand shows the result

of the Gaussian Mixture Model background subtraction method when such the two

types of noise are added respectively.

Figure 6.18: a) Frame with Salt and Pepper image noise of density 0.02. b) Gaussian
noise with variance 0.005 and mean 0.

Figure 6.19: a) GMM result Frames when processed with Salt and Pepper image noise.
b) GMM result Frames when processed with Gaussian image noise.

When the same morphological operators are applied on both Gaussian Mixture

Model (GMM) background subtraction results, it becomes evident that the salt and

pepper can be easily cleaned out due to their random nature; contrariwise, these
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Figure 6.20: a) GMM result of Salt and Pepper noise after morphological processing.
b) GMM result of Gaussian noise after morphological processing.

same morphological processes are not able to remove the Gaussian noise. Both

results are shown in Figure 6.20.

In spite that the result after the morphological post-processing for the salt

and pepper case is quite good (distinct almost whole vehicles that can easily be

recognized and tracked), it is not the case with Gaussian noise (refer to Figure 6.20

b). Hence, a simple solution to overcome such a problem is to include a Wiener

filter in the system. By including such a filter, the Gaussian noise is removed from

the image and the foreground subtracted image can be used as well as images with

no added initial noise. Figure 6.21 illustrates the result of the Wiener filter and

morphological post-processing for the Gaussian noise case.

Figure 6.21: GMM result of Gaussian added noise image after morphological post-
processing and image filtration with Wiener filter.

85



6.3.7 Occlusion

As previously mentioned in the camera perspective section, depending on the cam-

era viewpoint, different kinds of occlusion might occur. In the test sets that were

used, two types of occlusion are prevalent: car-to-car occlusion and scene objects

and/or nature (eg. poles and trees) obscuring the camera view of the car.

A total of 560 instances of occlusion were used to test the proposed system.

Table 6.7 states the result of these occlusion instances with respect to the camera

perspective being high above the intersection or medium height. The second column

records the total number of instances per camera viewpoint followed by a column

separating the performance of the system at each of these instances (in terms of the

number of instances per grade and the percentage). Finally, the last two column

report the performance for ’very good’ and ’good’ cases and mentions the failure

rate.

Table 6.7: Occlusion Results

Occlusion Results

Camera Per-

spective

Total No. of In-

stances

Overall Performance (in instances) and in (%) Instances with Good or Very

Good Grade (3 or 4) (%)

Failed Instances

(%)

4 3 2 1

High 316 196(62.0%) 60(19%) 8(2.5%) 52(16.5%) 81% 16.5%

Medium 244 164(67.2%) 32(13.1%) 20(8.2%) 28(11.5%) 80.3% 11.5%

When occlusion occurs, it becomes more difficult to detect the orientation of the

edges in order to correctly match the best candidate for the vehicle. This explains

the rates under ’Good’ (3), ’Tolerable’(2), and only a few in the failed cases. As

long as the occlusion is not severe, parts of the edges can be detected to orient the

model. However, most of the failed instances that occur are actually due to failure

in background subtraction. If the object of interest has been in full view previously

before getting occluded, the drawback of the background subtraction module can

be compensated by having the knowledge of the approximate size and number of

cars in the previous frame.

6.3.8 Additional Results

In this section, a few additional tests were performed on video sequences used in

[24][15][37] obtained from [33]. Two greyscale video sequences were tested — dt

and rhein — with total frames of 132 frames.
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The implemented system in this thesis depends on RGB values (or at least

3-channel images) for performing the Gaussian Mixture Model for background sub-

traction as well as requires the color-space as information for the tracking. There-

fore, since the first video sequences tested constitutes of a single channel of greyscale

512 by 512 frames, the GMM was not applied. Instead, temporal differencing

method was used for the first video sequence as the motion detector and RGB in-

formation was eliminated from the tracker. This decreased the overall performance

of the system which was designed primarily to be used with color images. The

second video sequence, rhein consisted of 564 by 688 by 3 greyscale images. Since

the frames are 3-channel, the default background subtraction method (GMM) was

used for the testing process.

The first test sequence used, dt, is a grayscale video sequence of a traffic inter-

section recorded using a stationary camera. The recognition and tracking modules

performed better than the detection module with the recognition module perform-

ing at ’Very Good’ and ’Good’ up to 90% of the time; the tracker tracked with

100% accuracy for this data sequence. However, the detection module using tem-

poral differencing performed worse than the other two modules due to the similarity

of the background color to the black car. The temporal differencing has a drawback

that it does not return the complete foreground object (Chapter 3). Therefore, the

black car was not detected as a whole — in fact, it was detected as a small spot that

got eliminated in the morphological cleaning process due to its small detected size.

Therefore, for this sequence, the detection dropped down to 88% for ’Very Good’

and ’Good’ detections. If the GMM method were used, such missed detections

would not have occured. Figure 6.22 shows sample results from the video sequence.

Figure 6.22: a) Sample frame from the video sequence showing results so far. b) Sample
frame from the video sequence showing results after 24 frames.
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The second test sequence used, rhein, is also a grayscale video sequence of a

traffic intersection recorded using a stationary camera. However, the camera per-

spective of this video sequence is closer to ground plane where cars are traveling.

The detection, recognition, and tracking modules performed with an overall perfor-

mance reaching up 86% for ’Very Good’ and ’Good’ frame results. The detection

module using GMM failed a few times when vehicles were very slow moving. An

example of a missed detection is the background truck which appears to be moving

a few pixels every tens of frames. Figure 6.23 shows some results of the second

video sequence.

Figure 6.23: a) Sample frame from the video sequence showing results so far. b) Sample
frame from the video sequence showing results after 54 frames.

In conclusion, the surveillance system implemented in this work was tested

extensively on the data sets described in section 6.1. This section provided a sample

results based on video sequences used by other researchers — namely [49][15][37].

The proposed surveillance system performed with an average accuracy of around

88% on these two video sequences. Some of the failures that occurred in the system

were mainly due to errors in detections (missed detection). The overall limitations

of the proposed surveillance system along with the summary results of all previous

tests is discussed in section 6.3.9.

6.3.9 Summary of Results

To summarize the various aspects of the system tested in this chapter, table 6.9

states all the test results obtained. The first column states the test condition,

the second column mentions the result percentage(%) with grades above 3 out of

4(inclusive), and the final column records the failure rate. All percentages are the

averages of the total tests performed per test category.
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Table 6.8: Summary of Test Results

Summary of Test Results

Test Overall Performance: Grades (%) Failed Instances(%)

(Sum of ’Good’ 3 and ’ Very Good’ 4)

Different Road Types 95.0% 3.0%

Different Camera Perspectives 95.0% 2.1%

Scale Change 97.0% 0.015%

Image Resolution 86.0% 5.1%

Light Conditions 80.0% 10.0%

Occlusion 80.6% 14.0%

Average of all tests 88.9% 5.7%

All in all, the proposed system performs well (above 3 out of 4 inclusive) 88.9%

of the time with a failure rate on average of around 5.7%. If extreme cases are not

included in the system performance, the percentage boosts up to around 95%.

In summary, an automatic surveillance system was developed for tracking mul-

tiple moving vehicles on various road types, camera perspectives, scale change, and

lighting conditions based on input obtained from a stationary camera mounted on

a pole. Table 6.9 showed a summary of results under different conditions. A list of

the strengths and weaknesses of the system is included.

Strengths:

◦ System performs well (up to 95%) under different road types (highways, inter-

sections, and bridges) and under different camera perspectives (high altitude,

medium, and low altitude).

◦ System performs well even if there is significant scale change (up to 500%

change).

◦ System performs well with images of resolution 320 by 240 pixels and larger

and with an acceptable performance for smaller resolutions (refer to section

6.3.4). The smaller the resolution becomes, the lower the performance be-

comes.

◦ The recognition module is able to match vehicles even if partial occlusion

(50%) exists. The tracker is able to compensate for 100% occlusions that

occur for short time (a few frames).
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Weaknesses

◦ System performance deteriorates with extreme weather conditions (eg. ex-

treme whiteouts). The system should be improved to perform well under

conditions of snow, blizzards, and so on.

◦ The system performs well with partial occlusions reaching up to 50% occlu-

sion. However, if the vehicle is 100% occluded with current cars equal to

previous cars (a car entered and another got occluded), there is probability

that the tracker will fail in that case.

◦ If the full occlusion lasts for many frames, the tracker will eliminate the

occluded object from being tracked.
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Chapter 7

Conclusions and

Recommendations

7.1 Conclusion

In this thesis, a surveillance system to track multiple cars has been proposed. It

is made up of three major modules: object extraction module, object recognition

module, and tracking module. The first module (discussed in details in Chapter 3),

uses Gaussian Mixture Models to detect the foreground objects as blobs. Following,

morphological processes are used to clean the image. Later, major information such

as color, size, orientation, and position of the foreground object are extracted. The

second module (refer to Chapter 4) uses edge detection on the detected objects

and matches a 3D vehicle model to the objects. The best match is chosen and the

objects are classified as vehicle or non-vehicle. Finally, the third module (Chapter

5) employs association matrices in order to match multiple cars from one frame to

another.

The above summarized proposed surveillance system has several major advan-

tages. First, it makes use of Gaussian Mixture Models (GMM) that are invari-

ant to slightly changing light conditions. Furthermore, since the thesis targets to

track moving vehicles, GMM’s drawback that it associates non-moving vehicles into

the background is turned into a benefit. Also, a backup background subtraction

method based on frame-subtraction (discussed in Chapter 3) provides an alter-

native foreground detection method when GMM breaks down or is not applicable

(due to technical reasons eg. video encryption). With regards to the second module

(recognition module), several important pros can be mentioned. Detecting edges
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to recognize a car is invariant to scale, light conditions, as well as robust to par-

tial occlusion. Moreover, 3D models closely describe what a car actually looks like

opposed to methods that arbitrarily track everything in the scene. Finally, the

tracking method used incorporated several components when tracking a car from

frame to frame (color, size, and velocity) and does not require specific prediction

models to track a vehicle. Also, it is able to successfully track entering and leaving

cars from the scene.

Additionally, several important keypoints have been tackled in this thesis. The

system does not require specific car information (size, location, or type) about the

vehicles in the scene. This is vital because we have no such knowledge in the

real world and incorporating such information into a commercial system would be

impractical.

Disadvantages also exist in the system. It does not account for shadow re-

moval nor classify vehicles into different categories. In addition, the performance

decreases with full occlusion and extreme light changes. Finally, at very small im-

age resolutions, edges become hard to detect and model matching might become

inaccurate.

In conclusion, the system proposed functions well on the various aspects inves-

tigated toward the objectives of the thesis. Table 7.1 states all the objectives of

the thesis that were discussed in Chapter 1 and indicates in the second and third

column of the table whether they have been met.

Table 7.1 emphasizes that the system developed is able to effectively function

despite different road types (intersection,highway,and bridge) at different camera

viewpoints (close range, far range, high mounted camera, low mounted camera,

and so on), various vehicle viewpoints (top view of car, side view, front view, back

view, and different degrees of each aforementioned view), scale changes (ideally up

to 500%), background clutter (many buildings, people, traffic lights, trees, and so

on), different image resolutions (with better performance with image sizes around

or larger than 320 by 240 pixels), moderate light conditions (gloomy and bright),

partial occlusion (reaching up to 50%), and full occlusion (lasting for a few frames).

Furthermore, processing time in Matlab on a 1.73 GHz processor takes up to 3 to

4 seconds per frame. This speed can be improved by coding up the system in C++

since the code contains some loops. The system is able to track up to 10 cars

simultaneously (did not test for more) whereas humans can track up to 8 objects

simultaneously based on a recent study [2].

Besides meeting all of the thesis objectives, several contributions have been
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Table 7.1: Objectives

Objectives Check

Objective Goal Met Comments Chapter

System is robust to

different road types

Y A variety of road tests were used to test the

system (intersection, highway, and bridge). The

system performed well under the three types.

Chap 6

System is invariant to

camera perspective

Y A range of camera perspectives (long range,

short range, high height, medium height) were

used to test the system which worked well.

Chap 6

System works under

varying vehicle view-

points

Y When testing the camera perspectives and road

types, the system is being tested inherently for

varying vehicle viewpoints. Therefore, the sys-

tem tolerates different vehicle viewpoints.

Chap 6

System functions

under different back-

ground clutter

Y Although no official testing took place on back-

ground clutter, the system proved forbearing to

different background scenes since highway test

sets have simple background whereas intersec-

tions have a more complex scene.

Chap 6

System operates un-

der many light condi-

tions

Y A range of light conditions were tested for and

the system performed satisfactorily (gloomy,

bright, and so on).

Chap 6

System is able to pro-

cess images with noise

Y System is able to tolerate a limited amount of

noise especially if noise removal filters are in-

cluded. More work should be performed in the

future with regards to this point.

Chap 6

System accepts

diverse image resolu-

tions

Y System is able to process various different image

resolutions (128 by 128 pixels up to 700 by 700

pixels).

Chap 6

System performs un-

der occlusion

Y System is robust to partial occlusion (50%) and

short-lived full occlusions

Chap 6

System is capable of

multiple tracking

Y System is able to track several cars simultane-

ously

Chap 5

System processes each

frame within a few

seconds

Y System takes an average around 3 to 4 seconds

to process each frame on a 1.73 GHz single core

processor

Chap 4-

5-6

made by this work as outlined in Section 7.2. Nevertheless, a few additions should

be included in the future work of the system in order to heighten its performance

with respect to some key issues and for the purpose of expanding its applicability

even further - as discussed in Section 7.3.
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7.2 Contributions to the State-of-the-Art

Sections 2.4 and 2.5 states an overview of the state-of-the-art methods and compares

the concept of this work with other state-of-the-art works. A summary of the

contributions made to the state-of-the-art is listed next.

◦ The multiple-vehicle surveillance system developed in this thesis is based on

integrating different modules (Gaussian Mixture Model and temporal differ-

encing for motion detection, 3D vehicle recognition based on Hausdorff mea-

sure, and deterministic data method for tracking which is able to deal with

entering, leaving, and disappearing cars) that have not been integrated before

in such a manner; thus, this work provides an alternative approach to other

state-of-the-art researches for vehicle monitoring which is flexible enough to

function well under different camera perspectives, background clutter, vehi-

cle viewpoints, road types, scale changes, image noise, image resolutions, and

lighting conditions.

◦ The method used in this work is overall a simpler approach compared to other

state-of-the-art surveillance systems (refer to Section 2.4) that use 3D model

approaches to monitor multiple vehicles under a fixed camera assumption.

◦ The location of the vehicles are automatically detected by the foreground

extraction module. This means that no additional extensive methods are

needed to attain a more accurate vehicle position, contrary to [37] who use

hough transformation methods of edge elements along with optical flow to

determine the vehicle location.

◦ The vehicle size is also detected automatically by the foreground extraction

module eliminating the need to assume the knowledge of vehicle size as a

priori knowledge. Furthermore, no a priori knowledge about the pathways of

the vehicles is given in this thesis, unlike [37] where models of circular and

straight paths are used.

◦ Two methods for motion detection are investigated - Gaussian Mixture models

and temporal differencing - with the latter acting as a backup system in case

GMM cannot be applied. This is useful to make the system more flexible in

terms of the input it receives. GMM prefers 3-channel input images. If such

images are not available, the backup system can process the images.
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7.3 Recommendation and Future Work

The surveillance system that is proposed in this work targets a wide range of vehicle

surveillance applications since it can be applied to different road types. However,

to make a system even more generic, it should be able to adapt to all kinds of

environmental factors that can vary from urban background clutter to various light

conditions. For this reason, the surveillance system can be expanded and tested

under snowy, rainy, and night conditions.

In addition, each of the three modules can be enhanced in several ways. The

foreground extraction module can be improved to incorporate automatic shadow

removal from the extracted objects as well as advance the adaptive Gaussian Mix-

ture Model to make it more sensitive at detecting very-slow moving vehicles. The

second module - foreground recognition - can be advanced by including a classifier

that would be able to distinguish among the different types of car categories (eg.

trucks, sedans, buses, and SUVs). Information about detected car surfaces can also

be merged with the edge information attained to obtain a better description of a

car. As for the last module - tracking - it can be extended into a car counter as

well as a tracker which would be beneficial for commercial applications (such as

statistics).
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