
Université de Montréal

Incorporating Complex Cells
into Neural Networks for Pattern Classification

par
James Bergstra

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Thèse présentée à la Faculté des arts et des sciences
en vue de l’obtention du grade de Philosophiæ Doctor (Ph.D.)

en Informatique

Mars, 2011

c© James Bergstra, 2011.

Université de Montréal
Faculté des arts et des sciences

Cette thèse intitulée:

Incorporating Complex Cells
into Neural Networks for Pattern Classification

présentée par:

James Bergstra

a été évaluée par un jury composé des personnes suivantes:

Pascal Vincent, président-rapporteur
Yoshua Bengio, directeur de recherche
Paul Cisek, membre du jury
Bruno Olshausen, examinateur externe
Christian Léger, représentant du doyen de la FESP

Thèse acceptée le: .

RÉSUMÉ

Dans le domaine des neurosciences computationnelles, l’hypothèse a été émise que

le système visuel, depuis la rétine et jusqu’au cortex visuel primaire au moins,

ajuste continuellement un modèle probabiliste avec des variables latentes, à son

flux de perceptions. Ni le modèle exact, ni la méthode exacte utilisée pour l’ajus-

tement ne sont connus, mais les algorithmes existants qui permettent l’ajustement

de tels modèles ont besoin de faire une estimation conditionnelle des variables la-

tentes. Cela nous peut nous aider à comprendre pourquoi le système visuel pourrait

ajuster un tel modèle ; si le modèle est approprié, ces estimé conditionnels peuvent

aussi former une excellente représentation, qui permettent d’analyser le contenu

sémantique des images perçues. Le travail présenté ici utilise la performance en

classification d’images (discrimination entre des types d’objets communs) comme

base pour comparer des modèles du système visuel, et des algorithmes pour ajus-

ter ces modèles (vus comme des densités de probabilité) à des images. Cette thèse

(a) montre que des modèles basés sur les cellules complexes de l’aire visuelle V1

généralisent mieux à partir d’exemples d’entrâınement étiquetés que les réseaux de

neurones conventionnels, dont les unités cachées sont plus semblables aux cellules

simples de V1 ; (b) présente une nouvelle interprétation des modèles du système

visuels basés sur des cellules complexes, comme distributions de probabilités, ainsi

que de nouveaux algorithmes pour les ajuster à des données ; et (c) montre que

ces modèles forment des représentations qui sont meilleures pour la classification

d’images, après avoir été entrâınés comme des modèles de probabilités.

Deux innovations techniques additionnelles, qui ont rendu ce travail possible,

sont également décrites : un algorithme de recherche aléatoire pour sélectionner des

hyper-paramètres, et un compilateur pour des expressions mathématiques matri-

cielles, qui peut optimiser ces expressions pour processeur central (CPU) et gra-

phique (GPU).

Mots clés: apprentissage machine, aire visuelle V1, selection d’hyper-

paramètres, vision numerique, vision biologique.

ABSTRACT

Computational neuroscientists have hypothesized that the visual system from the

retina to at least primary visual cortex is continuously fitting a latent variable

probability model to its stream of perceptions. It is not known exactly which

probability model, nor exactly how the fitting takes place, but known algorithms for

fitting such models require conditional estimates of the latent variables. This gives

us a strong hint as to why the visual system might be fitting such a model; in the

right kind of model those conditional estimates can also serve as excellent features

for analyzing the semantic content of images perceived. The work presented here

uses image classification performance (accurate discrimination between common

classes of objects) as a basis for comparing visual system models, and algorithms

for fitting those models as probability densities to images. This dissertation (a)

finds that models based on visual area V1’s complex cells generalize better from

labeled training examples than conventional neural networks whose hidden units

are more like V1’s simple cells, (b) presents novel interpretations for complex-cell-

based visual system models as probability distributions and novel algorithms for

fitting them to data, and (c) demonstrates that these models form better features

for image classification after they are first trained as probability models. Visual

system models based on complex cells achieve some of the best results to date on

the CIFAR-10 image classification benchmark, and samples from their probability

distributions indicate that they have learnt to capture important aspects of natural

images.

Two auxiliary technical innovations that made this work possible are also de-

scribed: a random search algorithm for selecting hyper-parameters, and an opti-

mizing compiler for matrix-valued mathematical expressions which can target both

CPU and GPU devices.

Keywords: machine learning, visual area V1, hyper-parameter selec-

tion, computer vision, biological vision.

CONTENTS

RÉSUMÉ . v

ABSTRACT . vii

CONTENTS . ix

LIST OF TABLES . xv

LIST OF FIGURES . xvii

LIST OF ABBREVIATIONS . xxi

NOTATION . xxiii

ACKNOWLEDGMENTS . xxv

CHAPTER 1: INTRODUCTION . 1

1.1 Annotated Overview of Chapters 7

CHAPTER 2: BACKGROUND . 11

2.1 Linear Decision Making . 11

2.2 Feature Extraction . 12

2.2.1 Direct vs. Kernel-based . 12

2.2.2 Three Ways to Derive Image Features 13

2.2.3 Hybrid Approaches . 14

2.3 Neurophysiology of the Visual System 15

2.3.1 The Two Stream Hypothesis 15

2.3.2 Neurons . 16

2.3.3 The Retina and LGN . 18

2.3.4 Visual Area V1 . 19

2.3.5 Beyond Primary Visual Cortex 22

x

2.3.6 Time, Feedback and Learning in the Visual System 22

2.3.7 Level of Detail in Computational Modelling 24

2.4 Image Features in Computer Vision 24

2.4.1 Preprocessing for Images . 24

2.4.2 Case of Image Features: SIFT 28

2.5 Learning Representations . 30

2.5.1 Principles for Learning . 30

2.5.2 Training, Testing, and Cross-Validation 32

2.5.3 Learning Linear Classifiers 36

2.5.4 Learning by Gradient Descent 38

2.5.5 Regularization in Linear Classifiers 42

2.5.6 Hyper-parameters . 43

2.5.7 Feature Learning by Optimization - Neural Networks 43

2.5.8 Support Vector Machine . 45

2.5.9 Gaussian Mixture Models 47

2.5.10 SVM and Latent Variable Classifiers 48

2.5.11 Restricted Boltzmann Machines 49

2.5.12 Gaussian RBM . 52

2.5.13 Convolutional Architectures 52

2.5.14 Sparse Coding . 53

2.5.15 Slow Feature Analysis . 55

2.5.16 Independent Components Analysis 55

CHAPTER 3: COMPLEX CELLS FOR CLASSIFICATION . . . 57

3.1 Introduction . 58

3.2 High-Throughput Screening of V1-like Models 60

3.2.1 Adapting Model Parameters 61

3.2.2 Hyper-parameter Sampling Distribution 63

3.3 Discrimination tasks . 67

3.4 High-Throughput Evaluation . 67

xi

3.4.1 Single-filter Models vs. Multi-filter Models 72

3.5 Discussion . 74

CHAPTER 4: SLOW FEATURE PRETRAINING 79

4.1 Introduction . 80

4.2 Algorithm . 82

4.2.1 Slow, Decorrelated Feature Learning Algorithm 82

4.2.2 Complex Cell Activation Function 85

4.3 Results . 86

4.3.1 Random Initialization . 86

4.3.2 Pretraining with Natural Movies 87

4.3.3 Pretraining with MNIST movies 88

4.4 Discussion . 89

4.4.1 Transfer Learning, the Value of Pretraining 91

4.4.2 Slowness, Normalization, and Binary Activations 91

4.4.3 Eigenvalue Interpretation of Decorrelation Term 92

4.5 Conclusion . 93

CHAPTER 5: THE SPIKE AND SLAB RBM 95

5.1 Introduction . 96

5.2 The Inductive Bias of the GRBM 98

5.3 The Spike and Slab RBM . 99

5.4 ssRBM Learning and Inference . 103

5.5 Comparison to Previous Work . 105

5.5.1 Product of Student’s T-distributions 106

5.5.2 The Mean and Covariance RBM 107

5.6 Experiments . 109

5.6.1 Filters . 109

5.6.2 The Effect of Spike Variables 110

5.6.3 Learning Features for Classification 111

5.7 Discussion . 113

xii

CHAPTER 6: THE µ-SPIKE-AND-SLAB RBM 115

6.1 Introduction . 116

6.2 The µ-Spike-and-Slab RBM . 117

6.3 Positive Definite Parameterizations of the µ-ssRBM 121

6.3.1 Constraining Λ . 122

6.3.2 Constraining Φ . 123

6.3.3 Comparing strategies . 125

6.4 µ-ssRBM Learning and Inference 125

6.5 Comparison to Previous Work . 126

6.6 Experiments . 128

6.6.1 Classification . 128

6.6.2 Sampling . 132

6.7 Discussion . 132

CHAPTER 7: RANDOM HYPER-PARAMETER SELECTION 135

7.1 Introduction . 136

7.2 Datasets . 140

7.3 Estimating Generalization . 143

7.4 The Random Experiment Efficiency Curve 145

7.5 Relative Efficiency of Random Search 147

7.5.1 Case Study: Neural Networks 147

7.5.2 The Low Effective Dimension of Ψ 151

7.5.3 Case Study: Deep Belief Networks 154

7.6 Low Effective Dimension . 158

7.7 Conclusion . 163

CHAPTER 8: THEANO . 167

8.1 Introduction . 168

8.2 Case Study: Logistic Regression . 170

8.3 Benchmarking Results . 174

8.4 What kinds of work does Theano support? 178

xiii

8.5 Compilation by theano.function 180

8.5.1 Canonicalization . 180

8.5.2 Stabilization . 181

8.5.3 Moving Computation to the GPU 182

8.5.4 Code Generation . 183

8.6 Limitations and Future Work . 184

8.7 Conclusion . 185

CHAPTER 9: CONCLUSIONS AND FUTURE WORK 187

9.1 Hyper-parameter Optimization . 188

9.2 Sum Pooling vs. Max Pooling . 188

9.3 Scaling with Nested Models . 189

9.4 Slow Features in Energy Models . 191

9.5 Complex Cell Models and Depth 192

9.6 Revisiting the Feed-forward Model 193

BIBLIOGRAPHY . 199

LIST OF TABLES

3.I Sampling probabilities of various V1 models under our hyper-

parameter distribution. 66

4.I Generalization error (% error) from 100 labelled MNIST ex-

amples after pretraining on MIXED-movies and MNIST-movies. 92

5.I The performance of the pooled and unpooled ssRBM models

relative to other models in the literature for CIFAR-10. 113

6.I The performance of µ-ssRBM variants with 256 hidden units

relative to one another in CIFAR-10 image classification. . . . 131

6.II The performance of µ-ssRBM variants relative to other models

in the literature for CIFAR-10. 131

8.I Overview of Theano’s core functionality. 179

LIST OF FIGURES

1.1 A high-level diagram of how information is processed by the

nervous system. 4

2.1 The Ebbinghaus illusion . 17

2.2 Estimate of the representation of the visual field on the surface

of human occipital cortex. 21

2.3 Layout of orientation preference observed in area V1 of macaque

monkey. 21

3.1 Sampling distribution over V1-like models and learning algo-

rithm hyper-parameters for high-throughput search. 65

3.2 Images from each of three datasets (Shapes, Digits, Toys), and

filters learnt by the best visual system models. 68

3.3 The performance of the 5 best visual system models by hyper-

parameter value and by dataset. 69

3.4 Why not just use more simple model neurons with one filter

each? . 73

4.1 Four of the three hundred activation functions learnt by train-

ing our model from random initialization to perform classifica-

tion. 87

4.2 Filters from some of the units of the model, pretrained on small

sliding image patches from two large images. 89

4.3 Filters of complex-cell-like model, pretrained on movies of cen-

tred MNIST training images under Brownian motion. 90

5.1 The GRBM exhibits significant sensitivity to variation in con-

trast. 99

5.2 Filters learnt by the unpooled ssRBM when applied to PCA-

whitened 8x8 colour image patches. 110

xviii

5.3 Filters learnt by a pooled spike and slab RBM with topograph-

ically overlapping pools applied to PCA-whitened 8x8 color

image patches. 111

5.4 The spike and slab effect . 112

6.1 ZCA-whitened training data and parameters learnt by the µ-

ssRBM . 130

6.2 Samples from a convolutionally trained µ-ssRBM exhibit global

coherence, sharp region boundaries, a range of colours, and

natural-looking shading. 132

7.1 Samples from datasets derived from MNIST. 141

7.2 Samples from rectangle-based datasets. 142

7.3 Samples from the convex dataset. 143

7.4 A random experiment efficiency curve. 146

7.5 Neural network performance without preprocessing. 149

7.6 Neural network performance when standard preprocessing al-

gorithms are considered. 150

7.7 Automatic Relevance Determination (ARD) applied to hyper-

parameters of neural network experiments. 153

7.8 Deep Belief Network (DBN) performance according to random

search. 159

7.9 The efficiency in simulation of low-discrepancy sequences rela-

tive to grid and pseudo-random experiments. 162

8.1 Logistic regression, part 1: declaring variables. 172

8.2 Logistic regression, part 2: the computation graph. 172

8.3 Logistic regression, part 3: compilation. 173

8.4 Logistic regression, part 4: computation. 174

8.5 The speed of fitting a Multi-Layer Perceptron to simulated data

with various implementations of stochastic gradient descent. . 175

xix

8.6 The speed of fitting a convolutional network with various soft-

ware packages. 176

8.7 CPU Speed comparison between NumPy, numexpr, and Theano

for different sizes of input on four element-wise formulae. . . . 177

8.8 The compilation pipeline for functions compiled for GPU. . . . 181

9.1 The single source filter and a subset of the factored sparse cod-

ing dictionary of 1000 elements learnt from just 5000 greyscale

CIFAR-10 images. 191

LIST OF ABBREVIATIONS

AI Artificial Intelligence

CD Contrastive Divergence, also known as CD-1

CD-K Contrastive Divergence with K Gibbs steps

DAE Denoising Auto-Encoder

GMM Gaussian Mixture Model

GRBM Gaussian Restricted Boltzmann Machine

ICA Independent Components Analysis

IT Inferotemporal lobe

LGN Lateral Geniculate Nucleus

mcRBM Mean and Covariance RBM

MT Medial Temporal lobe

NLL Negative Log-Likelihood

PCA Principal Components Analysis

PCD Persistent Contastive Divergence

RBM Restricted Boltzmann Machine

RGB Red Green Blue

RI Real Intelligence

SIFT Scale Invariant Feature Transform

SFA Slow Feature Analysis

SPD Sparse Predictive Decomposition

SGD Stochastic Gradient Descent

SML Stochastic Maximum Likelihood

ssRBM Spike and Slab RBM

SVM Support Vector Machine

V1,V2,V4 Visual area 1, 2, 4

NOTATION

A learning algorithm

B binary values, the set {0,1}
C complex numbers

E (italic) energy, energy function

E[·], EQ[·] (no italic) expectation under true distribution, distribution Q

Gx true, naturally occurring distribution of observable variable x

I indicator function, e.g. I(x>0) =

1 if x > 0

0 if x≤ 0

N natural numbers

N (µ,σ2) a Normal distribution of mean µ and variance σ2

O(f (n)) big-O notation for asymptotic space or time requirement

P(·),PQ(·) probability under true distribution, distribution Q

R real numbers

u,v,w,x,y,z lower case latin letters - vectors

U,V,W,X ,Y,Z upper case latin letters - matrices

vi,Vi i th element of vector v, column of matrix V

α,β ,γ,δ ,ε real-valued scalars

L (A)(x;θ) loss function A evaluated at x with model parameters θ

X ,Y caligraphic font indicates a dataset, a sample from some Gx,Gy

|X | cardinality of dataset

meana∈X (f (a)) mean of f over X , i.e. 1
|X |∑a∈X f (a)

Vara∈X (f (a)) variance in f over X , otherwise similar to mean.

||x||1 The `1-norm of x ∈ RN , ∑
N
i=1 |xi|

||x||2 The `2-norm of x ∈ RN ,
√

∑
N
i=1 |xi|2

U ∗W The 2D convolution of image U with filter W

ACKNOWLEDGMENTS

The events of life are so intricately interwoven, and my view of that web so narrow,

that I will never know how many people helped me to complete this dissertation,

nor how much they put up with as I slogged my way through it. I know there were

at least a few who put up with quite a bit. I would like to specifically thank Yoshua

Bengio, Aaron Courville, Pascal Vincent, Olivier Breuleux, Frédéric Bastien, Du-

mitru Erhan, Guillaume Desjardins, Pierre-Antoine Manzagol, François Rivest,

Pascal Lamblin, Razvan Pascanu, Olivier Delalleau, Joseph Turian, Antoine Bor-

des, Michael Mandel, Douglas Eck, Jérôme Louradour, Paul Cisek, Andrea Green,

David Warde-Farley, Ian Goodfellow, Nicolas LeRoux, and Hugo Larochelle for

offering their insight, many interesting discussions, and of course the time and ef-

fort they invested in Theano. I would like to thank my family - Susan, Stuart,

Evan, and Findlay - who were all so supportive. And I would like to especially and

profoundly thank Olga, who offered her sanity and soul when I was in need, and

shared the joyful moments as they came too.

CHAPTER 1

INTRODUCTION

Barlow (1961) made what has become a very influential claim regarding how the

brain works. After studying the retinal cells of frogs, Barlow suggested that they

seemed to be operating as if to minimize redundancy. Since then, a lot of evidence

has accumulated supporting the idea that the visual system is organizing itself

around statistics of what the eyes see. For example, gazing on horizontal and then

vertical stripes for a few minutes will provoke your visual system to suffer from an

optical illusion for weeks afterwards (McCollough, 1965). A more dramatic example

comes from a recent experiment, in which the brains of baby ferrets were rewired at

birth so that the eyes directed their signals to what is usually auditory cortex (Von

Melchner et al., 2000). Astonishingly, the ferrets developed with a sense of sight.

The implication is that the cortex of the brain is in fact a very flexible mass of

learning material, just waiting to pick up on certain kinds of statistical patterns

wherever they arise. If we could only discover how the brain models images, then

we might well discover how it processes and represents sound and other sensory

signals too. Other experiments such as Cox et al. (2005); Farley et al. (2007);

Stevenson et al. (2010) suggest that our brain is constantly adapting to statistical

patterns throughout our lifetime.

It is not known exactly what sort of probability model the visual system builds

of the images that it sees. Many hypotheses have been advanced (such as Bell and

Sejnowski, 1997; Berkes and Wiskott, 2005; Field, 1994; Hinton, 2007; Hyvärinen

et al., 2001; Karklin and Lewicki, 2008; Kohonen, 1996; Lyu and Simoncelli, 2007;

Olshausen and Field, 1996), and they are all consistent with what is known about

the visual system. For example, neurophysiological investigation has revealed that

many neurons in the visual system act like simple edge detectors (Hubel and Wiesel,

1962), and every one of these models can account for that. The background in-

formation presented in Chapter 2 will describe some of these hypotheses, and my

2

own work in Chapters 5 and 6 advances yet another one. More accurate character-

izations of neural behaviour might narrow down the list of candidate hypotheses

(and such research is underway) but the computational differences between these

candidates can be quite subtle and it may be a long time before we gain sufficient

insight into the long-term computational properties of neural populations to rule

out any of these candidates.

There is another way to evaluate hypotheses of self-organization in the visual

system, beyond direct comparison to neural behaviour. By changing the level of

our analysis (as described by Anderson, 1990), we can note that the purpose of

visual system is first and foremost to inform decisions, not to putter away building

a probability model of images. If we view the building of probability models as

a means to an end, then it is sensible to ask which hypothesis for learning in the

visual system works best, as a provider of image features for behavioural decisions.

Looking at the visual system in terms of being optimal for some behavioural

purpose puts my research in the domain of artificial intelligence and more specif-

ically machine learning. Alan Turing famously defined artificial intelligence (AI)

as a decision making process that could animate an impostor posing as an intelli-

gent agent (Turing, 1950). This definition is itself rooted in the more fundamental

idea that scientific knowledge is based on the refutation of hypotheses rather than

deduction of corollaries (Popper, 1935). For our purposes, it means that AI is a

computer simulation indistinguishable from real intelligence (RI). This definition

can be formalized with a mathematical function that compares AI behaviour to RI

behaviour and returns a non-negative number that is 0 if and only if they are indis-

tinguishable. In machine learning we call this a risk function. Machine learning is

the study of how to minimize the expected risk, which is a weighted average risk over

some set of situations where we expect our AI simulation to behave intelligently.

To put this definition in terms of information processing in the visual system, a

“situation” is the presentation of an image, and an example“risk function”would be

0 if the AI and RI label the image identically and otherwise 1. In machine learning

we often restrict the domain of situations faced by our AI agents. The greater the

3

variety of situations that we consider, and the lower the expected risk, the closer

our AI is to real intelligence. The principles and methods of machine learning will

be reviewed in Chapter 2.

The idea that a model of the visual system should provide a useful represen-

tation of images is central to the work presented in this dissertation. Figure 1.1

illustrates in broad strokes the scope of my visual system models within the whole

sequence of cortical information processing: the path from an image stimulus to

a decision regarding the name of the principle visible object. This pathway exists

quite literally in the brain. Neural activity in a brain region called inferotemporal

(IT) cortex is activated about 100 milliseconds after the presentation of an image

(after about 5-10 neurons have passed it along), and the pattern of activation there

is highly correlated with the names of visible objects (Hung et al., 2005; Kreiman

et al., 2006; Sato et al., 1980). The brains of many species of mammals appear

to have this capacity. My dissertation presents models of this pathway through

the visual system, and simulates how it adapts to statistics of the images that it

perceives.

The connection between statistical modelling of sensory input and our ability

to make intelligent decisions based on that input is not new, rather it is the subject

of a branch of machine learning called deep learning (Bengio, 2009; Hinton, 2007;

Hinton et al., 2006). Using simplified models of the visual system, simulations

have shown that the process of adapting to low-level image statistics (known as

unsupervised learning) in fact increases the accuracy of the higher-level process of

learning to discriminate between shapes, and improves its ability to identify im-

portant cues in the images (Erhan et al., 2009; Hinton et al., 2006). My doctoral

work strengthens this connection by showing (a) that low-level adaptation helps

high-level performance more so in less-simplified models of the visual system, and

(b) that more faithful models of the visual system also realize higher levels of per-

formance. The visual system models I investigate are still quite simplified, but

they include biologically-inspired computational elements based on complex cells,

described in Section 2.3.4 and Chapter 3. This dissertation argues firstly that com-

4

Figure 1.1: A high-level diagram of how information is processed by the nervous
system. This thesis focuses on the region enclosed by the dashed line, from the
perception of images to simple decisions about those images. Sensory models are
probability densities over stimuli, whose latent variables are the features used to
make decisions. There is substantial evidence that the brain also fits a probability
density to its stream of sensory stimuli.

5

plex cells are useful for pattern classification even without a low-level adaptation

mechanism (Chapter 3), and then shows that they can be greatly improved by such

mechanisms (Chapters 4, 5, and 6). Others such as Kavukcuoglu et al. (2009) and

Lee et al. (2009) have looked at this question concurrently using different tech-

niques, and have come to similar conclusions.

Two auxiliary innovations were crucial for carrying out this research: a tech-

nique for model search and a math expression compiler. The visual system models

I use in simulation experiments have many configuration options, and these can

be tuned to improve performance. My model is not unique in this regard; most

learning algorithms have these so-called hyper-parameters (defined and discussed

in Section 2.5.6) and the standard technique for tuning performance is grid search.

I found that purely random search gives much better results. I believe that there

is still a great opportunity for further improvement in model search, but currently

random search is arguably the state of the art in hyper-parameter optimization. It

is also a much more convenient baseline for comparison than grid search.

The second innovation is Theano, a math expression compiler. To appreciate

the value of this compiler, one must first appreciate the importance of investigating

machine learning algorithms at scale - in terms of model size, data dimensionality,

and number of training examples. Some algorithms perform well in few dimensions

with few examples but scale poorly; some others that are mediocre on small datasets

shine in settings with lots of data. The only real examples we have of effective vision

systems are brains, and the representations in the visual cortex are much larger

than the models that can be studied with commodity computers. Therefore, in

our research we push at the limits of what is computationally possible to get a

better picture of how learning and inference might work in brain-sized models, on

retina-size images.

Theano is an optimizing compiler for math expressions that separates the busi-

ness of running algorithms at top speed from the more scientific work of designing

those algorithms. Programming an algorithm to run at top speed on a particu-

lar computer can be tedious. Programming an algorithm to run at top speed on

6

a variety of computers is harder still, because of differences in the hardware and

libraries available on different computers. Theano has been essential in supporting

an easy transition (for many others as well as myself) from primarily CPU-based

simulations to primarily GPU-based simulations.1 Also, its support for symbolic

differentiation has made it a great tool for the rapid and correct implementation

of complicated neural network models.

During my doctoral studies, I was involved in a number of other research

projects that are not chapters in this dissertation:

1. An Empirical Evaluation of Deep Architectures on Problems with Many Fac-

tors of Variation (Larochelle et al., 2007).

2. Quadratic Features and Deep Architectures for Chunking (Turian et al., 2009).

3. Scalable Genre and Tag Prediction with Spectral Covariance (Bergstra et al.,

2010c).

4. Quadratic Polynomials Learn Better Image Features (Bergstra et al., 2009).

5. Factored Sparse Coding (Bergstra et al., 2010b).

6. Deep Learning in Python with Theano (Bergstra et al., 2011b),

The first two were primarily others’ projects, the third follows up on my Masters

work on music classification, and the fourth has significant overlap with the ideas

(though not the experiments) in Chapter 3. The fifth is an ongoing project de-

scribed briefly as future work (Chapter 9). The sixth is a project in preparation for

the Journal of Machine Learning Research. Together with other members of the

lab, we have assembled tutorials for several machine learning algorithms based on

Theano. These Deep Learning Tutorials have already proved valuable in Yoshua

Bengio’s machine learning course, and we would like to advertise them more widely

in the machine learning community.

1Graphics Processing Units (GPUs) are massively parallel computing devices developed for
rendering the 3D scenes of games, but recently fitted by companies such as NVidia and AMD to
support scientific computations. For the sorts of computations treated in this thesis, GPUs are
often faster by ten to twenty-fold than current-generation CPUs.

7

1.1 Annotated Overview of Chapters

Chapter 2 provides a survey of techniques for building image representations,

called image features. Three approaches are described: reverse-engineering (neuro-

physiology), engineering (computer vision), and machine learning. Later chapters

are research publications that assume a certain level of background knowledge.

This chapter provides that background information regarding the visual system,

image processing, and machine learning algorithms.

Chapter 3 is an article published in Neural Computation titled Suitability of V1

Energy Models for Object Classification (Bergstra et al., 2011a). This work uses

gradient descent and random search techniques to evaluate many model variations

that have been associated with complex cells in the neurophysiological literature

in terms of whether they help to distinguish between common kinds of objects.

It establishes that even without an adaptation mechanism beyond gradient opti-

mization of decision making performance (purely supervised learning), complex cell

models make better features than simple cell models. I put this article before the

others because I started work on this project first. Although it was not published

until recently, the main result of this article was established already by the winter

of 2008. Earlier versions of this article were based on a hand-designed set of six

increasingly sophisticated models that spanned from conventional sigmoidal neural

networks (simple cell-like models) to a complex cell model suggested in Rust et al.

(2005). Two papers that came out in 2008 forced me to completely redo this study:

Kouh and Poggio (2008) and Cox et al. (2008, later, Pinto et al. (2009)). Conse-

quently, I think the empirical results are much stronger, and my experience with

high-throughput search inspired the work on random search presented in Chapter 7.

Chapter 4 is a paper titled Slow, Decorrelated Features for Pretraining Complex

Cell Networks (Bergstra and Bengio, 2009). It shows that unsupervised learning of

the complex cell model presented in Rust et al. (2005) improves its performance in

supervised learning. The algorithm used here for unsupervised learning is a com-

8

bination of decorrelation (a type of independent components analysis discussed in

Section 2.5.16) and temporal correlation (similar in spirit to slow feature analy-

sis, Section 2.5.15). The combination was previously suggested by Körding et al.

(2004), but this paper contributes a strategy for implementing that algorithm more

efficiently.

Whereas the unsupervised learning algorithm based on decorrelation and slow-

ness learns to model images implicitly, Chapters 5 and 6 are conference papers

about a complex-cell-inspired model family that learns an explicit probability dis-

tribution over the space of images. The first paper, The Spike and Slab Restricted

Boltzmann Machine (Courville et al., 2011a) develops the basic model and shows

that it works on very small image patches. The second paper, Unsupervised Models

of Images by Spike-and-Slab RBMs (Courville et al., 2011b), scales the basic model

up to somewhat larger images and describes changes to the model that improve

both modelling and classification performance.

Chapter 7 is an article submitted for publication in the Journal of Machine

Learning Research titled Random Search for Hyper-parameter Optimization (Bergstra

and Bengio, 2011). It argues that random search is better than grid search for

searching a model family. It follows up on the random experiments done for Chap-

ter 3, and argues that when a simulation is not equally sensitive to all hyper-

parameters, random search can be significantly more efficient than grid search.

The bulk of experimental support comes from a repetition of some experiments

done previously in our group, presented originally in Larochelle et al. (2007).

Chapter 8 is an article about Theano. Theano is an optimizing compiler devel-

oped to facilitate research in machine learning. Theano: a CPU and GPU Math

Expression Compiler was presented at SciPy 2010 (Bergstra et al., 2010a), and

describes the usage and scope of the software package. It goes into a little detail

regarding how the software actually works, but the interested reader is referred to

the online documentation and mailing lists for more up-to-date information.

9

Chapter 9 summarizes my findings regarding complex cells in neural networks,

and outlines work in progress for scaling these approaches to larger images and

image sequences.

CHAPTER 2

BACKGROUND

This chapter introduces concepts and terminology related to machine learning,

computer vision, and computational neuroscience that are used in later chapters.

It begins with a brief discussion of linear decision making and the role of features

before going into more detailed perspectives from computer vision, neurophysiology,

and machine learning regarding what those features should be. Remember that

there are lists of abbreviations and notational conventions on pages xxi and xxiii.

2.1 Linear Decision Making

Linear decision making has been at the core of artificial intelligence since the

beginning of the field (Fisher, 1936). This dissertation is concerned with a partic-

ular form of decision making, called classification. Classification is the problem of

choosing among of several mutually exclusive labels for an item based on evidence.

In this thesis the item in question is usually an image, but classification algorithms

can be applied to other things too.

To classify an item o, we must characterize it by a vector x∈RN , whose elements

xi are called features of the item. A linear classifier for a problem with L labels is

technically an affine function

Wx + b (2.1)

from RN → RL, typically parametrized by a matrix W ∈ RL×N and a bias b ∈ RL.

What makes this generic affine function a classifier is the way it is used – we extract

a class label l∗ by applying an argmax operator to the L-element output vector.

l∗ = argmax
l≤L

(Wx + b)l (2.2)

When there are only two possible labels we call the classifier a binary classifier, oth-

12

erwise it is called a multiclass classifier. Binary classifiers can be re-parametrized

to need only a single vector of weights, and a single bias

l∗ =

1 if (W0−W1) · x +(b0−b1) > 0

0 otherwise
(2.3)

This form was introduced as the Perceptron, and is still used in modern applica-

tions (Minksy and Papert, 1969; Rosenblatt, 1962). We will come back to the topic

of linear decision rules in Section 2.5.3 when we look at algorithms for learning

optimal W and b from data.

2.2 Feature Extraction

The question of what features should characterize an item for classification plays

a central role throughout this thesis. There are many approaches and possibilities.

2.2.1 Direct vs. Kernel-based

There are two broad kinds of feature extraction methods, which I will call direct

and kernel-based. Suppose that we have items {o1,o2, ...} ⊆ O that we would like

to classify. Direct feature-extraction methods build a function f : O → RN that

maps an item to a feature vector. Kernel-based feature extraction methods instead

draw on a pairwise similarity function called a kernel k : O×O→R. Once a kernel

is chosen, the features of an item o ∈ O are defined by the vector of similarities

to N elements of a reference set of items, which should ideally span the range of

variations that might occur among items.

The work in this thesis deals exclusively with direct features, although it should

be noted that kernel-based approaches to characterizing items for classification have

revolutionized machine learning, especially with regards to the classification of

items described by complex data structures such as molecules and web documents.

Direct approaches remain more popular where good feature functions f are known,

13

where there has been success in learning feature functions from data, or where a

representative reference set would be impractically large (Bengio, 2009).

2.2.2 Three Ways to Derive Image Features

Broadly speaking, three approaches have emerged for finding functions that

map from images to feature vectors:

• reverse engineering,

• engineering, and

• search.

These approaches are not mutually exclusive. For example, I think it would be

fair to say that the “Spike and Slab” models in Chapter 5 draws on all three.

Still, the approaches imply different mindsets and algorithms for finding features.

The next few paragraphs will give a quick introduction to these approaches, and

then each approach will be covered in more detail. Section 2.3 will talk about

the neurophysiology of the visual system (reverse engineering), Section 2.4 will

describe image processing and a computer vision algorithm for feature extraction

(engineering), and Section 2.5 will describe machine learning methodology with a

focus on how it can be used for feature search.

2.2.2.1 Reverse Engineering

Design by reverse engineering is the approach of studying and quantifying how

the brain processes visual stimuli, and of reproducing artificial systems with the

same properties. Such research is typically conducted in neuroscience departments

rather than computer science ones, but we can draw on the physiological findings.

A lot of progress has been made in understanding how the brain processes visual

stimuli, and I will give a survey of some of that progress in Section 2.3. This

approach to feature design has been used recently to give very strong results on

standard computer vision benchmark tasks (Pinto et al., 2008, 2009).

14

2.2.2.2 Engineering

Design by engineering is the approach in which we try to conceive of mathe-

matical transformations of images that will make classification easy. In engineering

features, we often think in terms of criteria such as invariances. We would like

features that are invariant to changes in the image that should not change the

output of a classifier, that are at the same time sensitive to image changes that

might change the classifier output. Features such as “Pyramid Histogram of Ori-

ented Gradients” (Bosch et al., 2007), “Pyramid Histogram of Words” (Lazebnik

et al., 2006), “Geometric Blur” (Berg and Malik, 2001), “Scale Invariant Feature

Transformation” Lowe (1999, 2004), and “Sparse Localized Features” Mutch and

Lowe (2008), developed in the computer vision community are this kind of feature.

We will look at the Scale Invariant Feature Transformation (SIFT) in some detail

at the end of Section 2.4.

2.2.2.3 Search

Design by search is the approach of using search algorithms over function spaces

to find good feature maps, based on how they perform on sets of examples. This

approach to feature design is widely used, especially in the machine learning lit-

erature on neural networks (LeCun et al., 1998a; Rumelhart et al., 1986b). This

is a wonderful mathematical idea, but in practice it often poses a very difficult

optimization problem. Still, gradient-based optimization algorithms work to some

extent, and the most effective feature-extraction approaches make what use of them

they can. This approach will be described in more detail in Section 2.5.

2.2.3 Hybrid Approaches

It is natural to combine different approaches to feature learning. When param-

eterizing a function space that we will optimize, or choosing a density model that

we will fit, it is natural to ask ourselves the same question as the feature engineer

- “how might this feature function be robust or sensitive to changes in the image?”

15

And it is natural to look at the function found by optimization, or the distribu-

tion fit to data, and ask - “do these features behave like anything in visual cortex?”

These criteria are useful in addition to raw classification ability in guiding research.

Later chapters of this dissertation will often combine different approaches.

2.3 Neurophysiology of the Visual System

The visual system is the part of the nervous system that lets an organism make

behavioural decisions based on input from its sense of sight, as opposed to other

senses. This section describes the overall architecture of the visual system, which

is consistent across a large variety of creatures. The emphasis will be on a com-

putational interpretation of the visual system; although components of the visual

system will be identified primarily in anatomical terms, it is their computational

function (i.e. physiology) that is of primary interest. This section will summarize

the computational function of the retina, the lateral geniculate nucleus (LGN), Vi-

sual Areas V1 and V2, and inferotemporal cortex (IT) in terms of the role each

one plays in the recognition of objects in images. It should be noted that the vi-

sual system participates in many neural processes involved with the oculomotor

system (saccades and compensation for controlled head motion), control during

reaching and grasping (Pesaran et al., 2006), spatial reasoning and balance (Bear

et al., 2007), and attention (Kastner and Ungerleider, 2000; Maunsell and Treue,

2006), to give a few examples. But I will only deal with the role of the visual

system in recognizing objects. The analogy with algorithmic approaches to object

recognition will be that the retina and LGN perform basic (though nonetheless

important) signal processing of images, that V1 and V2 extract non-linear features

of the processed image, and that IT acts like a classifier of the V1 and V2 features.

2.3.1 The Two Stream Hypothesis

The visual system is often modelled as two processing pipelines: the “what”-

oriented ventral stream and the “where”-oriented dorsal stream. The hypothesis is

16

that these implement two algorithms with distinct stages of processing by which the

visual signal is transformed from photon counts to semantically meaningful things

such as object identities and spatial arrangement, respectively (Ungerleider and

Mishkin, 1982). The distinction between the two streams has been supported by

behavioural, electrophysiological and lesioning studies. It has also been supported

by experiments using the Ebbinghaus illusion (Figure 2.1) that would deceive sub-

jects when they responded based on their perception, but that would not fool them

when they responded via a grasping action (Goodale and Milner, 1992). This last

evidence has been disputed by Franz et al. (2000), but I personally find it com-

pelling: if I use my fingers to estimate how big the orange circle is I think they

are about right in both cases. The two-stream hypothesis supports the practice of

ignoring motion as we look to the brain for features to characterize images.

2.3.2 Neurons

There are many kinds of neuron: tens of kinds in the retina alone. Most neurons

have a basic structure of dendrites (or a dendritic arbor), a cell body (soma), and

an axon. The anatomy of neurons varies widely throughout the nervous system

and between species. As a general rule though, the dendrites of a neuron look

something like the root system of a plant, and the axon is its stalk.

Information flows through the neuron in the direction of nutrients through the

plant. Unlike plant root systems though, neurons are arranged into enormous

networks in which information flows from neuron to neuron and sometimes loops

back by feedback connections. At synapses, neuro-transmitters are released in bursts

by an axon, so that they disrupt the electrical potential between the interior and

exterior of nearby (proximal) dendrites of other neurons. These other neurons

allow that electrical disturbance to migrate along the dendrites to the soma. The

soma accumulates electrical changes from all dendrites, and (in most neurons) when

a threshold of electric potential is reached, the soma depolarizes and triggers an

electrical chain reaction called an action potential (or spike) that can propagate a

long distance very quickly along the axon. The frequency at which a soma triggers

17

Figure 2.1: The Ebbinghaus illusion. The two orange circles are the same size,
but the one on the left seems smaller. This illusion has been used to support the
two-stream hypothesis of visual processing. (Image courtesy of wikipedia.)

an action potential is called the firing rate of the neuron. The efficiency with which

a burst of neuro-transmitters disrupts the electric potential of an efferent cell is

called the synaptic strength. It is believed that learning is the result of changes to

these synaptic strengths.

While this is a widely applied theory of information processing in the visual sys-

tem it is a simplification. Neurons release and take up a variety of amino acids and

proteins called neuro-transmitters and neuro-modulators that change how they and

their neighbours behave on various time scales. It is widely assumed among mod-

ellers that dendrites act to linearly combine the electrical disruptions mentioned

above, although in many cases neurons perform non-linear computations within

their dendritic arbors. There are also neurons that support dendritic spikes that

propagate both to and from the soma. The kind and extent of non-linear signal

processing carried out in the dendritic arbours of various neurons is the subject of

active research (Carandini and Heeger, 1994; Haüsser and Mel, 2003; Heeger, 1992;

Olshausen and Field, 2005; Rhodes, 2008).

18

2.3.3 The Retina and LGN

The retina is the part of the central nervous system in the eye, which includes

photoreceptive cells. These photoreceptive cells convert light to electrical signals,

much like the optic sensor in a digital camera. There are two kinds of photore-

ceptive cells in the retina of vertebrates: rods and cones. Rods provide luminance

information and function better in faint light. Cones are tuned for colour (certain

wavelengths of light) and function better in bright light. The retina fills most of

the interior of the eye, and includes 75 to 150 million rods and 7 million cones.

Humans typically have three kinds of cone cells, tuned to light that is roughly

red, green, and blue respectively. Other species have cone cells that are tuned to

different parts of the light spectrum.

Many primates including humans, some birds, and reptiles have a retina with a

small central region called the fovea that is specialized for high-acuity vision. The

central part of the fovea in humans contains only cones, and relatively few blue-

sensitive cones at that, in order to maximize the visual acuity (image resolution).

The rod-free area in humans is about 0.3mm in diameter and contains approxi-

mately 35,000 cones, some of which are sensitive to a receptive field of as little as

0.1 to 0.01 degrees (Olshausen and Field, 2005). At the fovea then, the human eye

has the acuity of about a 1 mega-pixel digital camera. The non-foveal part of the

retina (or sometimes the field of view) is called the periphery, and receptive fields

there are larger (up to several degrees in diameter).

The retina communicates with the rest of the nervous system by ganglion cells

that extend along a tract known as the optic nerve to the LGN. At least in higher

vertebrates, this channel provides one-way communication. There are far fewer

ganglion cells than there are rods, but at least in the foveal region it has been

reported that cone cells map 1-to-1 or even 1-to-2 onto ganglion cells. The number

of ganglion cells in mature humans is on the order of 700 thousand to 1.2 mil-

lion (Curcio and Allen, 1990). Most ganglion cells are called centre-surround cells

because they fire when there is more light energy in a particular visual location

19

relative to its surroundings, or vice-versa.

The response of these ganglion cells is modelled well by a difference-of-Gaussians

band-pass filtered image (Dowling, 2007). Later we will describe this mathematical

interpretation as preprocessing by whitening.

The lateral geniculate nucleus (LGN) is described as a neural relay station in

the visual system (Dayan and Abbott, 2001). It routes the signals from ganglion

cells to various reflex pathways, and to visual area V1.

2.3.4 Visual Area V1

The LGN projects to a relatively broad region in the posterior pole of the

occipital cortex called primary visual cortex (V1, also striate cortex). Assuming

that the right and left hemispheres of V1 are roughly equal in size, there are

approximately 280 million neurons in V1, many more than the approximately 1-2

million afferent axons from LGN (Leuba and Kraftsik, 1994).

The neurons in V1 are divided among six functionally distinct layers. The re-

ceptive fields of a cell is the part of the visual field to which it is sensitive. Layer

4 receives most of the visual input from LGN. The axons from LGN project into

Layer 4 in a way that reflects the topographic structure of each eye’s retina, though

the retinotopic response from the two eyes is woven together and the visual field is

warped so that more V1 neurons are devoted to the fovea of the visual field (See

Figure 2.2 for details). In the macaque monkey, cortical receptive fields range in

size from around a tenth of a degree near the fovea to several degrees in the periph-

ery (Dayan and Abbott, 2001). Across the striate cortex there is more functional

structure than just a retinotopic organization of receptive fields. V1 neurons are

organized by the retinotopic map into columns – groups of neurons with similar se-

lectivity and receptive fields, which tend to be more influenced by either one eye or

the other (occular dominance) (Carandini, 2006; Movshon et al., 1978). Figure 2.3

shows that there is a regular and repeating pattern of orientation selectivity. We

will see later in Section 2.5.13 that convolutional networks and tiled convolutional

networks build this repeating structure into models of the visual system, but there

20

is evidence that our brain does not actually convolve a single function over the vi-

sual field, so this must be viewed as a computational trick (Cox and DiCarlo, 2008).

Also, convolutional models are typically applied to the standard image coordinates,

rather than the warped visual field shown in Figure 2.2. Work such as Larochelle

and Hinton (2010) is a step in the direction of using more accurate spatial encoding

of V1’s retinotopic map.

Physiologically, V1 comprises cells with various computational properties. Many

simple cells have a firing rate that is well-modelled by a linear filter of a stimulus

image (or image sequence), except that they only respond once a certain thresh-

old is met (Carandini and Heeger, 1994; Hubel and Wiesel, 1968, 1962). Simple

cells tend to respond when their receptive field looks like an edge at a particular

location and orientation, and are often characterized by Gabor functions. Conse-

quently, they act like localized complex Fourier transforms. Neurons in V1 that do

not follow this linear model are called complex cells. Complex cells are sometimes

characterized as having orientation selectivity like simple cells, but less sensitivity

to the exact retinal location of the change in contrast (phase invariance) (Hubel and

Wiesel, 1968, 1962; Movshon et al., 1978). This phase invariance has been defended

on theoretical ground (Zetzsche et al., 1999), and incorporated into complex cell

models based sums or maximums of simple-cell-like models (Adelson and Bergen,

1985; Riesenhuber and Poggio, 1999), but these models fail to explain a number of

other nonlinear effects, such as surround suppression and cross-orientation inhibi-

tion (Bonds, 1989; Cavanaugh et al., 2002; Jones et al., 2002). More sophisticated

models such as Finn and Ferster (2007); Kouh and Poggio (2008); Rust et al.

(2005); Wainwright et al. (2002) include additional parameters to account for these

behaviours, but the emerging picture is that V1 neurons seem to resist character-

ization as functions of images or movies within small receptive fields. For recent

reviews of what is known (and unknown) about V1, and how it can be modelled,

see Carandini (2006); Chen et al. (2009); Hyvärinen (2009); Olshausen and Field

(2005); Simoncelli and Olshausen (2001).

21

Figure 2.2: Estimate of the representation of the visual field on the surface of hu-
man occipital cortex. The figure shows the medial aspect of the occipital lobe with
tissue on either side of the calcarine sulcus pushed apart. Right: representation of
visual field coordinates as they would appear on the cortex if completely unfolded
and flattened. Numbers show either meridional angle or eccentricity in degrees.
The dark circle is the blind spot; HM = horizontal meridian. Note the orthogonal
intersections of lines of constant eccentricity and meridional angle. From Swin-
dale (2008), which was modified with permission from Horton (2006). See related
Figure 2.3 for functional organization across the visual field.

Figure 2.3: Layout of orientation preference observed in area V1 of macaque mon-
key. Scale bar = 1 mm. From Swindale (2008), modified from Blasdel and Salama
(1986).

22

2.3.5 Beyond Primary Visual Cortex

The ventral stream continues from V1 to areas known as V2, V4, and infer-

otemporal cortex (IT). The progression from V1 to V2 to V4 and IT is suggested

by experiments that measure how much time elapses between the presentation of

an image stimulus and the measurement of a neural response. These areas are also

retinotopic, but they are smaller than V1. The neurons in these areas have larger

receptive fields, are less linear, and are consequently more difficult to characterize

than V1 simple cells. Attention plays a larger role in modulating cell firing rates in

V2 and V4 than in V1. Some cells in V2 are tuned to certain broader positions, ori-

entations, texture, spatial frequencies and colour, but are also selective to illusory

contours (Connor et al., 2007; Gallant et al., 1996; Hegdé and Van Essen, 2000;

Kobatake and Tanaka, 1994; Pasupathy and Connor, 2001). There are cells in V4

that are selective to particular simple geometric shapes. In IT we find cells that are

highly selective for complex shapes such as faces. IT cortex includes neurons whose

firing rates are the features we would like in an ideal artificial visual system (Hung

et al., 2005; Serre et al., 2007b).

2.3.6 Time, Feedback and Learning in the Visual System

The feed-forward view of the visual system has been very influential on computer

vision research, machine learning, and computational neuroscience. My research

follows this pattern as well, but some caveats should be mentioned to complement

this simplified model.

• The visual system works on a temporal signal, not on images (when studying

the pipeline to IT we often ignore the temporal component of the stimulus).

• The cortex of the visual system includes many back-projections–connections

that send signals from later stages of processing (according to the feed-forward

model) to earlier ones.

• The precise timing of neuron spikes may be important, whereas our models

23

ignore timing and characterize cells only by how frequently they spike.

The speed of our ability to recognize objects speaks to the validity of the feed-

forward approximation, but the existence and number of feedback connections re-

minds us that it is an approximation. Among several problems with the standard

feed-forward model, Olshausen and Field (2005) point out that roughly 5% of the

excitatory input to layer 4 of V1 comes from the LGN, with the majority of exci-

tation coming from intracortical inputs (Peters et al., 1994), and that somewhere

between 60% and 80% of the response of V1 neurons is driven by other V1 neu-

rons, and other inputs than from the retina via the LGN. It has been argued that

spike synchrony among subpopulations in visual cortex plays a key role in scene

segmentation (Gray, 1999). The feed-forward model makes little room for any sort

of scene segmentation, whereas it would seem to be an important property of a

good representation for decision making.

Plasticity is the changing of the computational relationship between neurons.

Learning would seem to require plasticity, although plasticity might serve other

ends as well - such as simply maintaining homeostatis or algorithmic stability in a

living brain. Learning in the visual system appears to be continuous, life-long, and

fast: for example, IT cells of monkeys that were subjected to artificially modified

visual environment adapted to the new environment within 1 hour (Li and DiCarlo,

2008), and just 15 minutes of exposure to a grating pattern can change your visual

system for months (McCollough, 1965). The feed-forward rate model does not

speak to either the algorithm or the mechanism for learning in the visual system.

What learning algorithms we have tend to involve feedback and anatomically we

find that indeed there are many axons running backward from later stages to earlier

ones (in fact even more than carry the signal forward in the first place), but it is

not known what algorithm drives learning in the visual cortex (nor in other regions

of cortex).

24

2.3.7 Level of Detail in Computational Modelling

As we look to the brain for inspiration in designing intelligent systems, the

question of modelling granularity arises. Are neural spikes necessarily a part of

intelligent functioning, or is it possible to replicate intelligent behaviour with a

more approximate neural model? In my work in later chapters, and in most of

the machine learning literature, there is a tendency to use rate models (models ex-

pressed in terms of the firing rates) instead of spiking ones. The choice is somewhat

arbitrary, but not completely. Rate models permit neurophysiological findings to

inform us as we think about features, without preventing us from also drawing on

many theoretical results and algorithms that inform (a) how those features might

be learnt, and (b) what principles can we use to choose features for new kinds of

stimuli when we do not have neurophysiological hints to help us. Perhaps by iden-

tifying such principles we computational people (engineers and modellers) might

some day return the favour to the field of neurophysiology as they try to decode

representations in new areas of the brain. In the meantime, this level of modelling

has led to the engineering of successful models, which match the performance of

humans in restricted settings, and advance the state of the art in computer vision.

2.4 Image Features in Computer Vision

This section covers methods for image processing. It describes of some low-

level details of the simulations used in later chapters, but it also goes further in the

processing pipeline to describe SIFT features (Lowe, 1999). SIFT features are not

used in later Chapters because they are designed for large high-resolution images,

but they have been a successful and influential approach to image feature extraction

in computer vision, and will be discussed in the concluding chapter.

2.4.1 Preprocessing for Images

When presented with a dataset of images oi ∈O, the basic pipeline for convert-

ing them to vectors for classification is as follows:

25

1. standardize colour representation,

2. standardize image size,

3. arrange pixel values in raster order,

4. optionally apply local contrast normalization, and

5. optionally apply one of several affine transforms.

The next few sections describe these steps in more detail.

2.4.1.1 Colour Representation

For eight-bit greyscale images, a single integer in the range [0,255] represents

the grey level of a pixel. White corresponds to 255 and black to 0. The relationship

between light intensity and these values is roughly logarithmic in terms of energy

because our eyes are able to distinguishing differences in light levels mainly relative

to one another. Pixel colours can be represented in several formats, which are not

linearly related. Some colour representations (such as CMYK) correspond to how

one would mix inks to form colour. Other colour representations (such as RGB)

correspond to how a cathode ray tube monitor could mix light to form colour. Most

of the work in later chapters deals with greyscale images, and where colour images

are used colours are encoded in the RGB format, which is the colour encoding that

seems to match retinal coding most closely.

2.4.1.2 Resizing and Rasterizing

Images can be stored and represented in many ways on a computer, but for

our purposes an image is stored and represented as a matrix of pixel colour values.

For an image that is 128 pixels wide and 72 pixels tall, the matrix would have

72 rows and 128 columns. Of course, images gathered from a variety of sources

generally come in different shapes and sizes. It is important for classification that

such images be adjusted to have a common shape. This adjustment is not done

26

with any sophistication, we simply resize images to have the same numbers of rows

and columns, so that they exist in the same vector space. Compared with images

registered by the retina, this resizing process ensures that all of the images could

at least potentially have been sensed by one eye.

Rasterizing means converting the (2D) matrix of pixel values to a (1D) vector

of those same pixel values. Typically this is done by concatenating the first row of

pixels with the second, then the third, and so on. This is simply a rearranging of

pixels into an image that is really wide and one pixel tall; no information is lost in

this linear conversion. The result of this step is a vector, call it p, of N pixel values

pi. This vector can be used as a feature vector for o directly, or it can be further

processed by local contrast normalization and/or affine methods.

2.4.1.3 Local Contrast Normalization

If the result of resizing and rasterizing an image is a vector p of N pixel values

pi, the nonlinear local contrast normalization operator transforms p into a new

vector v according to a formula such as

vi =
pi− p̄√

1
N ∑

N
j (p j− p̄)2 + ε

, where p̄ =
1
N

N

∑
j

p j. (2.4)

This transform removes the mean pixel value, and makes high-contrast images sim-

ilar to medium-contrast ones. The ε should be chosen so that low-contrast images

remain so (e.g. ε = 10 for grey levels between 0 and 255). This transformation is

inspired by the transformation from retinal photoreceptors to retinal ganglion cells.

2.4.1.4 Affine Transformations

If the result of resizing and rasterizing an image (and optionally local contrast

normalization) is a vector p of N pixel values pi, then it may be further processed

by an affine transformation. There are several advantages to a well-chosen affine

transformation:

27

• shifting and scaling feature values to occupy the (-1,1) interval improves the

ability of optimization methods to find good nonlinear models,

• reducing the full feature set down to a smaller representative subset of features

can help optimization methods and also make computations much quicker,

• adjusting the frequency content of images can focus modelling effort on salient

aspects (e.g. edges) of an image.

The simplest technique is to define features x in terms of centred, standardized

elements of p.

x(normalized)
i =

pi−meano∈O(pi)
Varo∈O(pi)

(2.5)

This shifting and scaling helps some optimization algorithms, but does not reduce

dimensionality (number of features).

Principal components analysis (PCA) preprocessing refers to the technique of

identifying some number M of principal components in the data, and representing

an example p by its projections onto those principal components.

x(pca) = W (p−meano∈O(p)) (2.6)

Principal components (the columns of W) form an orthogonal basis that spans the

directions of greatest covariance in p. Often the columns of W are scaled so that the

elements of x have unit variance. PCA preprocessing shifts and scales the features to

help optimization algorithms, and also reduces the dimensionality while retaining as

much information about the input as possible (for a linear method). This procedure

is sometimes called whitening because it removes correlation between the elements

of x.

ZCA preprocessing is similar to PCA, except that we multiply our features

“back”through W to recover features that are interpretable as pixels (see Hyvärinen

and Oja, 2000, Section 5.2).

x(zca) = W ′W (p−meano∈O(p)) (2.7)

28

Although ZCA does not reduce the dimensionality of the feature vector p, it can

smooth out the image and remove subtle high-frequency artifacts that remain after

scaling and reshaping.

Sometimes the ZCA procedure is modified slightly to amplify the presence of

certain principal components of the data; for example, adding constants to the

W (p−meano∈O(p)) term before the second multiplication by W (Coates et al.,

2010). The effect is qualitatively similar to band-pass filtering, which is used for

example in Olshausen and Field (1996). Band-pass filtering is not optimal in a

statistical sense the way PCA and ZCA can be, but it can be performed more

quickly by convolutions or a 2-D discrete Fourier transform.

2.4.2 Case of Image Features: SIFT

Later chapters develop models that can be seen as feature extractors from the

image representation developed by the previous pipeline. Learning is not necessary

though, it is possible to simply program feature extractors with properties such as

specificity to high-level shapes and invariance to lighting, translation, rotation, and

scaling (e.g. Bosch et al., 2007; Lazebnik et al., 2006; Lowe, 1999). These proper-

ties give rise to features that tend to make objects easier to recognize with linear

classifiers. One such feature transform is the Scale Invariant Feature Transforma-

tion (SIFT: Lowe, 2004). This section looks at the SIFT algorithm to give a sense

of how a feature-extraction system can work well without learning.

The SIFT algorithm involves converting an image to scale space and then char-

acterizing points in this scale space by image gradient histograms. Scale space of

an image is a function L(x,y,σ) that is produced by the convolution of a Gaussian

filter of width σ with an image I(x,y). The Difference-of-Gaussian image represen-

tation is the difference between adjacent levels (defined by multiplicative constant

k) in the scale space representation:

D(x,y,σ) = L(x,y,kσ)−L(x,y,σ) (2.8)

29

The SIFT features characterize an image by describing the extrema (local maxima

and minima) in D. There are many local maxima, and it is not possible to identify

them all. Fortunately, coarse sampling finds the most salient ones, and Brown and

Lowe (2002) describe techniques for refining the coarse estimates.

The SIFT feature is ultimately a normalized, weighted histogram of image gra-

dients in the scale space. Part of SIFT’s robustness comes from the fact that those

gradients are represented in a canonical reference frame, that is aligned relative

to the overall gradient in the image in the vicinity of each extremum. The image

gradient orientation at each point near an extremum is weighted by the gradient

magnitude, up to an experimentally-validated maximum of 0.2. When there are

several orientations with near-maximum total weight, a separate set of descriptors

is created relative to each of these orientations.

SIFT features are motivated and defended primarily on engineering grounds, but

Lowe points out that they are not so far from models of the ventral stream (Lowe,

2004). The simple cell model, especially when it includes lateral inhibition, is con-

sistent with not only the scale space image representation, but also the computation

of local extrema in that scale space. Since most simple cells characterize a contrast

gradient, it is conceivable that a sum of simple cells with similar orientation selec-

tivity (i.e. a striate column) implements something akin to a counting operation

(a histogram bin). Even the normalization of these histogram bin counts seems

quite within the realm of cortical computation. The re-orientation of histogram

counts into a canonical reference frame is a bit further from standard feed-forward

models, but perhaps with simple dynamic routing it too is possible in an essentially

feed-forward system (Olshausen et al., 1993).

This extends this line of reasoning - if we design a simple model visual system

that is simply capable of performing these various kinds of computations, can we use

automatic methods to tune it for optimal performance? The last background sec-

tion “Learning Representations” reviews how we can do this with machine learning

techniques.

30

2.5 Learning Representations

When we speak of learning representations, we are referring to the approaches

of optimization and density modelling, as opposed to the approaches of engineering

and neurophysiology.

This section describes the concepts and algorithms used to search function

spaces for good features, or for good density models.

2.5.1 Principles for Learning

The most fundamental idea in machine learning is that things about which

we learn come from probability distributions, and learning means minimizing the

expected value of a formally defined loss function. This is called expected risk

minimization (Bottou, 1998; Vapnik, 1989). Any function that maps from a sample

of observations to a real value could be considered a loss function. Many loss

functions arise in the various applications of machine learning and information

retrieval. A loss function simply encodes how satisfied a modeller is with his or

her model’s performance on particular sample of data. There is hardly a limit to

the realm of possible loss functions, but there are two forms of special importance:

negative log-likelihood, and zero-one loss.

2.5.1.1 Negative log-likelihood

Negative log-likelihood (NLL, Eq. 2.9) and conditional negative log-likelihood

(Eq. 2.10) are often used for density modelling and optimization-based feature

extraction approaches, respectively.

L (NLL)(x;θ) =− logPθ (x) (2.9)

L (cNLL)(x,y;θ) =− logPθ (y|x) (2.10)

In these equations x denotes a stimulus (which will typically be an image in later

chapters), and y denotes the correct label (among a finite set of possibilities) asso-

31

ciated with that stimulus. The θ denotes a model that tells us how to evaluate the

probabilities on the right hand sides of Equations 2.9 and 2.10.

In learning by maximum likelihood, we seek to minimize the expectation

Ex∼Gx [L
(NLL)(x;θ)] (2.11)

with respect to θ , where x is distributed according to its natural distribution.1 In

learning by conditional maximum likelihood we seek to minimize the expectation

E(x,y)∼Gx,y [L
(cNLL)(x,y;θ)]. (2.12)

2.5.1.2 Zero-One Loss

In classification settings we often do not care about probabilities per se. We see

our model θ not as a probability distribution, but as a method for making a label

prediction fθ (x) for some stimulus x. We want those predictions to be correct as

often as possible, and the zero-one loss function reflects this desire.

L (01)(x,y;θ) = Iy6= fθ (x) (2.13)

The zero-one loss is named for the fact it is 0 when the prediction is correct and 1

otherwise. If we could minimize the expectation

E(x,y)∼Gx,y[L
(01)(x,y;θ)] = E(x,y)∼Gx,y[Iy6= fθ (x)] (2.14)

we would be minimizing the rate of incorrect predictions in the domain Gx,y of

interest.

1I’ll use the term natural distribution to describe the distribution that nature imposes on some
observed quantity, to contrast with variables that follow formalized distributions. Other authors
have called this distribution the grand truth (Bottou, 1998) or ground truth distributions.

32

2.5.1.3 Regularization

Often we augment a loss function with a regularization term R(θ) that does not

depend on x or y. For example regularized maximum likelihood learning could be

written as

Ex∼Gx [L
(NLL)(x;θ)]−R(θ) (2.15)

This term allows the modeller to express a preference for various models θ , without

regard to their compatibility with x and y. If we view the optimization of this

expectation with respect to θ as Bayesian maximum a-posteriori inference, then

this extra term expresses our prior over models.

2.5.2 Training, Testing, and Cross-Validation

It was mentioned in the previous section that learning means minimizing the

expected value of some formally defined loss function L . In this section we develop

this concept in more detail.

Suppose our goal in learning is to minimize, for some L and natural distribution

Gx, the expectation

Ex∼Gx [L (x;θ)]. (2.16)

Generally we have at our disposal only a finite sample X whose elements x ∈X

have been drawn identically and independently, x ∼ Gx. Testing means using X

(typically a subset) to estimate the expected loss incurred by a particular predictor

fθ . Training a model means minimizing some estimator of this expectation with

respect to θ .

33

2.5.2.1 Testing

Testing is relatively straightforward. It is done by simply replacing the expec-

tation with an empirical mean over some subset X (test) ⊂X ,

Ex∼ Gx[L (x;θ)]≈ 1
|X (test)| ∑

x∈X (test)

L (x;θ). (2.17)

It is important for the approximation that X (test) be representative of Gx, in prac-

tice this typically means that no element x ∈X (test) should have been used by the

training procedure that selected the optimal value for θ .

2.5.2.2 Training

Given dataset X and test set X (test), define a development set X (dev) = X /X (test)

as the complement of X (test) within X . Training the model is the rather open-

ended optimization problem

θ
∗ = argmin

θ∈Θ

1
|X (dev)| ∑

x∈(X (dev))

L (x;θ) (2.18)

of finding the best model θ among a set Θ of possible models. There are as many

approaches to this problem as there are optimization methods. One in particular

deserves mention as being particularly general and useful: it is the method of

training by what is called cross-validation. Even when other training algorithms

are used, they are almost always used within a cross-validation algorithm.

2.5.2.3 Cross-validation

Cross-validation refers to the technique of choosing the best-performing element

of a finite set of candidate models ΘK = {θ1,θ2, ...θK : θi ∈Θ} after literally trying

each one on fake test examples called validation set. We choose a validation set

X (valid) from among the training examples X (valid) ⊂X (dev) so that it does not

overlap with X (test). Then we choose the best model by simulating the test scenario

34

using our validation data:

θ
∗ = argmin

θ∈ΘK

1
|X (valid)| ∑

x∈X (valid)

L (x;θ). (2.19)

Cross-validation is always the outermost training algorithm in the work pre-

sented in later chapters, although it is usually not even thought of as a “training

algorithm” because it is so simple. Technically though, choosing a model by cross-

validation is a perfectly valid training algorithm.

Usually what is called a “training algorithm” is a procedure for searching an

infinite model space, and recovering a model that will serve as one of the θi ∈ ΘK

in the cross-validation procedure. Such a procedure also typically requires data,

which is called the training set, X (train). In order for the cross-validation procedure

to give an unbiased estimate of test set performance, it is typically necessary that

X (train) ⊆X (dev)/X (valid).

2.5.2.4 Overfitting

Overfitting occurs when we optimize over a set Θ that is too large relative to the

size of the dataset X (dev) or X (train) used to constrain the optimization procedure.

An example will illustrate the phenomenon. Suppose we were trying to classify real

numbers with either the label ‘A’ or ‘B’. It is natural in this setting to minimize

a Zero-One loss. Suppose we were going to do learning by cross-validation and we

had four models in ΘK :

1. model θ1 that always returns label ‘A’,

2. model θ2 that always returns label ‘B’,

3. model θ3 that returns ‘A’ for negative x and ‘B’ for non-negative x, and

4. model θ4 that returns ‘B’ for negative x and ‘A’ for non-negative x.

Suppose the natural distribution here were that x could take values −1 or 1 with

equal probability, and that if it were 1 it tended to be labelled ‘A’ and if it were

35

−1 it tended to be labelled ‘B’. The natural distribution is noisy, so none of the

models is perfect, but θ4 is our best choice in terms of minimizing the Zero-One

loss.

To see the danger of overfitting, suppose furthermore that our validation set

X (valid) had only a single example in it. No matter what value our validation

example were to have, or how it were to be labelled, it could only allow us to reject

two of the four candidate models. The other two models would appear to have

perfect accuracy on the validation set. Since the dataset used to choose among

models (in this case X (valid)) is not sufficiently large to narrow down the options in

the model family (here ΘK) to a single choice, we say that model family Θ overfits

the dataset. The consequence of overfitting is that success on the training data or

validation data does not carry over, or generalize, to the test data. The capacity

of a family Θ is related to the minimum size of dataset for which overfitting can

be a problem. Capacity can be difficult to measure, but there are techniques such

as ones based on VC-dimensionality for models that are classifiers (Abu-Mostafa,

1989; Vapnik, 1989; Vapnik and Chervonenkis, 1971; Vapnik et al., 1994). Since we

often use model families Θ that contain infinitely many models, and which contain

models that are arbitrarily close to any smooth bounded function, overfitting is

often an issue in practice, and finding models that generalize to test data is of

primary interest.

2.5.2.5 Inductive Bias

Closely related to the phenomenon of overfitting is the concept of an inductive

bias. Returning to the previous example, our lone validation example necessarily

provided evidence against two of the models and in favour of the other two models.

Inductive bias refers to whatever principle or heuristic we use to choose a best model

after considering that evidence. Inductive bias is the result of using a regularization

term along with a loss function. In a case that is so extremely under-specified by

the data the inductive bias plays a central role in choosing the best model; when the

evidence is stronger the inductive bias is less relevant. Note that a second example,

36

and generally more data would have provided more evidence one way or the other

for each model, but ultimately in a regularized setting, a training procedure can

always return a model that is not the one that realizes the best likelihood or Zero-

One score. The notion of an inductive bias is especially important in settings where

the model family Θ under consideration can approximate any continuous smooth

function arbitrarily well. Such families can theoretically overfit any dataset, so

regularization that implements and reflects a good inductive bias is crucial for

finding a model that generalizes.

2.5.3 Learning Linear Classifiers

Recall the linear classifier introduced in Section 2.1.

argmax
l≤L

(Wx + b)l (2.20)

In this section we will look at two ways to learn an optimal linear classifier from

data. The first is based on an algorithm called the Perceptron algorithm. The

second is based on a standard statistical formalism called logistic regression.

2.5.3.1 Perceptron, Hinge Loss

One loss function we can use to train a linear classifier is the following, called

a hinge loss (Cortes and Vapnik, 1995). Supposing we had some feature vector x

and true label y, 1≤ y≤ L, we define l∗ to be the most likely incorrect label, and

then we can define the hinge loss function.

l∗ = argmax
l≤L,l 6=y

(Wx + b)l (2.21)

L (hinge)(x,y;θ) = max(0,ε− (Wx + b)y +(Wx + b)l∗) (2.22)

The hinge loss function demands that the correct label win in the argmax by

at least some margin ε over the runner-up. In the original Perceptron model and

37

learning algorithm ε = 0 was used, and the algorithm was only described for two

classes. Subsequently it has been found that it is better to require the correct class

to win by a more sizable margin over the next-best class. I prefer this particular

generalization from two classes to many classes, which has been suggested by Bordes

et al. (2007) although other definitions of the margin in multiclass settings have

been suggested as well (Allwein et al., 2000).

To find the best (W,b) = θ for a particular dataset X , we must solve the

following optimization problem:

argmin
θ

mean(x,y)∈X

(
L (hinge)(x,y;θ)

)
. (2.23)

Any one of a number of gradient-based optimization methods can be brought to

bear on this problem. There are several points of non-differentiability in this sys-

tem: it is non-differentiable when two incorrect labels tie in the argmax, and it is

non-differentiable when the margin is exactly ε . Typically neither of these situa-

tions arise near the optimum value of θ so it is safe to assign a derivative of zero

at such points for the purpose of doing numerical optimization.

2.5.3.2 Boltzmann, Softmax, Logistic Regression

While the hinge loss method is often the best choice when we are only interested

in a prediction, sometimes we are also interested in algorithms that provide a

conditional probability distribution over all the class labels.

The Boltzmann distribution is a common choice:

Pθ (y = l|x) =
e(Wx+b)l

∑k e(Wx+b)k
(2.24)

This distribution is tightly related to the softmax function. The softmax function

from RL → RL is the one that maps in this case from the vector Wx + b to the

vector whose lth element is Pθ (y = l|x). So, in terms of the softmax function, we

38

can rewrite Pθ more compactly as

Pθ (y = l|x) = softmax(Wx + b)l (2.25)

Our purpose here in defining Pθ (y = l|x) is to bring the conditional negative

log-likelihood loss function to bear on the problem. To find the best (W,b) = θ

for a particular dataset X (i.e., to perform maximum likelihood learning) we must

solve the following optimization problem:

argmin
θ

mean(x,y)∈X

(
L (cNLL)(x,y;θ)

)
(2.26)

= argmin
θ

mean(x,y)∈X (− logPθ (y|x)) (2.27)

= argmin
θ

mean(x,y)∈X

(
log

(
L

∑
k=1

e(Wx+b)k

)
− (Wx + b)y

)
(2.28)

Again, any one of a number of gradient-based optimization methods can be brought

to bear on this problem. Unlike the system that resulted from the hinge loss, this

system is differentiable everywhere.

2.5.4 Learning by Gradient Descent

Any number of gradient-based optimization algorithms could potentially be

used to train the linear classifiers as described in Sections 2.5.3.1 and 2.5.3.2, or the

non-linear models and classifiers discussed in later sections. This section describes

three increasingly complex gradient descent algorithms, the culmination of which

is annealed stochastic gradient descent with early stopping. This last algorithm

is employed in the subsequent chapters of this thesis to fit both supervised and

unsupervised models.

2.5.4.1 Batch Gradient Descent

Batch gradient descent (Algorithm 1) is the simplest gradient-based minimiza-

tion algorithm. The algorithm is to repeatedly move parameters by some small

39

amount λ in whichever direction most rapidly reduces the mean loss L . Every

iteration over the dataset (the for all loop) is called an epoch of training.

Algorithm 1 Batch gradient descent

θ j← some initial value ∀ j
while termination condition not satisfied do

g j← 0
epoch ← 0
for all (x,y) ∈X do

g j← g j + 1
|X |

∂L (x,y;θ)
∂θ j

, ∀ j
end for
epoch ← 1+ epoch
θ j← θ j−λ jg j, ∀ j

end while

The batch gradient descent algorithm itself specifies neither the starting condi-

tions (how to initialize θ) nor the stopping condition. Algorithms typically initialize

θ to small random values, although we will see in Section 2.5.11 (on pretraining)

that there are important exceptions to this general rule. There are several heuris-

tic stopping conditions in common use, including simply stopping when the epoch

exceeds a predetermined threshold. To describe the most widely used kind of stop-

ping condition though, we will need to return to the cross-validation algorithm and

make it a little more complicated.

2.5.4.2 Batch Gradient Descent with Early Stopping

The most widely used stopping conditions are called early stopping conditions.

They are termination conditions based on validation set performance. To describe

an early stopping algorithm we must distinguish between the datasets used for

training (X (train)) and validation (X (valid)), and also between the loss function

L (true) that we really care to minimize and the surrogate loss function L (surr) that

is differentiable, but otherwise similar in shape to the true loss. We distinguish

between these two loss functions when learning to classify because the misclassifi-

cation rate L (01) is not a differentiable function.

40

Algorithm 2 Batch gradient descent with early stopping

θ j← some initial value ∀ j
epoch ←−1
score ← ∞

best epoch ← -1
best score ← ∞

best θ ←
while not terminate(epoch, score, best epoch, best score) do

epoch ← 1+ epoch

g j←
∂mean

(x,y)∈X (train)L
(surr)(x,y;θ)

∂θ j
, ∀ j

score ←mean(x,y)∈X (valid) L (true)(x,y;θ)
if score < best score then

best epoch ← epoch
best score ← score
best θ ← θ

end if
θ j← θ j−λ jg j, ∀ j

end while

Algorithm 2 describes the general form of gradient descent with early stopping,

with a placeholder function called terminate() that decides whether to stop training

based on the current epoch, the current score, the best epoch seen so far, and its

score.

2.5.4.3 Annealed Stochastic Gradient Descent with Early Stopping

The algorithm of batch gradient descent with early stopping is useful as an

illustration of how to combine early stopping with gradient descent, but comput-

ing the gradient for each parameter from the entire training set is computationally

expensive and unnecessary. If you do use the entire training set to estimate the

gradient, then there are more sophisticated optimization strategies such as conju-

gate gradient methods (Ueberhuber, 1997) that are nearly always better than this

algorithm. Such methods will make steps in different directions than the g j, and

typically converge to a minimum in fewer epochs.

However, in learning applications it is typically faster yet to appeal to stochastic

41

optimization methods. Since we are trying to minimize an expected loss function,

we can get unbiased estimates of the gradient by taking the average across any

number of samples from the training set - we do not need to use the entire training

set to estimate the gradient. Especially when there are many training examples,

we can often get quite good estimates of the gradient from a tiny fraction of the

training set, called a mini-batch. Stochastic gradient descent with early stopping

and an annealed learning rate (Algorithm 3) is a simple but effective learning

algorithm in many linear and non-linear machine learning applications, and it is

used throughout the experiments in later chapters.

Algorithm 3 Annealed stochastic gradient descent with early stopping

θ j← some initial value ∀ j
iter ←−1
score ← ∞

best iter ←−1
best score ← ∞

best θ ←
while not terminate(iter, score, best iter, best score) do

sample X (mini) ⊂X (train)

θ j← θ j−
λ j

max(1,t/τ)
∂

∂θ j
mean(x,y)∈X (mini)L (surr)(x,y;θ), ∀ j

t← t + 1
if validate(iter) then

score ←mean(x,y)∈X (valid) L (true)(x,y;θ)
if score < best score then

best epoch ← epoch
best score ← score
best θ ← θ

end if
end if

end while

Annealing refers to the use of
λ j

max(1,t/τ) instead of λ j as the learning rate. As

long as t ≤ τ this has no effect, but as t increases beyond τ the effective learning rate

decreases gradually to 0. The reason we anneal the learning rate is to guarantee

convergence to a minimum. As the learning rate approaches 0, the parameters

changes less and less on every iteration, so the direction of descent approaches the

42

direction of the batch learning algorithm. No matter what the variance in our noisy

estimates of the gradient, the annealed algorithm will converge to a local minimum

of the surrogate loss function on the training set.

Algorithm 3 is still a template in the sense that it does not specify how θ should

be initialized, when to terminate, or when to validate. I usually initialize θ to

small random values (e.g. uniformly in a range such as -0.1 to 0.1), although some

researchers argue that the initial range should be scaled according to architectural

properties of a particular model (Bengio and Glorot, 2010; LeCun et al., 1998b).

It is common to choose to terminate when the epoch exceeds the best epoch by

some sufficient amount. My favourite early stopping recipe is to wait for at least a

few iterations through the training set (maybe 10 or 50, although it really depends

on the size of the training set and difficulty of the problem), and thereafter to

stop whenever the epoch is twice the best epoch. I usually use a validation set

of ten thousand examples, and check validation performance every fifty thousand

examples.

2.5.5 Regularization in Linear Classifiers

Recall that regularization (Section 2.5.1.3) is used to indicate a prior preference

over models that will be found by the learning process. The two most common reg-

ularization methods used with linear classifiers are called `1 and `2 regularization.

In `1 regularization, we add a penalty R(1)(θ) = γ1 ∑i j |Wi j| to the loss function. In

`2 regularization, we add a penalty R(2)(θ) = γ2 ∑i j W 2
i j to the loss function. The

effect of `1 regularization is to sparsify W . If there are many features and we be-

lieve that a large fraction of them can safely be ignored, then a positive γ1 during

training can improve generalization. The effect of `2 regularization is to shrink

elements of W in proportion to their length, so it has almost the opposite effect

to `1. If many features are noisy and redundant this regularization can improve

generalization by encouraging the model to use them all in equal measure.

43

2.5.6 Hyper-parameters

Ideally, a learning algorithm for model family Θ should be seen as a function

that maps a dataset X to an optimal model θ ∈ Θ with minimal requirements in

terms of computational and spatial complexity.

In practice though, the situation is more complicated. Taking our linear classi-

fiers as an example, we saw in Section 2.5.3.1 and Section 2.5.3.2 that there are two

ways to train a linear classifier: by hinge loss, and by negative log likelihood. In

each method there is a learning rate, and potentially distinct learning rates for the

W term and the b term. There is also the time constant τ that governs the anneal-

ing schedule. If we consider regularization strategies such as `1 or `2 penalization of

W , then we must choose coefficients γ1 and γ2. Stochastic gradient descent cannot

help us to choose these constants, so they are called hyper-parameters. Hyper-

parameters must generally be selected by cross-validation. There is no shortcut -

in practice we must select several hyper-parameter assignments, and run SGD for

each one to see what validation score it yields. Our ultimate learning algorithm is

to return the model with the best validation score.

How do we select which hyper-parameter assignments to try? Typically we

experiment with settings by hand for a while, and then perform a grid search

to explore the most promising possibilities more systematically. I will argue in

Chapter 7 that simple random searches are a better way than grid search to choose

assignments.

2.5.7 Feature Learning by Optimization - Neural Networks

Neural networks for pattern classification can be seen as an extension to the

linear classifiers seen in Sections 2.5.3.1 and 2.5.3.2 (LeCun, 1985; Rumelhart et al.,

1986b). Instead of applying linear function W to the feature vector, neural networks

apply a non-linear function instead. Recalling the linear classifier introduced in

Section 2.1, l∗= argmaxl≤L(Wx+b)l, a one-hidden-layer tanh neural network would

44

be

l∗ = argmax
l≤L

(W tanh(V x + c)+ b)l , (2.29)

where V ∈RK×N is called the input weight matrix, and c ∈RK is called the hidden

unit bias. The hidden representation is the vector of activities that was substituted

for x in the original linear model (here, tanh(V x + c)). The elements of this vector

are called hidden units. The parameter pair (V,c) defines what is called a layer of a

neural network, because they can be stacked to form deep networks. For example,

we can extend our tanh neural network to have two hidden layers by adding another

parameter pair (U,d) similarly to how we added V,c to the original linear model:

l∗ = argmax
l≤L

(W tanh(V tanh(Ux + d)+ c)+ b)l , (2.30)

In deep networks it is customary to refer to the tanh outputs of all layers as hidden

units, regardless of whether they are used directly by the linear classifier (W,b).

It is also common to use other non-linear activation functions in place of the

tanh. The most common alternative in older literature is the [logistic] sigmoid

σ(z) = 1/(1+e−z), but some more recent literature uses a hard tanh max(−1,min(z,1)),

or a rectified linear unit max(0,z) (Bengio and Glorot, 2010; Collobert and Weston,

2008; LeCun et al., 1998b; Nair and Hinton, 2010; Rumelhart et al., 1986a). Later

chapters in this dissertation examine the utility of activations that are inspired

more or less by neurophysiological characterizations of complex cells in visual area

V1.

The reason to use a neural network instead of a linear model is to draw on the

optimization approach to feature learning to find better features. With neural net-

work models, we use a gradient-based training method (such as the SGD algorithm

described in Section 2.5.4.3), to optimize not only W and b, but in fact all of the

parameters θ = (W,b,V,c,U,d, ...). As a modeller, all that is necessary is to choose

the mathematical form of a good feature, and SGD will choose parameter values

that optimize training set performance.

45

There are two drawbacks to this approach: firstly, with sufficient model capacity

it is often trivial for SGD to minimize L (surr) on the training set so regularization

becomes too important relative to the fitting of training data; secondly, with in-

sufficient model capacity SGD often fails to find good solutions that exist in Θ

because the training loss function is not convex and has many local minima.

The first problem is a straightforward case of overfitting. A neural network with

a single tanh output with even a single layer of (sufficiently many) hidden units can

approximate any smooth function on the (-1,1) range to arbitrary precision (Hart-

man et al., 1990; Hornik, 1989). Regularization of these models is thus essential. In

early neural network literature it was believed that the most important method of

regularization was careful tuning of the size (K) of hidden layers. That practice has

given way in more modern work to regularization by early stopping. With SGD,

early stopping implements a kind of `2 regularization implicitly when parameters

are initialized close to zero in the sense that solutions close to the origin are found

more easily.

The second problem is that neural networks present a difficult optimization

problem. Current research is aimed at overcoming this by better initialization,

and better optimization algorithms than SGD. The following sections on Support

Vector Machines and Restricted Boltzmann Machines will look at two approaches

to better initialization, in preparation for the Spike and Slab Restricted Boltz-

mann Machine presented in Chapter 5. There are several algorithms that leverage

the techniques of second-order batch gradient descent methods in the setting of

stochastic optimization, but I do not use them in the work presented in later chap-

ters (Bordes et al., 2009; Le Roux et al., 2008; Martens, 2010; Schraudolph, 2002;

Schraudolph and Graepel, 2003; Schraudolph et al., 2007).

2.5.8 Support Vector Machine

Support Vector Machines (SVMs) have the form of single-layer neural networks,

but they use kernel-based features instead of direct features (Cortes and Vapnik,

1995; Vapnik, 1982). There is a large literature on kernels for various kinds of

46

data, but in later chapters two kinds of kernel are used: the Gaussian kernel and

the polynomial kernel. These kernel functions apply to pairs (a,b) from the dataset

X :

k(gauss)(a,b;γ) = e−γ||a−b||2 (2.31)

k(poly)(a,b;γ,δ ,ε) = (γa ·b + δ)ε (2.32)

(2.33)

In a support vector machine, the hidden representation of an example a is the

hidden vector whose elements hi are the kernel values when a is paired with every

element of the training set. The classification model given some kernel choice k is

l∗ = argmax
l≤L

(Wh + b)l , where hi = k(a,X
(train)

i). (2.34)

It is theoretically possible to use optimization methods to train this model like a

neural network, but typically kernel functions are chosen to have very few param-

eters and it would nullify the principal advantage of using an SVM, namely that

the only parameters to train are W and b. Of course, training W and b is typically

more expensive than it would be in a conventional neural network, because the

hidden representation h of the entire training set has O(|X (train)|2) elements.

The challenge in using a kernel and SVM approach is to generalize beyond

the training data. For example, the Gaussian kernel SVM (Gaussian SVM) can

be seen as an interpolation scheme that smooths out the training data in order

to minimize the number of classification errors. Gaussian SVMs are theoretically

limited in how efficiently they can generalize from data (Bengio et al., 2006). In

the context of images for example, the Gaussian kernel (and polynomial kernel)

similarity between a white line on a black background and the same white line

shifted over by just one pixel is equal to the similarity with any other image not

overlapping the original white line. These kernels are not able to recognize two

images as being the same but for some translation, or the same but for a rotation.

47

This problem is not limited to Gaussian kernels, it is present in a broad class

of functions called shallow models (Bengio, 2009; Bengio and LeCun, 2007). In

order to recognize similarities such as the translated white line, we must look to

deep models that use several stages of processing to turn images into features.

Stages of processing could mean applying non-linear filters, collecting statistics at

automatically-determined interest points, and even trying to infer 3D shape from

image fragments to recognize familiar objects in novel poses. The design of more

exotic domain-specific kernels is a topic of current research, but typically this is

done by leveraging domain-specific direct features, such as the SIFT feature we

saw in Section 2.4. Similarly, advances in direct feature learning, as opposed to

direct feature engineering, can also be viewed as advances in the design of more

sophisticated kernels.

2.5.9 Gaussian Mixture Models

A Gaussian mixture model (GMM, also mixture of Gaussians) is a probability

density over a Euclidean space. It is parametrized by some number K ∈N of means

µi ∈ RN , variances σ2
i ∈ R, and priors φi ∈ R such that φi ≥ 0 and ∑i φi = 1. A

GMM model is parametrized by θ = (µ,σ ,φ). It is a latent variable model, with

latent variable in Z, where Z is the natural basis for RK : The element Zi ∈ Z is zero

everywhere except for a value of 1, in the i′th dimension.

The density model over RN factors is

p(GMM)(x;θ) = ∑
i

p(x|Zi;θ)P(Zi;θ) (2.35)

= ∑
i

φie
− ||x−µi||2

2σ2
i

√
2πσN

i
. (2.36)

If we are interested in the posterior probability over Z given x, we can apply

48

Bayes rule to see that

p(GMM)(z = Zi|x,θ) =
p(x|z = Zi,θ)p(z = Zi|θ)

p(x|θ)
(2.37)

∝ p(x|z = Zi,θ)p(z = Zi|θ) (2.38)

=
φi√
2σN

i
e
− ||x−µi||2

2σ2
i (2.39)

= ζie−γi||x−µi||2. (2.40)

2.5.10 SVM and Latent Variable Classifiers

The Parzen window density model is a special form of GMM where we take K =

|X |, all the φi = 1
K , all σ2

i = σ2, and mui = Xi. With this done, the latent posterior

distribution P(Parzen)(z = Zi;x,θ) is proportional to e−γi||x−µi||2 . If we simply fold the

constant of proportionality into W , we can see that a Gaussian SVM is a linear

classifier applied to the vector h whose elements hi are defined by the posterior

distribution P(z = Zi|x,θ) of the latent variable z in a Parzen window density model

of the training data. The connection between features and latent variables of

density models has inspired much of the algorithmic progress in deep learning seen

in recent years (Bengio and LeCun, 2007; Dahl et al., 2010; Erhan et al., 2010;

Hinton et al., 2006; Lee et al., 2009; Raina et al., 2007). Just as the Parzen windows

model could be used as a better initial value for a one-layer neural network with

a radial basis activation function (to form a Gaussian SVM) so can other models

provide better initial values for one- or many-layered neural networks with a variety

of activation functions. The technique of initializing a neural network so that

its hidden representation is the posterior probability of a latent variable in some

density model is known as pretraining the network using unsupervised learning.

Design by density modelling is the approach of using latent (unobserved) vari-

ables of a probability model of the image/stimulus as features for classification.

The success of this approach depends on the design of the probability model. Suc-

cessful models typically have latent variables that correspond to causes of the whole

49

image or part of it. We can think of an image as being caused by the properties of

the objects that appear, so when the classification task is related to the properties

of those images, we can expect the latent variables to be good features. Density

modelling approaches have become increasingly popular, especially as several den-

sity modelling approaches have corroborated findings in neurophysiology that V1

simple cells form a bank of Gabor-like edge detectors such as Sparse Coding (Lee

et al., 2008a; Mairal et al., 2010; Olshausen and Field, 1996; Ranzato et al., 2008;

Rao and Ballard, 1999), Independent Components Analysis (Hyvärinen and Hoyer,

2001; Hyvärinen et al., 2001), Slow Feature Analysis (Berkes and Wiskott, 2005;

Berkes et al., 2009a; Sprekeler et al., 2007), Restricted Boltzmann Machine (Hin-

ton, 2007), Denoising Auto-Encoders (Vincent et al., 2010). Although the design

of a probability model involves a substantial dose of intuition, there are often ef-

fective generic algorithms for fitting them to data. Several of these models and the

algorithms that fit them to data will be described in the following sections.

2.5.11 Restricted Boltzmann Machines

The argument that neural networks should be pretrained by unsupervised learn-

ing was advanced with the use of the Restricted Boltzmann Machine (Bengio, 2009;

Freund and Haussler, 1994; Hinton, 2002; Smolensky, 1986). The Restricted Boltz-

mann Machine (RBM) is an energy-based model because it is defined as a joint

distribution based on an energy function. The RBM is a model of two binary val-

ued vectors v ∈ BN and h ∈ BK . It is parametrized by a weight matrix V ∈ RN×K

and two bias vectors a ∈ RN and b ∈ RK . The energy function E(x,h) is

E(x,h) =−a′x−h′V x−b′h (2.41)

In energy-based models, an energy function is related to a probability distribu-

tion by the exponential function

P(RBM)
θ

(x,h) =
1

Z(θ)
e−E(x,h;θ). (2.42)

50

The constant of proportionality Z(θ) is the reciprocal of what is known as the

partition function. The partition function is usually written as Z, but is not to be

confused with the latent variable in the GMM described in Section 2.5.9.

In RBMs, it is interesting to consider the forms of the conditional probabilities

of x and h, when conditioning on the value of the other:

P(RBM)(hi = 1|x) = σ(V x + b), and (2.43)

P(RBM)(xi = 1|h) = σ(V T h + c), (2.44)

where σ is the logistic sigmoid activation function. The inference of P(hi = 1|x)

corresponds exactly to the activation function in the hidden layer of a sigmoid-based

neural network. Consequently, with a trained RBM we could initialize a sigmoidal

neural network from an RBM analogously to how we can initialize a radial-basis

neural network from a Parzen windows model.

RBMs can be trained by an algorithm called Contrastive Divergence (CD, Hin-

ton, 2002). A special algorithm is required because general gradient-based methods

require that we compute the gradient of the probability of data with respect to the

partition function. The partition function of an RBM involves a summation over

all possible binary vector values for either x or h, of which there are 2N and 2K

respectively. This computation is intractable in models where both N and K are

larger than around 16, and therefore intractable in models that are big enough to

be useful.

2.5.11.1 Contrastive Divergence

The maximum likelihood gradient on the parameters of an energy model have

a general form:

∂Ex∼Gx [− logPθ (x)]
∂θ

= Ex∼Pθ

[
∂E(x)

∂θi

]
−Ex∼Gx

[
∂E(x)

∂θi

]
. (2.45)

51

In this form, the partition function appears as the expected gradient over samples

from the model. Although the expectation of this gradient is just as difficult to

compute as the partition function itself, this form suggests a stochastic optimization

approach: we can estimate these expectations from as many or as few samples as

we like, so long as they come from the right distributions.

Contrastive Divergence (CD) algorithms use a Markov Chain to draw samples

from the model to estimate the expected gradient under the model distribution,

while simultaneously drawing samples from the training set to estimate the ex-

pected gradient under the natural distribution (Hinton, 2002). The Markov chain

typically used to train RBMs is based on a Gibbs sampling scheme. Gibbs sam-

pling is a technique for drawing samples from any probability model: take turns

updating each variable by sampling from its conditional probability given the cur-

rent value of all the other variables. In the RBM we consider that there are two

vector-valued variables: x and h. We can repeatedly sample h ∼ P(h|x(t)), and

then x(t+1)) ∼ P(x|h). Sampling x(t),x(t+1),x(t+2), ... in this way yields (eventually,

at equilibrium) points that are distributed according to Pθ (x).

Specific variants of CD differ in exactly how they handle the Gibbs sampling

Markov chain. Often what is called Contrastive Divergence refers more specifically

to the CD1 algorithm, in which Markov chains are started from training examples

and run for only a single step. Similarly the CD-K algorithm runs Markov chains

for K steps starting from training examples. The Persistent CD (PCD) algorithm,

which is also known as Stochastic Maximum Likelihood (SML) learning, runs the

Markov chains properly, without restarting them at all (Tieleman, 2008). In PCD

the samples used to estimate the expected gradient with respect to the model

distribution tend to be more correlated from one time step to the next (when they

are correlated we say the model does not mix well) but in the long run, PCD gives

an unbiased estimate of the gradient whereas CD1 and CD-K give biased estimates.

The PCD and CD-1 algorithms are used to train RBM models in Chapter 5.

52

2.5.12 Gaussian RBM

The Gaussian RBM (GRBM) is like an RBM, but it is defined for x∈RN rather

than x ∈ BN (Bengio et al., 2007; Hinton and Salakhutdinov, 2006; Krizhevsky,

2009; Welling et al., 2005). It is parametrized by a weight matrix V ∈ RN×K two

bias vectors a ∈ RN and b ∈ RK , and a precision matrix Λ ∈ RN×N .

E(x,h) = 0.5x′Λx−a′x−h′V x−b′h (2.46)

Typically the precision matrix Λ is chosen to be a diagonal one because it must

be inverted for Gibbs sampling. It is trained just like the basic RBM, but the

conditional distribution of P(x|h) is different on account of the 0.5x′Λx term. The

Gaussian RBM forms the basis of the Spike and Slab RBM presented in Chapter 5.

2.5.13 Convolutional Architectures

The discussion thus far about learning features has stayed very general. Images

have been just vectors in some Euclidean space, and densities over that space have

been Gaussian or Gaussian Mixtures. But we have considerable prior knowledge

about images, and convolutional architectures are now a popular way of combining

that prior knowledge with this general mathematical perspective (LeCun et al.,

1989, 1998a).

For our purposes, a 2D convolution is a binary operator whose operands are an

image u ∈ RR×C and a filter, v ∈ RS×T .2 The result y ∈ R(R−S+1)×(C−T+1) of what

is called a valid-mode convolution is written as y = u∗ v and defined as

yi, j =
S

∑
k=1

T

∑
l=1

u(i+k−1),(j+l−1)v(S−k+1),(T−l+1). (2.47)

Each result yi, j is the result of multiplying the image u at position i, j by an inverted

version of a smaller filter image v.

2The “filter” is sometimes called a “kernel” in discussion of convolution, but since it has no
connection to kernel-based features, I will use the term “filter”.

53

A convolutional neural network is a neural network with a matrix multipli-

cation replaced by a convolution. For example, taking a basic neural network

(Equation 2.29) as a point of departure, something like

l∗ = argmax
l≤L

(W tanh(x∗ v + c)+ b)l , (2.48)

would be a single-layer convolutional network, except that our notation needs some

refinement. In Equation 2.29 x was a vector, and now that x ∗ v is a matrix what

does it mean to add a vector c of biases? Recall that in preprocessing images for

learning (Section 2.4.1), the last step was to rasterize an image from its original

matrix representation to a vector. To use convolutional architectures we must omit

that step, and leave our images in their more natural matrix representation. For

convolutional architectures we must likewise un-rasterize the bias vector c so that

it too reflects the 2D structure of the convolution output. Ultimately the linear

classifier (W,b) requires a vector (not a matrix) of features, so in convolutional

architectures we still have to perform a rasterization step at some point. Often this

rasterization is done just prior to classification by W , but in deep convolutional

networks, the rasterization can be done just as well at any intermediate layer.

2.5.14 Sparse Coding

Sparse coding represents an alternative to the RBM and Parzen windows for

learning image representations that can be used as features (Gregor and LeCun,

2010; Kavukcuoglu et al., 2009; Lee et al., 2008b; Ranzato et al., 2008). The

objective in sparse coding is to explain (i.e., code) a signal (i.e., an image) x∈RN as

the linear combination of a small number of dictionary elements among the columns

of B ∈ RN×K . There are two important kinds of sparse coding, which correspond

to different formalizations of the notion of “a small number” of elements in z ∈RK .

They can be seen as two different regularizations on a simple linear generative

54

model of the data:

L (l1)(x;B) = min
z∈RK
||x−Bz||22 + α ∑

i
|zi| `1 sparse coding

(2.49)

L (Cauchy)(x;B) = min
z∈RK
||x−Bz||22 + α ∑

i
log(1 + γz2

i) Student-t sparse coding

(2.50)

If we interpret these loss functions as being of the form − logP(x|z)P(z), the first

formulation corresponds to choosing a Laplacian prior over the elements zi, whereas

the second formulation corresponds to a Student-t distribution over elements
√

γzi.

The columns of B are typically constrained to have unit `2-norm to ensure the

sparsity penalty on z is meaningful. Learning by sparse coding means adjusting (by

gradient minimization methods) the matrix B of dictionary elements to minimize

expected loss, be it L (l1) or L (Cauchy).

Sparse coding has been advanced as a principle for why V1 simple cells behave

as they do (Cadieu, 2009; Cadieu and Olshausen, 2009; Karklin and Lewicki, 2008;

Olshausen and Field, 1996, 1997). The dictionary elements Bi learnt by sparse

coding of whitened image patches resemble small edges like the ones that tend to

activate simple cells. The sparse coding theory is attractive because the creation

and propagation of neural spikes takes physical energy, and it stands to reason

by the laws of thermodynamics that all else being equal, the brain should use no

more spikes than necessary. At the same time, if spikes transmit information then

that information must be preserved. The fact that sparse coding yields V1-like

receptive fields should not be taken as very strong evidence that sparse coding per

se is the learning principle in the brain, because a number of other latent variable

models discussed here such as various flavours of RBM, as well as latent-variable

approaches not in this chapter such as auto-encoders, K-nearest neighbours, inde-

pendent components analysis, all yield similar Gabor-like edge filters. Some models

even operate in an arguably sparse regime, even though sparsity was not a training

55

objective. There have also been challenges to the idea that cortex optimizes spar-

sity either in learning or in inference of the codes for stimuli (Berkes et al., 2009b).

Despite these caveats, sparse coding continues to be a successful and influential

model for the organization of the visual system.

2.5.15 Slow Feature Analysis

Slow Feature Analysis (SFA) is an algorithm for modelling not images, but pairs

of consecutive images (u ∈ RN , v ∈ RN) from movies. The objective in SFA is to

identify a linear basis B ∈ RN×K for images that leads to a stable representation

y∈RK , z∈RK over time. SFA is the solution of the following minimization problem:

L (SFA)(u,v;B) = min
y∈RK , z∈RK

||u−By||22 + ||v−Bz||22 + ||y− z||22, (2.51)

B(∗) = argmin
B∈RK×N s.t. ||Bi||2=1 ∀i

E(u,v)∼Gu,v

[
L (SFA)(u,v;B)

]
. (2.52)

There are fast algorithms for performing SFA that find B(∗) by solving a generalized

eigenvalue problem (Berkes and Wiskott, 2005). Slow feature analysis has been

advanced as a principle to explain why V1 complex cells behave as they do (Berkes

and Wiskott, 2005; Cadieu and Olshausen, 2009; Körding et al., 2004), and even

as an explanation for the formation of place cells in the hippocampus that are

believed to play a role in localization and navigation (Franzius et al., 2007; Wyss

et al., 2006). The idea of regularizing representations to be stable over time is

appealing, and motivates the learning algorithm presented in Chapter 4.

2.5.16 Independent Components Analysis

Independent Components Analysis (ICA) is a principle for factor analysis, which

seeks to represent observed vectors x as a linear combination B of coefficients z

(x = Bz) so that the marginal distributions of elements zi|x are as independent

as possible. This is possible because of the law of large numbers, which implies

that a linear combination of independent non-Gaussian source variables is more

56

Gaussian than any of the sources. Different ways of measuring non-Gaussian-ness

lead to different ICA objectives, but they all seek a basis B that maximizes the non-

Gaussian-ness of the marginal distributions of zi (Bell and Sejnowski, 1995; Hoyer

and Hyvärinen, 2000; Hyvärinen and Hoyer, 2001; Hyvärinen et al., 2001; Karklin

and Lewicki, 2003). Hyvärinen (2009) reviews how ICA models can account for

various aspects of simple cells, complex cells, and the retinotopic organization of

V1.

This concludes the review of visual system anatomy, physiology, computer vi-

sion, and machine learning. The following chapters describe my own contributions

in machine learning.

CHAPTER 3

COMPLEX CELLS FOR CLASSIFICATION

Title Suitability of V1 Energy Models for Object Classification

Authors James Bergstra, Yoshua Bengio, and Jérôme Louradour

Publication Neural Computation, Vol. 23, No. 3: 774–790, March 2011.

Simulations of cortical computation have often focused on networks built from sim-

plified neuron models similar to rate models hypothesized for V1 simple cells. How-

ever, physiological research has revealed that even V1 simple cells have surprising

complexity. Our computational simulations explore the effect of this complexity on

the visual system’s ability to solve simple tasks, such as the categorization of shapes

and digits, after learning from a limited number of examples. We use recently pro-

posed high-throughput methodology to explore what axes of modeling complexity

are useful in these categorization tasks. We find that complex cell rate models

learn to categorize objects better than simple cell models, without incurring extra

computational expense. We find that the squaring of linear filter responses leads to

better performance. We find several other components of physiologically-derived

models do not yield better performance.

58

3.1 Introduction

An important role of the visual system is to transform retinal signals so that

object categorization can be carried out in higher cortical areas such as V4 and

IT (Dayan and Abbott, 2001; Serre et al., 2007a). However it remains unclear,

even in V1, what transformations individual neurons perform (Doi and Lewicki,

2007; Haüsser and Mel, 2003; Olshausen and Field, 2005)

Many rate models have been proposed for V1 based on studies of spike-triggered

averaging (Hubel and Wiesel, 1962; Nykamp and Ringach, 2002). The simplest

rate model is a linear filter whose output has been rectified to be non-negative and

bounded. Rectification has been carried out using the logistic sigmoid (Kouh and

Poggio, 2008; Nykamp and Ringach, 2002; Rumelhart et al., 1986b; Wilson and

Cowan, 1972) or the Naka-Rushton equation (Heeger, 1992; Naka and Rushton,

1966) to describe V1 simple cells (first described in Hubel and Wiesel, 1962). Other

cells (called complex cells) in V1 have been found to respond robustly to narrow

bars of light in nearby positions, but not to their superposition. This behavior

cannot be explained by a linear model. The classic model for complex cells is the

energy model, in which a complex cell response is modeled by a sum of squared

responses from a number of afferent simple cells (Adelson and Bergen, 1985; Dayan

and Abbott, 2001). More recently, the distinction between simple and complex

cells has been challenged by findings that cells in V1 span a more continuous range

of behavior that also includes max-like integration by complex cells of their afferent

inputs (Finn and Ferster, 2007; Kouh and Poggio, 2008; Riesenhuber and Poggio,

1999; Rust et al., 2005; Serre et al., 2007a).

But what is all this modeling capacity for? In contrast to research that is based

on [cross-]correlation analysis, we advance a different criterion for comparing models

of the visual system. Part of the visual system can be interpreted as implementing

a function from images to object categories. This function adapts over time as the

brain learns to categorize particular objects, and to generalize about categories.

The rules that govern this adaptation over time comprise a learning algorithm which

59

we would ultimately like to understand better. A fundamental result in learning

theory is that learning algorithms have preferences, also known as inductive biases,

priors over functions (Vapnik, 1995). This is true even of learning algorithms

with the capacity to approximate any continuous function. Consequently, different

learning algorithms produce different functions, even when presented with the same

data. In the case of the brain’s learning algorithm for vision, the priors of that

algorithm play a central role in our ability to learn the structure and invariances

in the images that we see. Whenever we choose a model of the visual system and

a procedure for setting the internal parameters of that model, we also implicitly

choose a learning algorithm and induce a particular prior over functions. Using the

approach of rational analysis, we suppose that the brain’s visual system is optimal

at learning from limited data, and we can understand the learning algorithm for

vision by studying the functional priors that support rapidly learning to categorize

objects (Anderson, 1990). If that model and fitting procedure is faithful to the

visual system, then the prior of that model will match the prior of the visual

system, and consequently the model will learn with the same competences and

weaknesses as the visual system.

In this work, we compare many mathematical models of V1-like neurons as

bases for object categorization. Since we lack a complete characterization of the

functional prior of the visual system’s learning algorithm, we chose categorization

tasks that seem trivial from the perspective of an adult human: distinguishing

simple geometric shapes, digits 0-9, and five kinds of toy. Learning theory gives

us the terminology to be more precise about what trivial means here. It means

that the learning algorithm of the human visual system has a prior preference for

functions that work well for these tasks. In the style of Cox et al. (2008), we mix

and match different parametric ingredients that have been put forward to explain

simple and complex cells within the energy model framework, to see which of those

ingredients is important for generalizing about objects. We find that:

• complex-like elements (involving sums of squared linear filter responses) in-

duced better priors for object classification than simple-cell elements,

60

• a polynomial saturating non-linearity (based on division) was generally bet-

ter than an exponential non-linearity (i.e. tanh, logistic sigmoid) which is

common in the machine-learning community,

• numerically optimizing the exponent used to pool the multiple filters of a

complex-like cell was not useful - squaring (2) was the best choice,

• the possibility of reweighting numerator terms as suggested in Kouh and

Poggio (2008) was slightly helpful in one task and slightly harmful in another,

• multi-filter models based on complex-like V1 elements required fewer hidden

units; so although each complex-like element was more expensive to compute,

the total cost of training the best complex-like models was similar to the cost

of training the best simpler V1-like models.

This work differs from that of Shams and von der Malsburg (2002) and Cox et al.

(2008) in that we used machine learning methods to tune our V1-like elements, and

we classified images rather than decoding their internal representations. The design

of our experiments is similar to that of Edelman et al. (1997); our models and tasks

are different, but our finding that complex-like behaviour in V1 is important for

successful learning agrees with their findings.

3.2 High-Throughput Screening of V1-like Models

For our study we defined a single broadly-encompassing parametrization of a

V1-like model cell response (Equation 3.1) and instantiated particular V1-like mod-

els by restricting the general form in various ways. Equation 3.1 is an extension of

the Canonical Neural Circuit of Kouh and Poggio (2008).

R = σ

(
∑

K
k (−1)k(∑

J
j w jka jk(x)pk)rk

β + γ∑
K
k (∑

J
j a jk(x)qk)sk

)
. (3.1)

This general form encompasses the various models presented in Section 3.1

(see Table 3.I) by various choices for scalars (J,w jk, pk,qk,rk,sk,β), compressive

61

non-linearity σ , and activation function a jk(x) of the stimulus (input). We allow

for a jk to be either an affine function a jk(x) = v jkx + b jk or a half-rectified affine

function a jk(x) = max(v jkx + b jk,0), in which v jk is a weight vector or filter, and

b jk a corresponding scalar-valued bias. The x here is a rasterized image vector of

pixel values. The following few paragraphs illustrate how this canonical form can

be instantiated to immitate or match other models.

We can get feed-forward simple-cell-like models a few ways. For example, with

K = J = 1 and all p, and q r, s, w all 1 as well we have a single-filter model cell

without any squaring or pooling. Choosing a jk(x) = v jkx+b jk, σ(z) = tanh(z), β = 1

and γ = 0, yields R = tanh(v jkx + b jk); this is the logistic sigmoid unit popular in

neural network classification. We can get another sigmoidal activation function by

choosing σ(z) = z as well as β = 1 and γ = 1 (Kouh and Poggio, 2008).

The energy model of Adelson and Bergen (1985) coincides with the setting of

K = 1, J = 2, p = q = 2, w = 1, and choosing a jk(x) = v jkx + b jk. Various combina-

tions of non-linearity and settings of r and s (e.g. 0.5 and 1) are consistent with

the mechanism and idea of pooling across a quadrature pair.

The parametrization reduces to the Canonical Neural Circuit (Equation 2.1 in

Kouh and Poggio (2008)) when K = 1, all a jk are affine, σ is the identity and when

γ is 1. The canonical circuit can immitate max-pooling with a large value for pk

paired with rk = p−1
k , and our parametrization can do so in the same way.

We include the possibility that K = 2, and the possibility of half-rectification

in functions a jk(x) to accommodate the model of Rust et al. (2005). Their model

coincides with K = 2, J ≥ 3, p = q = 2, r = s = 0.5, σ(z) = z. In their model,

one function a jk is half-rectified among the set for which k = 1, and none of the

activations a jk is half-rectified among those for which k = 2.

3.2.1 Adapting Model Parameters

We evaluated V1-like models by forming a population of N V1-like elements

(hidden units) and feeding their outputs into a logistic classifier to form a one-

hidden-layer neural network. Each hidden unit Rn was fully connected to a small

62

grey-scale image stimulus with initially random, but eventually learnt weights (the

v jk and b jk for each V1-like element). The model categorized objects by activating

categorization neurons, each of which was a linear function of the full set of V1

model neurons. There was one categorization neuron for each object category. The

tasks were object discrimination tasks, and they are described in Section 3.3. To

minimize Ω in Equation 3.3, training pushes the real-valued confidence yzt to be the

largest of all confidences yl. At test time, the category with the largest confidence

yl was deemed to be the predicted category.

yl = cl +
N

∑
n=1

Al,nRn(xt) confidence that xt has label l

(3.2)

Ωt =−yzt + log

(
L

∑
l=1

eyl

)
error (neg. log. likelihood) predicting label zt for xt

Ω = ∑
(xt ,zt)∈{Train}

Ωt error on training data

(3.3)

For a given V1-like model we searched for the best filters and other model

parameters (e.g. activation function weights v jk and b jk, categorization weights

Al,n) by stochastic gradient descent (Rumelhart et al., 1986a). We denote the V1-

like population response to a stimulus xt ∈ RM by a vector R whose N elements

are called Rn, for n ∈ [1,N]. Each of L categorization neurons yl is affine in R,

with weight matrix Al,n and bias cl, as in Eq. 3.2. Integer zt denotes the correct

category of xt . We initialized A,c to zero and the internal parameters of model

neurons R to random values, and then iteratively adjusted them to minimize the

error (Ω) on small samples of training data. In trials, where w (in eq. 3.1) was not

fixed to 1, the numerator weights w were also optimized by gradient descent. In

some trials the scalars pk,rk,sk,qk were optimized by gradient descent too. Filter

values were initialized uniformly within a range (−
√

6
N+M ,

√
6

N+M) about zero, as

63

recommended in Bengio and Glorot (2010). The learning rate (the proportion of the

negated error gradient by which parameters were incremented on each iteration)

was sampled alongside the rest of the trial hyper-parameters. The seed used to

initialize the filter in each a jk transformation was sampled randomly for each trial.

We compared models by dividing the data from each task into three sets: train-

ing, validation and test (Bishop, 1995). The training data were used to calculate

the fitting criterion Ω and its gradient with respect to model parameters. The

validation data and test data were used to estimate the out-of-sample classification

performance of the fitted system with each number of V1-like neurons (by counting

what fraction of objects were categorized correctly). This validation set score was

used in an early stopping heuristic to decide how much gradient descent on the

training set was enough, and was also used to select among models in the empirical

results described in Section 3.4. The early stopping heuristic was to wait at least

20 iterations through the training data, and then stop when twice as much training

had been done, as had been necessary to arrive at the best model up to that point.

The model scores listed in Section 3.4 are all test set scores.

The models classes presented here are defined in terms of their functional form,

without reference to the kind of filters that determine the response in eq. 3.1.

In analysis of V1 recordings, these filters are typically Gabor-like, with localized

receptive fields and pairs of squared filters that implement quadrature pairs (Dayan

and Abbott, 2001). Our experiments explore why this kind of filter arises, so we do

not initialize our filters with Gabor-like patterns. Our experiments involve tuning

randomly initialized filters by supervised learning of tasks that V1 neurons are able

to perform, in order to compare models of what V1 neurons do.

3.2.2 Hyper-parameter Sampling Distribution

The set of trials (V1-like models and hyper-parameters) encompassed by our

parametrization is too large to search with a grid, so we adopted the high-throughput

methodology of Cox et al. (2008); Pinto et al. (2009) to explore the hyper-parameter

space. High-throughput search requires a proposal distribution from which to sam-

64

ple models. Essentially, we draw models from a distribution rather than from

locations on a grid. One advantage of random draws is that if we project onto any

one axis of the hyper-parameter space (e.g. the learning rate) then the random

draws will cover the legal range more uniformly, whereas a grid will test just a

few values. Another advantage of random draws is that if there is independence

between the effect of two hyper-parameters, then random sampling explores both

simultaneously – this is a much more efficient search. We postulate that several

hyper-parameters in Equation 3.1, such as the choice of σ , the half-rectification

of each a jk, and some of the choices about learning with this model have almost

independent effects. To the extent that hyper-parameters are independent, a high-

throughput random search is more statistically efficient. We as experimenters do

not have to specify or know exactly which hyper-parameters are independent.

For our high-throughput search, we sampled hyper-parameter assignments ac-

cording to the distribution in Figure 3.1. Some combinations of hyper-parameters

lead to unusable models. For example, when a jk are not rectified, they may be

negative, and a non-integer exponent will lead to a complex-valued response. We

rejected such hyper-parameter assignments when they were sampled. There is also

an over-parametrization if J > 1 and either pk = 1 or qk = 1; in this case the model

is equivalent to a model where J = 1 so we rejected these hyper-parameter assign-

ments as well. We also rejected assignments in which pk and rk (similarly qk and

sk) were both greater than one. Such assignments do not correspond to a V1-like

model in the literature, and they are not numerically stable during learning. We

also rejected assignments in which squashing was done by division (γ = 1 and σ =

identity) but the denominator could approach or equal zero because these models

were also numerically unstable. Some model-family frequencies under the [post-

rejection] sampling distribution are given in Table 3.I.

65

• How many outer terms? K ∼U(1,1,1,1,2)

• How many inner terms? J ∼U(1,1,2,2,3,5)

• Squashing: ∼U(σ = tanh and γ = 0[1
3],σ = identity and γ = 1[2

3])

• Exponents fixed (Fix) or optimized (Opt)? ∼ U(Fix [3
4], Opt [1

4])

• Filter exponent pk ∼U(1,1,2,2,3) for each k

• Filter exponent qk ∼U(1,1,2,2,3) for each k

• Norm exponent rk ∼U(1,2, p−1
k) for each k

• Norm exponent sk ∼U(1,2,q−1
k) for each k

• Number of activation functions to half-rectify ∼U(0,1,J)

• Numerator weights: vectors w∗k are all 1 [1
2] or are non-negative and sum to

1 [1
2]

• Number of hidden units N ∼ 2U (4,12)

JK i.e. 16 - 2048

• Learning rate: 2−U (4,9)

• L1 filter regularization 0 [3
4] or else 2−U (4,10) [1

4]

• L2 filter regularization 0 [3
4] or else 2−U (4,10) [1

4]

• The scalar β was fixed at 1.

Figure 3.1: Sampling distribution over V1-like models and learning algorithm
hyper-parameters for high-throughput search. Random variables (such as the
Learning rate) that were chosen uniformly in a range from a to b are denoted
U (a,b). Random variables chosen from among a few (potentially repeating) values
(a,b,c) where each value is equally likely are denoted U(a,b,c). Random variables
chosen from among a few values where each value is not equally likely are denoted
U(a[P(a)],b[P(b)],c[P(c)]). The distributions for these variables are shown as be-
ing independent, but a rejection policy introduced dependence between them. For
example, we rejected models that might raise a negative number to a fractional
power, and models that might divide by a zero denominator.

66

Table 3.I: Sampling probabilities of various V1 models under our hyper-parameter
distribution. The top part of the table shows what percentage of our randomly
sampled models correspond to selected models from the literature. HPU (Higher-
order Processing Unit) is a tanh of a polynomial of x (Rumelhart et al., 1986b). The
standard sigmoid model is a linear filter squashed by the tanh function. Sigmoid-
like models have a possibly-rectified linear filter squashed by either tanh or division
(γ = 1). The Canonical Neural Circuit (Kouh and Poggio, 2008) includes max-
pooling and energy models by a choice of exponent values within the model. The
bottom part of the table lists the percentage of randomly sampled models that
come out with various properties. Our distribution is designed to compare many of
the elements introduced in Kouh and Poggio (2008) with simpler models (JK = 1),
but we also include hyper-parameter K so that K = 2 permits the subtractive and
divisive inhibition suggested in Rust et al. (2005).

Model Frequency
Kouh and Poggio (2008) 56.4%
sigmoid-like 13.0%
HPU 5.1%
Rust et al. (2005) (no divisive inhibition) 4.5%
Adelson and Bergen (1985) 2.5%
standard-sigmoid 1.1%
Rust et al. (2005) (with divisive inhibition) 0.2%
JK = 1 42.0%
pk = 2 ∀k 35%
K = 2 11.6%

67

3.3 Discrimination tasks

We measured the ability of each visual system model to learn three object

categorization tasks: Shapes: triangles, squares, or circles; Digits: 0,1,2,. . . 9;

or five kinds of small Toys. Shapes images (32× 32 pixels) were generated by

varying the type of shape, the position, size, orientation, and grey scales of the

foreground and background1. Digits (32×32 pixels) was the MNIST database of

hand-written digits2. Toys (32×32 pixels) was a modified“small NORB”dataset3.

The five sorts of toys that the visual system models had to distinguish were four-

legged animals, human figures, airplanes, trucks, and cars. We modified the public

dataset for our experiments by shuffling all the toy instances together, and drawing

5000 training examples, 14440 validation examples, and 29160 testing examples

randomly without replacement. The roles of these training, validation, and testing

examples is explained in Section 3.2.1. Sample stimuli for each of these tasks are

illustrated in Figure 3.2.

3.4 High-Throughput Evaluation

We sampled 1000 models for each of our three datasets and analyzed how the

performance in our tasks correlated with modeling choices.

The best models found in the random search produced scores competitive with

the state of the art. The best Digits model in the random search scored 1.56%

error, the best score on Toys was 1.78%, and the best score on Shapes was 3.1%

error.

The effect of each modeling choice on performance is illustrated in Figure 3.3.

Each panel in Figure 3.3 shows the five best models (in validation) for each restric-

tion in a single model hyper-parameter. Trials are characterized by their classifi-

1Data available at http://www.iro.umontreal.ca/∼lisa/twiki/bin/view.cgi/Public/
BabyAIDatasets

2Data available at http://yann.lecun.com/exdb/mnist/ (LeCun et al., 1998a)
3The original data are available at http://www.cs.nyu.edu/∼ylclab/data/ norb-v1.0-

small (LeCun et al., 2004)

68

Figure 3.2: Left: Images from each of the three datasets: Shapes, Digits, Toys.
Right: Filters v jk learnt by the best models in our study on the respective datasets.
These filters come from models with multiple filters per neuron, and with squared
filter responses. Filters were chosen to be representative of the population in the
learnt model. For the shapes dataset, the model has learnt to phase-offset filters
that implement angle-invariant selectivity for edges radiating out from near the
middle of the image. For the digits, the model has learnt oriented Gabor-like
edge detectors; here the squaring of filter responses makes model neurons invariant
to edge polarity. For the toys, the model has learnt filters with circular swirling
patterns. The mechanism of these swirling filters is not clear, but they serve to
generalize well to the validation and test data.

69

●

●

●
●

●

●●

●

●●

●
●●

●●
●

●
●

●●

●

●

●

●
●

0.00098 0.00391 0.01562

Learning rate

Lo
g

E
rr

or

●●●●●
●
●

●●●

●
●●
●●

●●●●
● ●

●
●
●●

●
●●●● ●●●●●

0.00000 0.00391 0.03125

L1 regularization

Lo
g

E
rr

or

●
●●
●● ●

●●
●
●

●●
●
●
●

●

●

●●
●

●
●
●
●●

●

●●●
●

●●
●

●●

0.00000 0.00391 0.03125

L2 regularization

Lo
g

E
rr

or

●
●●
●
●

●
●

●●

●

●●

●

●

●

●

●
●
●

●

1 2 3 5

n. of terms in norm (J)

Lo
g

E
rr

or

●
●
●
●●

●

●●
●

●

1 2

n. of norms (K)

Lo
g

E
rr

or

●
●

●●
●
●

●

●

●
●●●●

●●●●

●●
●●●

●

●●●
●

●●●
●●●●

●●●

●

●●
●●

●●
●●
●

●●
●
●●

●
●●
●
●

●●●●
●●

●●●
●

●●●
●
●

●
●●●●

●●●

●
●

●●
●●●

●
●●
●●

●
●●
●
●●●
●●●

●●
●●●

●
●●●●

●●

●
●●

●●●
●●

●●●
●●

●
●●●● ●●

●●●

1 5 50 500

n. of hidden units

●

●●●

●

●
●

●●●

False True

Weighted numerator terms

●
●●
●● ●●

●●
●

●
●
●
●
●

●●●
●
●

●●●
●
●

0 1 2 3 5

n. of half−rectified filters

●

●
●

●● ●●●
●
●

gamma tanh

Non−linearity

●
●●
●●

●

●●●
●

False True

Optimized Exponents

● shapes
toys
digits

●●
●
●●

●
●
●
●●

●●●●
●

1 2 3

Inner exponent in numerator (P)

●
●●
●
●

●
●
●
●●

●
●
●●
●

1 2 3

Inner exponent in denominator (Q)

●●●●
●

●
●●
●●

●●
●

●
● ●●

●
●●

0.33 0.50 1.00 2.00

Outer exponent in numerator (R)

●●●
●●

●
●●
●●

●●
●
●● ●●●

●●

0.33 0.50 1.00 2.00

Outer exponent in denominator (S)

Figure 3.3: Each panel shows test set scores of the 5 best (in validation) models
in each category on each dataset relative to the best model on each dataset, from
a broad random search over 1000 general V1 models (Eq. 3.1). The y-values are
log-scaled, and each dataset’s scores are shifted vertically so that they are aligned
at the bottom of each panel. The y-axis ticks correspond to a doubling of test-set
error. Panels for p, q, r and s show performance as a function of the maximum
(initial) value of pk, qk, rk and sk respectively. The standard error in the best
test-set error rates plotted on the vertical axes are at most 10%, which is at most
approximately the size of the icons.

70

cation error rates on test data. There were 5000 test examples in Shapes, and

the best models had around 4% error, so bear in mind while reading the following

section that relative differences in performance of more than 16% are statistically

significant at a 95% confidence level. There were 29160 test examples in Toys

and scores were around 2% error so relative differences in performance of 10% are

significant at the 95% level. There were 10000 test examples in Digits and scores

were around 1.5% error so relative differences in performance of 19% are significant

at the 95% level. At an 80% confidence level, differences of 8% on Shapes, 5% on

Toys and 10% on Digits are significant.

Regarding the number of norms (K), we found that the top five models for all

three datasets when K = 1 were better than the top five with K = 2. The best score

with K = 2 were 34% worse for Shapes, 39% worse for Toys and 18% worse for

Digits. Part of the reason for better performance from K = 1 models is that there

were more of them–90% of trials were with K = 1. Still, the additional norm in the

numerator and denominator (K = 2) conferred no clear advantage.

Regarding the number of terms in each norm (J), the best results on Digits

were with J = 2, Toys were with J = 3 and Shapes were with J = 5. For both

Toys and Shapes the single-filter model (J = 1) was significantly poorer (by 27%

on Shapes, by 40% on Toys) than the best model. There were approximately

equal numbers of trials with J = 1 as with J > 1.

With regards to filter exponents pk and qk, we found that squared filters (pk = 2

and qk = 2, ∀k) gave the best performance. Linear filters (pk = qk = 1∀k) were

at best 60% worse than squared filters on Shapes and Toys, and cubed filters

(pk = qk = 3∀k) were at best 95% worse on Shapes and Toys. On the Digits task,

linear filters for pk were 8% worse and cubic ones were 20% worse. On Digits there

was no difference among values for qk. Trials were split such that roughly 40% had

pk = 1, 40% had pk = 2, and 20% had pk = 3. The distribution of qk trials was

similar and independent from pk.

Regarding norm exponents rk and sk we found that 1
2 (a square root) was the

best on Shapes and Toys. Values of 1
3 and 2 gave performances that were at best

71

60% worse. A value of 1 was 30% worse on Shapes but just 8% worse on Toys.

On Digits sk = 1 and sk = 2 were best by 10% over 1
2 and all values except 1

3 were

equally good for rk.

To test the potential advantage of fractional exponent values close to pk = qk = 2

and rk = sk = .5 we looked at trials where the exponent was adjusted according to

the gradient during learning. The panel labelled “Optimized Exponents” illustrates

that performance with these learnt exponents was always worse (140% worse on

Shapes, 120% worse on Toys, and 20% worse on Digits), and comparable to the

performance when p or r were fixed to non-optimal values.

Half-rectification of filters (a jk) was harmful. Approximately half the trials had

1 half-rectified filter, and the other half were divided about evenly between 0,2,3,

and 5. The best trials had 0 half-rectified filters, and trials with 2 or more half-

rectified filters were 120% worse on Shapes, 120% worse on Toys and 14% worse

on Digits.

In approximately 30% of trials (50% of the trials where J > 1), we optimized

the weighting of numerator terms (vectors w·k) by gradient descent, under the

constraint that they be non-negative and sum to 1. Optimization of these vectors

helped to reduce error in the Shapes dataset (by a factor of approximately 12%)

but it raised the error rate in Toys (by about 17%) and did not make any difference

in Digits.

Approximately two thirds of trials used squashing by division (γ = 1) rather

than tanh. The best-performing of tanh trial on Shapes was 20% worse than the

best division model, but on the other two datasets the difference in performance

was not significant. There was less variability among results when squashing by

division.

The choice of learning rate was not critical good results were obtained for each

task with every value in the range under investigation. `1 and `2 regularization of

weights was simply harmful.

72

3.4.1 Single-filter Models vs. Multi-filter Models

One of the basic questions our experiment addresses is whether modelling capac-

ity is better spent on additional model neurons, or on more complicated multi-filter

model neurons. One way to quantify the capacity of a model is by the number of

degrees of freedom that may be adapted. In our case, this quantity is dominated by

the product of three terms: the number of hidden units (N, see Eq. 3.1), the num-

ber of filters in each norm (J), and the number of norms (K). Figure 3.4 illustrates

the relationship between capacity and performance in these models, for single-filter

models (JK = 1) and multi-filter alternatives (JK > 1). Two things stand out in

Figure 3.4: a certain amount of capacity is necessary for good performance (there

are no points in the bottom left quadrant), and it is important that the capacity

be in the form of model neurons with multiple linear filters (solid icons dominate

the bottom right quadrant). So ultimately, additional single-filter model neurons

are a poor substitute for multi-filter alternatives when filters must be learnt from

data.

Figure 3.4 was computed as follows. For each dataset, we drew a random sample

of 1000 model trials. Each random sample of 1000 model trials was partitioned

into condition-sets according to the number of filters in the model (product JKN),

rounded to the nearest power of 2. The figure shows the results of each dataset

slightly offset horizontally for clarity. Each condition is a pair (dataset, capacity)

and each condition-set is the set of trials matching the condition, but with different

non-linearities, learning rates, exponents, and so on (see variations in Figure 3.1).

We define a test-set score for each condition by taking the test-set score from the

best model (according to validation performance) in its condition-set. The smallest

condition set had 39 elements, and condition sets with more than 50 elements were

randomly truncated to 50. Each test score was divided by the best test score in

the original 1000 trials so that performance could be compared between datasets.

Conditions whose test-set error was high (more than twice the best test score on

the same dataset) are also not shown for clarity.

73

Figure 3.4: Why not just use more simple model neurons with one filter each?
There are different ways to add capacity to a model. Each point below corresponds
to test error for the best model in one experimental condition (dataset and capacity,
defined as N×J×K see Eq. 3.1). The horizontal axis is capacity (with each dataset’s
results slightly offset for clarity), and the vertical axis is out-of-sample classification
error relative to the best model on the same dataset. Each best model is chosen
over N (with 37 < N < 50) other randomly sampled models within a given condition
(different learning rate, different exponents, see Fig. 3.1 for all variations). Solid
markers denote the performance of models with JK > 1, outlined markers denote
the performance of models with JK = 1. Dotted lines indicate standard error on
the test-set performance of the best model in each condition. The greater density
of solid symbols in bottom right portion of the figure mean two things: a certain
amount of capacity is necessary for good performance, and it is important that the
capacity be in the form of model neurons with multiple filters.

74

For all the models in our study, the computational cost of determining the label

for a test example is proportional to the number of filters, which is the horizon-

tal axis (capacity) of Figure 3.4. The best-performing multi-filter models required

approximately the same amount of computation time to train and test as the best

single-filter models that were a few times larger, but the multi-filter models per-

formed better.

3.5 Discussion

Visual system models in our study were more successful at categorizing familiar

objects in novel stimuli when their V1-like neurons were able to go beyond the

basic linear-nonlinear model and exhibit the range of behaviour found in V1 simple

and complex cells. Using a gradient-based method to optimize neuron parameters,

the models similar to the classic energy-model (where the firing rate is determined

by the sum of squared linear filter responses) demonstrated a superior capacity to

generalize from labelled examples of objects. More complex variants on the energy

model such as the models of Rust et al. (2005) and Kouh and Poggio (2008) were

also better than the basic simple cell model, but brought no consistent advantage

over the energy model. The models with squared linear filters were much better at

generalizing to new stimuli than the simpler linear-nonlinear models often used in

theoretical work.

The most important characteristic of the V1-like neuron model used for image

classification was the complex cell-like behaviour, obtained through multiple (from

two to at least five) squared linear filters that captured second-order interactions be-

tween regions of the receptive field. In terms of learning theory, our results suggest

that complex-like models yielded families of functions that were more appropriate

for learning to classify objects than linear-nonlinear models (Vapnik, 1995). Large

numbers of simple cell models were no substitute for complex cell models because

the simple cell models brought a poorer prior over functions for object catego-

rization. The nonlinearities required by the complex-cell models could come from

75

multiple biological sources: feedback from extra-striate (Bredfeldt and Ringach,

2002) and lateral connectivity (Heeger, 1992) could play a role, and dendritic trees

have a capacity for nonlinear processing (Haüsser and Mel, 2003; Rhodes, 2008).

One hypothesis for why the complex-like parametrization learnt more quickly is

that the sum of squared filters can be more robust to small translations (Adelson

and Bergen, 1985). As evidence for this hypothesis, the filters learnt by the most

successful models in our study are illustrated in Figure 3.2. The results here are

mixed. The model that was best at discriminating Shapes supports the hypothe-

sis; it involves a sum of squared linear filter responses and the filters in the model

look like phase-offset gratings that implement angle-invariant selectivity for edges

radiating out from various locations near the middle of the image. The model best

at discriminating Digits supports the hypothesis less strongly; it involves many

small Gabor-like oriented edge detectors. These detectors do not have gratings so

they would not be robust to displacement of the edge. Squaring of filter responses

in these models would make the edge detection robust to changes in polarity. Edges

in the digits dataset are almost always close together (the two sides of a pen-stroke)

so perhaps polarity invariance is a form of translation invariance in this particular

dataset. The model best at discriminating Toys offers weak support for the hy-

pothesis; the filters in this model are neither gratings nor edge detectors, and it is

not clear (to the authors) how they work. So for at least two of the three datasets

in our study (Shapes and Digits), the filters learnt to implement the computa-

tional property (quadrature pairs for translational invariance) that motivated the

energy-model. It is not obvious a-priori that for an image x, supervised learning

of a transfer function of the form
√

(ax)2 +(bx)2 should learn phase-offset Gabors

and sinusoids for filters a and b. But in at least two of our three datasets that

is indeed what happens for the majority of V1-like cells. This finding supports

the hypothesis that quadrature pairing for pooling in complex cells is an important

computational aspect of low-level feed-forward vision models – when the machinery

for that is present, a simple learning algorithm learns to use it that way.

How do our results compare with other published results on the Digits dataset

76

(MNIST)? A database of results is online (LeCun, 1998-): chance is 90% error, a lin-

ear classifier can get 12% error (LeCun et al., 1998a), K-nearest neighbours 3.09%

using an L2 metric (LeCun, 1998-), a Gaussian-kernel SVM 1.4% error (LeCun,

1998-). With an augmented dataset an SVM can achieve 0.56% error (Decoste and

Schölkopf, 2002) and the best deep convolutional neural network achieved 0.39%

error (Ranzato et al., 2007). The best digit-classifier in our study (based on clas-

sic energy model neurons) scored 1.54% error. It lags behind more sophisticated

machine-learning models, but in this sort of comparison it should be interpreted

as a building block for more powerful computer vision models, rather than a com-

plete model in its own right. Our score compares favourably with the standard

sigmoidal neural network approach (1.8% error (LeCun, 1998-)), indicating that

complex cells can extract more discriminating features than simple cells. Future

work will examine the utility of these V1-like models within a hierarchical con-

volutional architecture that goes further toward replicating the structure of the

visual system (Kavukcuoglu et al., 2010; LeCun et al., 1998a; Pinto et al., 2009;

Riesenhuber and Poggio, 1999).

We do not know how well a primate visual system would perform in these

tasks because for the purpose of comparison, it would be necessary to train visual

systems exclusively on these very limited sets of stimuli. Instead, we draw on the

approach of rational analysis and appeal to the trivial straightforwardness of these

categorization tasks to support our claim that the learning algorithm of the visual

system exhibits a preference for functions that are effective in these tasks. The

faster learning in the Rust et al. (2005) model agree with the hypothesis that that

model’s functional priors are closer to the visual system’s priors, and that the priors

of the other models are further from the visual system’s.

Acknowledgements

The authors are immensely grateful for the feedback from Curtis Baker, Paul

Cisek, Aaron Courville, Andrea Green, Christopher Pack, Nicole Rust, and Terry

Sejnowski, as well as the financial support from NSERC, the Canada Research

77

Chairs, and MITACS.

CHAPTER 4

SLOW FEATURES FOR PRETRAINING COMPLEX CELL

NETWORKS

Title Slow, Decorrelated Features for Pretraining Complex Cell-like

Networks

Authors James Bergstra and Yoshua Bengio

Publication Proc. of Neural Information Procesing Systems 22: 99–107,

2009.

We introduce a new type of neural network activation function based on recent

physiological rate models for complex cells in visual area V1. A single-hidden-layer

neural network of this kind of model achieves 1.50% error on MNIST. We also intro-

duce an existing criterion for learning slow, decorrelated features as a pretraining

strategy for image models. This pretraining strategy results in orientation-selective

features, similar to the receptive fields of complex cells. With this pretraining, the

same single-hidden-layer model achieves 1.34% error, even though the pretraining

sample distribution is very different from the finetuning distribution. To imple-

ment this pretraining strategy, we derive a fast algorithm for online learning of

decorrelated features such that each iteration of the algorithm runs in linear time

with respect to the number of features.

80

4.1 Introduction

Visual area V1 is the first area of cortex devoted to handling visual input in

the human visual system (Dayan and Abbott, 2001). One convenient simplification

in the study of cell behaviour is to ignore the timing of individual spikes, and to

look instead at their frequency. Some cells in V1 are described well by a linear

filter that has been rectified to be non-negative and perhaps bounded. These

so-called simple cells are similar to sigmoidal activation functions: their activity

(firing frequency) is greater as an image stimulus looks more like some particular

linear filter. However, these simple cells are a minority in visual area V1 and the

characterization of the remaining cells there (and even beyond in visual areas V2,

V4, MT, and so on) is a very active area of ongoing research. Complex cells are the

next-simplest kind of cell. They are characterized by an ability to respond to narrow

bars of light with particular orientations in some region (translation invariance) but

to turn off when all those overlapping bars are presented at once. This non-linear

response has been modelled by quadrature pairs (Adelson and Bergen, 1985; Dayan

and Abbott, 2001): pairs of linear filters with the property that the sum of their

squared responses is constant for an input image with particular spatial frequency

and orientation (i.e., edges). It has also been modelled by max-pooling across two

or more linear filters (Riesenhuber and Poggio, 1999). More recently, it has been

argued that V1 cells exhibit a range of behaviour that blurs distinctions between

simple and complex cells and between energy models and max-pooling models (Finn

and Ferster, 2007; Kouh and Poggio, 2008; Rust et al., 2005).

Another theme in neural modelling is that cells do not react to single images,

they react to image sequences. It is a gross approximation to suppose that each

cell implements a function from image to activity level. Furthermore, the temporal

sequence of images in a video sequence contains a lot of information about the

invariances that we would like our models to learn. Throwing away that temporal

structure makes learning about objects from images much more difficult. The

principle of identifying slowly moving/changing factors in temporal/spatial data has

81

been investigated by many (Becker and Hinton, 1993; Cadieu and Olshausen, 2009;

Hurri and Hyvärinen, 2003; Körding et al., 2004; Wiskott and Sejnowski, 2002) as

a principle for finding useful representations of images, and as an explanation for

why V1 simple and complex cells behave the way they do. A good overview can

be found in (Berkes and Wiskott, 2005).

This work follows the pattern of initializing neural networks with unsupervised

learning (pretraining) before finetuning with a supervised learning criterion. Super-

vised gradient descent explores the parameter space sufficiently to get low training

error on smaller training sets (tens of thousands of examples, like MNIST). How-

ever, models that have been pretrained with appropriate unsupervised learning pro-

cedures (such as RBMs and various forms of auto-encoders) generalize better (Hin-

ton et al., 2006; Larochelle et al., 2007; Lee et al., 2008b; Ranzato et al., 2008;

Vincent et al., 2008). See Bengio (2009) for a comprehensive review and Erhan

et al. (2009) for a thorough experimental analysis of the improvements obtained.

It appears that unsupervised pretraining guides the learning dynamics in better

regions of parameter space associated with basins of attraction of the supervised

gradient procedure corresponding to local minima with lower generalization error,

even for very large training sets (unlike other regularizers whose effects tend to

quickly vanish on large training sets) with millions of examples.

Recent work in the pretraining of neural networks has taken a generative mod-

elling perspective. For example, the Restricted Boltzmann Machine is an undirected

graphical model, and training it (by maximum likelihood) as such has been demon-

strated to also be a good initialization. However, it is an interesting open question

whether a better generative model is necessarily (or even typically) a better point

of departure for finetuning. Contrastive divergence (CD) is not maximum likeli-

hood, and works just fine as pretraining. Reconstruction error is an even poorer

approximation of the maximum likelihood gradient, and sometimes works better

than CD (with additional twists like sparsity or the denoising of Vincent et al.

(2008)).

The temporal coherence and decorrelation criterion is an alternative to training

82

generative models such as RBMs or auto-encoder variants. Recently Mobahi et al.

(2009) demonstrated that a slowness criterion regularizing the top-most internal

layer of a deep convolutional network during supervised learning helps their model

to generalize better. Our model is similar in spirit to pretraining with the semi-

supervised embedding criterion at each level (Mobahi et al., 2009; Weston et al.,

2008), but differs in the use of decorrelation as a mechanism for preventing trivial

solutions to a slowness criterion. Whereas RBMs and denoising autoencoders are

defined for general input distributions, the temporal coherence and decorrelation

criterion makes sense only in the context of data with slowly-changing temporal or

spatial structure, such as images, video, and sound.

In the same way that simple cell models were the inspiration for sigmoidal ac-

tivation units in artificial neural networks and validated simple cell models, we

investigate in artificial neural network classifiers the value of complex cell mod-

els. This paper builds on these results by showing that the principle of temporal

coherence is useful for finding initial conditions for the hidden layer of a neural

network that biases it toward better generalization in object recognition. We in-

troduce temporal coherence and decorrelation as a pretraining algorithm. Hidden

units are initialized so that they are invariant to irrelevant transformations of the

image, and sensitive to relevant ones. In order for this criterion to be useful in the

context of large models, we derive a fast online algorithm for decorrelating units

and maximizing temporal coherence.

4.2 Algorithm

4.2.1 Slow, Decorrelated Feature Learning Algorithm

Körding et al. (2004) introduced a principle (and training criterion) to explain

the formation of complex cell receptive fields. They based their analysis on the

complex-cell model of Adelson and Bergen (1985), which describes a complex cell

as a pair of half-rectified linear filters whose outputs are squared and added together

and then a square root is applied to that sum.

83

Suppose x is an input image and we have F complex cells h1, ...,hF such that

hi =
√

(ui · x)2 +(vi · x)2. Körding et al. (2004) showed that by minimizing the

following cost,

L (K2004) = α ∑
i!= j

Covt(hi,h j)2

Var(hi)Var(h j)
+∑

t
∑

i

(hi,t−hi,t−1)2

Var(hi)
, (4.1)

over consecutive natural movie frames (with respect to model parameters), the

filters ui and vi of each complex cell form local Gabor filters whose phases are

offset by about 90 degrees, like the sine and cosine curves that implement a Fourier

transform.

The criterion in Equation 4.1 requires a batch minimization algorithm because

of the variance and covariance statistics that must be collected. This makes the

criterion too slow for use with large datasets. At the same time, the size of the

covariance matrix is quadratic in the number of features, so it is computationally

expensive (perhaps prohibitively) to apply the criterion to train large numbers of

features.

4.2.1.1 Online Stochastic Estimation of Covariance

This section presents an algorithm for approximately minimizing L (K2004) using

an online algorithm whose iterations run in linear time with respect to the number

of features. One way to apply the criterion to large or infinite datasets is by

estimating the covariance (and variance) from consecutive minibatches of N movie

frames. Then the cost can be minimized by stochastic gradient descent.

We used an exponentially-decaying moving average to track the mean of each

feature over time, h̄i(t) = ρ h̄i(t− 1) + (1−ρ)hi(t). For good results, ρ should be

chosen so that the estimates change very slowly. We used a value of 1.0−5.0×10−5.

Then we estimated the variance of each feature over a minibatch as in Eqn. 4.2.

Var(h)≈ 1
N−1

t+N−1

∑
τ=t

(hi(t)− h̄i(t))2. (4.2)

84

With this mean and variance, we computed normalized features for each minibatch

as in Eqn 4.3.

zi(t) = (hi(t)− h̄i(t))/
√

Var(h)+ 10−10. (4.3)

Letting Z denote an F ×N matrix with N columns of F normalized feature

values, we estimate the correlation between features hi by the covariance in these

normalized features: C(t) = 1
N Z(t)Z(t)′. We can now write down L(t), in Eqn. 4.4

a minibatch-wise approximation to Eqn. 4.1:

L(t) = α ∑
i!= j

C2
i j(t)+

N−1

∑
τ=0

∑
i

(zi(t + τ)− zi(t + τ−1))2. (4.4)

The time complexity of evaluating L(t) from Z using this expression is O(FFN + NF).

In practice we use small minibatches and our model has lots of features, so the fact

that the time complexity of the algorithm is quadratic in F is troublesome. How-

ever, this value can be computed exactly in time linear in F . The key observation is

that the sum of the squared elements of C can be computed from the N×N Gram

matrix G(t) = Z(t)′Z(t).

F

∑
i=1

F

∑
j=1

C2
i j(t) = Tr(C(t)C(t))

=
1

N2 Tr(Z(t)Z(t)′Z(t)Z(t)′) =
1

N2 Tr(Z(t)′Z(t)Z(t)′Z(t))

=
1

N2 Tr(G(t)G(t)) =
1

N2 Tr(G(t)G(t)′)

=
1

N2

N

∑
k=1

N

∑
l=1

G2
kl(t)

.=
1

N2 |Z(t)′Z(t)|2

Subtracting the C2
ii terms from the sum of all squared elements lets us rewrite

Eqn. 4.4 in a way that suggests the linear-time implementation (Eqn. 4.5).

L(t) =
α

N2

(
|Z(t)Z′(t)|2−

F

∑
i=1

(
N

∑
τ=1

zi(τ)2)2

)
+

1
N−1

N−1

∑
τ=1

F

∑
i=1

(zi(τ)− zi(τ−1))2 (4.5)

85

The time complexity of computing L(t) using Equation 4.5 from Z(t) is O(NNF).

The sum of squared correlations is still the most expensive term, but for the case

where N << F , this expression makes L(t)’s computation linear in F . Considering

that each iteration treats N training examples, the per-training-example cost of this

algorithm can be seen as O(NF). In implementation, an additional factor of two

in runtime can be obtained by only computing half of the Gram matrix G, which

is symmetric.

4.2.2 Complex Cell Activation Function

Recently, Rust et al. (2005) have argued that existing models, such as that of

Adelson and Bergen (1985) cannot account for the variety of behaviour found in

visual area V1. Some complex cells behave like simple cells to some extent and vice

versa; there is a continuous range of simple to complex cells. They put forward

a similar but more involved expression that can capture the simple and complex

cells as special cases, but ultimately parameterizes a larger class of cell-response

functions (Eq. 4.6).

a +
β

(
max(0,wx)2 + ∑

I
i=1(u(i)x)2

)ζ

−δ

(
∑

J
j=1(v(j)x)2

)ζ

1 + γ
(
max(0,wx)2 + ∑

I
i=1(u(i)x)2

)ζ + ε

(
∑

J
j=1(v(j)x)2

)ζ
(4.6)

The numerator in Eq. 4.6 describes the difference between an excitation term and

a shunting inhibition term. The denominator acts to normalize this difference.

Parameters w,u(i),v(j) have the same shape as the input image x, and can be thought

of as image filters like the first layer of a neural network or the codebook of a sparse-

coding model. The parameters a,β ,δ ,γ,ε,ζ are scalars that control the range and

shape of the activation function, given all the filter responses. The numbers I and

J of quadratic filters required to explain a particular cellular response were on the

order of 2-16.

We introduce the approximation in Equation 4.7 because it is easier to learn by

gradient descent. We replaced the max operation with a softplus(x) = log(1 + ex)

86

function so that there is always a gradient on w and b, even when wx+b is negative.

We fixed the scalar parameters to prevent the system from entering regimes of

extreme non-linearity. We fixed β ,δ ,γ,ε to 1, and a to 0. We chose to fix the

exponent ζ to 0.5 because Rust et al. (2005) found that values close to 0.5 offered

good fits to cell firing-rate data. Future work might look at choosing these constants

in a principled way or adapting them; we found that these values worked well. The

range of this activation function (as a function of x) is a connected set on the (−1,1)

interval. However, the whole (−1,1) range is not always available, depending on

the parameters. If the inhibition term is always 0 for example, then the activation

function will be non-negative.

√
log(1 + ewx+b)2 + ∑

I
i=1(u(i)x)2−

√
∑

J
j=1(v(j)x)2

1.0 +
√

log(1 + ewx+b)2 + ∑
I
i=1(u(i)x)2 +

√
∑

J
j=1(v(j)x)2

(4.7)

4.3 Results

Classification results were obtained by adding a logistic regression model on

top of the features learnt, and treating the resulting model as a single-hidden-layer

neural network. The weights of the logistic regression were always initialized to

zero.

All work was done on 28x28 images (MNIST-sized), using a model with 300

hidden units. Each hidden unit had one linear filter w, a bias b, two quadratic ex-

citatory filters u1,u2 and two quadratic inhibitory filters v1,v2. The computational

cost of evaluating each unit was thus five times the cost of evaluating a normal

sigmoidal activation function of the form tanh(w′x + b).

4.3.1 Random Initialization

As a baseline, our model parameters were initialized to small random weights

and used as the hidden layer of a neural network. Training this randomly-initialized

model by stochastic gradient descent yielded test-set performance of 1.56% on

87

MNIST.

The filters learnt by this procedure looked somewhat noisy for the most part,

but had low-frequency trends. For example, some of the quadratic filters had

small local Gabor-like filters. We believe that these phase-offset pairs of Gabor-like

functions allow the units to implement some shift-invariant response to edges with

a specific orientation (Fig. 4.1).

Figure 4.1: Four of the three hundred activation functions learnt by training our
model from random initialization to perform classification. Top row: the red and
blue channels are the two quadratic filters of the excitation term. Bottom row: the
red and blue channels are the two quadratic filters of the shunting inhibition term.
Training yields locally orientation-selective edge filters, opposite-orientation edges
are inhibitory.

4.3.2 Pretraining with Natural Movies

Under the hypothesis that the matched Gabor functions (see Fig. 4.1) allowed

our model to generalize better across slight translations of the image, we appealed

to a pretraining process to initialize our model with values better than random

noise.

We pretrained the hidden layer according to the online version of the cost in Eq.

4.5, using movies (MIXED-movies) made by sliding a 28 x 28 pixel window across

large photographs. Each of these movies was short (just four frames long) and

ten movies were used in each minibatch (N = 40). The sliding speed was sampled

uniformly between 0.5 and 2 pixels per frame. The sliding direction was sampled

uniformly from 0 to 2π. The sliding initial position was sampled uniformly from

image coordinates. Any sampled movie that slid off of the underlying image was

88

rejected. We used two photographs to generate the movies. The first photograph

was a grey-scale forest scene (resolution 1744x1308). The second photograph was

a tiling of 100x100 MNIST digits (resolution 2800x2800). As a result of this proce-

dure, digits are not at all centred in MIXED-movies: there might be part of a ’3’

in the upper-left part of a frame, and part of a ’7’ in the lower right.

The shunting inhibition filters (v1,v2) learnt after five hundred thousand movies

(fifty thousand iterations of stochastic gradient descent) are shown in Figure 4.2.

The filters learn to implement orientation-selective, shift-invariant filters at different

spatial frequencies. The filters shown in figure 4.2 have fairly global receptive

fields, but smaller more local receptive fields were obtained by applying `1 weight-

penalization during pretraining. The α parameter that balances decorrelation and

slowness was chosen manually on the basis of the trained filters. We were looking

for a diversity of filters with relatively low spatial frequency. The excitatory filters

learnt similar Gabor pairs but the receptive fields tended to be both smaller (more

localized) and lower-frequency. Finetuning this pretrained model with a learning

rate of 0.003 with `1 weight decay of 10−5 yielded a test error rate of 1.34% on

MNIST.

4.3.3 Pretraining with MNIST movies

We also tried pretraining with videos whose frames follow a similar distribu-

tion to the images used for finetuning and testing. We created MNIST movies by

sampling an image from the training set, and moving around (translating it) ac-

cording to a Brownian motion. The initial velocity was sampled from a zero-mean

normal distribution with std-deviation 0.2. Changes in that velocity between each

frame were sampled from zero-mean normal distribution with std-deviation 0.2.

Furthermore, the digit image in each frame was modified according to a randomly

chosen elastic deformation, as in Loosli et al. (2007). As before, movies of four

frames were created in this way and training was conducted on minibatches of ten

movies (N = 4∗10 = 40). Unlike the MNIST frames in MIXED-movies, the frames

of MNIST-movies contain a single digit that is approximately centred.

89

Figure 4.2: Filters from some of the units of the model, pretrained on small sliding
image patches from two large images. The features learn to be direction-selective for
moving edges by approximately implementing windowed Fourier transforms. These
features have global receptive field, but become more local when an `1 weight penal-
ization is applied during pretraining. Excitatory filters looked similar, but tended to
be more localized and with lower spatial frequency (fewer, shorter, broader stripes).
Columns of the figure are arranged in triples: linear filter w in grey, u(1),u(2) in red
and green, v(1),v(2) in blue and green.

The activation functions learnt by minimizing Equation 4.5 on these MNIST

movies were qualitatively different from the activation functions learnt from the

MIXED movies. The inhibitory weights (v1,v2) learnt from MNIST movies are

shown in 4.3. Once again, the inhibitory weights exhibit the narrow red and green

stripes that indicate edge-orientation selectivity. But this time they are not parallel

straight stripes, they follow contours that are adapted to digit edges. The excitation

filters u1,u2 were also qualitatively different. Instead of forming localized Gabor

pairs, some formed large smooth blob-like shapes but most converged toward zero.

Finetuning this pretrained model with a learning rate of 0.003 with `1 weight decay

of 10−5 yielded a test error rate of 1.37 % on MNIST.

4.4 Discussion

The results on MNIST compare well with many results in the literature. A

single-hidden layer neural network of sigmoidal units can achieve 1.8% error by

training from random initial conditions, and our model achieves 1.5% from random

90

Figure 4.3: Filters of our model, pretrained on movies of centred MNIST train-
ing images subjected to Brownian translation. The features learn to be direction-
selective for moving edges by approximately implementing windowed Fourier trans-
forms. The filters are tuned to the higher spatial frequency in MNIST digits, as
compared with the natural scene. Columns of the figure are arranged in triples:
linear filter w in grey, u(1),u(2) in red and green, v(1),v(2) in blue and green.

initial conditions. A single-hidden layer sigmoidal neural network pretrained as a

denoising auto-encoder (and then finetuned) can achieve 1.4% error on average,

and our model is able to achieve 1.34% error from many different finetuned mod-

els (Erhan et al., 2009). Gaussian SVMs trained just on the original MNIST data

achieve 1.4%; our pretraining strategy allows our single-layer model be better than

Gaussian SVMs (Decoste and Schölkopf, 2002). Deep learning algorithms based

on denoising auto-encoders and RBMs are typically able to achieve slightly lower

scores in the range of 1.2−1.3% (Erhan et al., 2009; Hinton et al., 2006). The best

convolutional architectures and models that have access to enriched datasets for

finetuning can achieve classification accuracies under 0.4% (Ranzato et al., 2007).

In future work, we will explore strategies for combining these methods and with

our decorrelation criterion to train deep networks of models with quadratic input

interactions. We will also look at comparative performance on a wider variety of

tasks.

91

4.4.1 Transfer Learning, the Value of Pretraining

To evaluate our unsupervised criterion of slow, decorrelated features as a pre-

training step for classification by a neural network, we finetuned the weights ob-

tained after ten, twenty, thirty, forty, and fifty thousand iterations of unsupervised

learning. We used only a small subset (the first 100 training examples) from the

MNIST data for supervised learning to focus on the importance of pretraining.

The results are listed in Table 4.I. Training from random weights initial led to 23.1

% error. The value of pretraining is evident right away: after two unsupervised

passes over the MNIST training data (100K movies and 10K iterations), the weights

have been initialized better. Finetuning the weights learnt on the MIXED-movies

led to test error rate of 21.2%, and finetuning the weights learnt on the MNIST-

movies led to a test error rate of 19.0%. Further pretraining offers a diminishing

marginal return, although after ten unsupervised passes through the training data

(500K movies) there is no evidence of over-pretraining. The best score (20.6%)

on MIXED-movies occurs at both eight and ten unsupervised passes, and the best

score on MNIST-movies (18.4%) occurs after eight. A larger test set would be

required to make a strong conclusion about a downward trend in test set scores for

larger numbers of pretraining iterations. The results with MNIST-movies pretrain-

ing are slightly better than MIXED-movies but these results suggest strong transfer

learning: the videos featuring digits in random locations and natural image patches

are almost as good for pretraining as compared with videos featuring images very

similar to those in the test set.

4.4.2 Slowness, Normalization, and Binary Activations

Somewhat counter-intuitively, the slowness criterion requires movement in the

features h. Suppose a feature hi has activation levels that are normally distributed

around 0.1 and 0.2, but the activation at each frame of a movie is independent

of previous frames. Since the features has a small variance, then the normalized

feature zi will oscillate in the same way, but with unit variance. This will cause

92

Table 4.I: Generalization error (% error) from 100 labelled MNIST examples after
pretraining on MIXED-movies and MNIST-movies.

Pretraining Dataset Number of pretraining iterations (×104)
0 1 2 3 4 5

MIXED-movies 23.1 21.2 20.8 20.8 20.6 20.6
MNIST-movies 23.1 19.0 18.7 18.8 18.4 18.6

zi(t)− zi(t− 1) to be relatively high, and for our slowness criterion not to be well

satisfied. In this way the lack of variance in hi can actually make for a relatively

fast normalized feature zi rather than a slow one.

However, if hi has activation levels that are normally distributed around .1 and

.2 for some image sequences and around .8 and .9 for other image sequences, the

marginal variance in hi will be larger. The larger marginal variance will make

the oscillations between .1 and .2 lead to much smaller changes in the normalized

feature zi(t). In this sense, the slowness objective can be maximally satisfied by

features hi(t) that take near-minimum and near-maximum values for most movies,

and never transition from a near-minimum to a near-maximum value during a

movie.

When training on multiple short videos instead of one continuous one, it is

possible for large changes in normalized-feature-activation never [or rarely] to occur

during a video. Perhaps this is one of the roles of saccades in the visual system:

to suspend the normal objective of temporal coherence during a rapid widespread

change of activation levels.

4.4.3 Eigenvalue Interpretation of Decorrelation Term

What does our unsupervised cost mean? One way of thinking about the decor-

relation term (first term in Eq. 4.1) which helped us to design an efficient algorithm

for computing it, is to think of it as flattening the eigen-spectrum of the correlation

matrix of our features h (over time). It is helpful to rewrite this cost in terms of

93

normalized features: zi = hi−h̄i
σi

, and to consider that we sum over all the elements

of the correlation matrix including the diagonal.

∑
i!= j

Covt(hi,h j)2

Var(hi)Var(h j)
= 2

F−1

∑
i=1

F

∑
j=i+1

Covt(zi,z j)2 =

(
F

∑
i=1

F

∑
j=1

Covt(zi,z j)2

)
−F

If we use C to denote the matrix whose i, j entry is Covt(zi,z j), and we use U ′ΛU

to denote the eigen-decomposition of C, then we can transform this sum over i! = j

further.

(
F

∑
i=1

F

∑
j=1

Covt(zi,z j)2)−F = Tr(C′C)−F = Tr(CC)−F

= Tr(U ′ΛUU ′ΛU)−F = Tr(UU ′ΛUU ′Λ)−F =
F

∑
k=1

Λ
2
k−F

We can interpret the first term of Eq. 4.1 as penalizing the squared eigenvalues of

the covariance matrix between features in a normalized feature space (z as opposed

to h), or as minimizing the squared eigenvalues of the correlation matrix between

features h.

4.5 Conclusion

We have presented an activation function for use in neural networks that is a

simplification of a recent rate model of visual area V1 complex cells. This model

learns shift-invariant, orientation-selective edge filters from purely supervised train-

ing on MNIST and achieves lower generalization error than conventional neural

nets.

Temporal coherence and decorrelation has been put forward as a principle for

explaining the functional behaviour of visual area V1 complex cells. We have de-

scribed an online algorithm for minimizing correlation that has linear time complex-

ity in the number of hidden units. Pretraining our model with this unsupervised

94

criterion yields even lower generalization error: better than Gaussian SVMs, and

competitive with deep denoising auto-encoders and 3-layer deep belief networks.

The good performance of our model compared with poorer approximations of V1

is encouraging machine learning research inspired by neural information processing

in the brain. It also helps to validate the corresponding computational neuroscience

theories by showing that these neuron activations and unsupervised criteria have

value in terms of learning.

Acknowledgments

This research was performed thanks to funding from NSERC, MITACS, and

the Canada Research Chairs.

CHAPTER 5

THE SPIKE AND SLAB RBM

Title A Spike and Slab Restricted Boltzmann Machine

Authors Aaron Couville, James Bergstra, and Yoshua Bengio

Publication Accepted to AISTATS, 2011.

We introduce the spike and slab Restricted Boltzmann Machine, characterized by

having both a real valued vector, the slab, and a binary variable, the spike, as-

sociated with each unit in the hidden layer. The model possesses some practical

properties such as being amenable to Block Gibbs sampling as well as being capable

of generating similar latent representations of the data to the recently introduced

mean and covariance Restricted Boltzmann Machine. We illustrate how the spike

and slab Restricted Boltzmann Machine achieves competitive performance on a

standard object recognition task with natural image data.

96

5.1 Introduction

The prototypical Restricted Boltzmann Machine (RBM) is a Markov random

field with a bipartite graph structure that divides the model variables into two

layers: a visible layer consisting of binary variables representing the data, and a

hidden (or latent) layer consisting of the latent binary variables. The bipartite

structure excludes connections between the variates (or units) within each layer

so that the units within the hidden layer are conditionally independent given the

units of the visible layer, and the visible layer units are conditionally indepen-

dent given the hidden layer units. This pair of conditionally factorial distributions

permits a simple block Gibbs sampler, alternating between the dual condition-

als P(visible layer | hidden layer) and P(hidden layer | visible layer). The ability to

sample simply and efficiently from the RBM forms the basis for effective learning al-

gorithms such as contrastive divergence (CD, Carreira-Perpiñan and Hinton, 2005;

Hinton, 2002) and stochastic maximum likelihood (SML, Tieleman, 2008; Younes,

1998).

While the RBM has proved effective in a range of tasks and data domains (Chen

and Murray, 2003; Larochelle and Bengio, 2008; Nair and Hinton, 2009; Salakhut-

dinov et al., 2007; Sutskever et al., 2009; Taylor and Hinton, 2009), it has not been

as successful in modelling continuous multivariate data, and natural images in par-

ticular (Ranzato and Hinton, 2010). The most popular approach to modelling

continuous observations within the RBM framework was the so-called Gaussian

RBM (GRBM), defined such that the conditional distribution of the visible layer

given the hidden layer is Gaussian with the conditional mean being parametrized

by a set of weights and the binary hidden unit values, and a fixed covariance.

Thus the GRBM can be viewed as a Gaussian mixture model with the number of

components being exponential in the number of hidden units, while the number of

parameters (the weights) being only linear in the number of hidden units.

The GRBM has proved unsatisfactory as a model of natural images, as the

trained features typically do not represent sharp edges that occur at object bound-

97

aries and lead to latent representations that are not particularly useful features for

classification tasks (Ranzato and Hinton, 2010). Ranzato and Hinton (2010) have

argued that the failure of the GRBM to adequately capture the statistical structure

apparent in natural images stems from the exclusive use of the model capacity to

capture the conditional mean at the expense of the conditional covariance. While

we agree that the GRBM provides a poor covariance model, we suggest that this

deficiency has more to do with the binary nature of the hidden layer units than

with the model’s devotion to capturing the conditional mean.

Our perspective on the GRBM motivates us to reconsider the strategy of mod-

elling continuous-valued inputs with strictly binary latent variables, and leads us to

the spike and slab Restricted Boltzmann Machine (ssRBM). Like many RBM vari-

ants, the spike and slab RBM is restricted to a bipartite graph structure between

two types of nodes. The visible layer units are modelled as real valued variables

as in the GRBM approach. Where our model departs from other similar methods

is in the definition of the hidden layer latent variables. We model these as the

element-wise product of a real valued vector with a binary vector, i.e., each hid-

den unit is associated with a binary spike variable and the real vector valued slab

variable. The name spike and slab is inspired from terminology in the statistics

literature (Mitchell and Beauchamp, 1988), where the term refers to a prior con-

sisting of a mixture between two components: the spike, a discrete probability mass

at zero; and the slab, a density (typically uniformly distributed) over a continuous

domain.

In this paper, we show how the introduction of the slab variables to the GRBM

leads to an interesting new RBM. By marginalizing out the slab variables, the condi-

tional distribution of the spike variables given the input is very similar to the corre-

sponding conditional of the recently introduced covariance RBM (cRBM) (Ranzato

et al., 2010a). On the other hand, conditional on the spike variables, the ssRBM

slab variables and input are jointly Gaussian and form conditionals with diagonal

covariance matrices. Thus, unlike the cRBM or its extension the mean-covariance

RBM (mcRBM), the ssRBM is amenable to simple and efficient Gibbs sampling.

98

This property of the ssRBM makes the model an excellent candidate as a building

block for the development of more sophisticated models such as the Deep Boltz-

mann Machine (Salakhutdinov and Hinton, 2009).

As we develop the model, we show that with multidimensional slab variables,

feature “sum” pooling becomes a natural part of the model. In the experiments, we

illustrate how maximum likelihood training of the ssRBM yields filters that capture

natural image properties such as sharp edges. We also show how the model exhibits

“disentangling” of colour and edge features when trained on natural image patches

and how the ssRBM can learn state-of-the-art features for the CIFAR-10 object

classification dataset (Krizhevsky, 2009).

5.2 The Inductive Bias of the GRBM

Before delving into the development of the ssRBM, we first elaborate on our

perspective that the failure of the GRBM to model natural images is due to the

use of binary hidden units. We argue this case by comparing the GRBM to a

standard Gaussian factor model with a Gaussian-distributed latent vector, x ∈RN ,

and a Gaussian conditional distribution over the observations, v ∈ RD, given the

latent variable. That is to say, x ∼N (0,Σx) and v|x ∼N (Wx,σvI), where W is a

matrix (D×N) of weights. Under this model, variations in a single element xi reflect

covariance within the observation vector along the direction (in the input or v space)

of W:,i. Indeed marginalizing out the latent variables, we are left with the marginal

distribution over the observation vector: px(v) ∼N (0,σvI +WΣxW T). Note that

the weights W that parametrize the conditional mean serve also to parametrize

the marginal covariance. The GRBM is different from the Gaussian factor model

in a number of important ways, but most relevant for our purposes, the GRBM

replaces the real valued latent variables of the factor model with binary variables.

If we replace the real valued x in the factor model with simple binary variables h,

the equivalence between parameterizing the conditional mean and parameterizing

the marginal covariance breaks down. Instead of a single Gaussian with covariance

99

σvI +WΣxW T , the marginal distribution p(v) becomes the mixture of Gaussians:

ph(v) = ∑h P(v)N (Wh,σvI).

This change from a real variable x to a binary variable h has an impact on

the inductive bias of the model and consequently an impact on the suitability of

the model to a particular data domain. Both the zero-mean Gaussian px(v) and

the mixture model ph(v) exhibit a preference (in the sense of higher probability

density) for data distributed along the directions of the columns of their respective

weight matrices. However, if the statistical structure of the data is such that

density should be relatively invariant to overall scaling of v, then the inductive bias

resulting from the binary h may be inappropriate. Figure 5.1 illustrates how the

discrete mixture components in ph(v) are ill-suited to model natural images, where

some of the most significant determiners of the norm of the data vector ‖v‖2 are the

illumination conditions of the scene and the image contrast. Variation in contrast

often bears little relevance to typical tasks of interest such as object recognition or

scene understanding. This perspective on the GRBM, and especially its comparison

to the standard Gaussian factor model, motivates us to consider alternatives to

strictly binary latent variables and leads us to the spike and slab RBM.

5.3 The Spike and Slab RBM

Let the number of hidden units be N, and the dimensionality of the visible

vector be D: v ∈ RD. The ith hidden unit (1 ≤ i ≤ N) is associated with a binary

Pixel Space
(whitened Image)

Con
tra

st
 V

ar
ia
tio

n

p(v|h=1)

p(v|h=0)

p(v) = a0p(v|h=0)+a1p(v|h=1)

Natural Image
Distribution

Figure 5.1: The GRBM exhibits significant sensitivity to variation in contrast.

100

spike variable: hi ∈ {0,1} and a real valued vector si ∈ RK , pooling over the K

features.1 The energy function for one example is:

E(v,s,h) =
1
2

vT
Λv−

N

∑
i=1

(
vTWisihi−

1
2

sT
i αisi + bihi

)
, (5.1)

where Wi refers to the ith weight matrix of size D×K, the bi are the biases associated

with each of the spike variables hi, and αi and Λ are diagonal matrices that penalize

large values of ‖si‖2
2 and ‖v‖2

2 respectively. We will consider a joint probability

distribution over v, s = [s1, . . . ,sN] and h = [hi, . . . ,hN] of the form:

p(v,s,h) =
1
Z

exp{−E(v,s,h)}×U(v;R) (5.2)

where, Z is the partition function that assures that p(v,s,h) is normalized and

U(v;R) represents a distribution that is uniform over a ball radius R, centred at

the origin, that contains all the training data, i.e., R > maxt ‖vt‖2 (t indexes over

training examples). The region of the visible layer space outside the ball has zero

probability under the model. This restriction to a finite domain guarantees that

the partition function Z remains finite. We can think of the distribution presented

in equations 5.2 and 5.1, as being associated with the bipartite graph structure of

the RBM with the distinction that the hidden layer is composed of an element-wise

product of the vectors s and h.

With the joint distribution thus defined, we now turn to deriving the set of

conditional distributions p(v | s,h), p(s | v,h), P(h | v) and p(v | h) from which we

can gain some insight into the properties of the ssRBM. The strategy we will adopt

is to derive the conditionals neglecting the U(v;R) factor, then during sampling

we can correct for the omission via rejection sampling. This turns out to be very

efficient as the number of rejections is expected to be very low as we will discuss

later in section 5.4.

Let us first consider the conditional distribution p(v | s,h). Taking into account

the bounded domain of v, we have p(v | s,h,‖v‖2 > R) = 0 and:

1It is perhaps more natural to consider a scalar si, i.e., K = 1; however generalizing to vector
valued si allows us to naturally implement a form of “sum” pooling.

101

p(v | s,h,‖v‖2 ≤ R) =
1

p(s,h)
1
Z

exp{−E(v,s,h)}

=
1
B

N

(
Λ
−1

N

∑
i=1

Wisihi , Λ
−1

)
,

where B is determined by integrating the Gaussian N
(
Λ−1

∑
N
i=1Wisihi , Λ−1

)
over the

ball ‖v‖2 ≤ R. By isolating all terms involving v, the remaining terms are constant

with respect to v and therefore the conditional distribution p(v | s,h) has the form of

a simple (truncated) Gaussian distribution and since the off-diagonal terms of the

covariance are all zero, sampling from this Gaussian is straightforward, when using

rejection sampling to exclude v outside the bounded domain. For convenience, we

will adopt the notation p∗(v | s,h) to refer to the un-truncated Gaussian distribution

associated with p(v | s,h); i.e., p∗(v | s,h) = N
(
Λ−1

∑
N
i=1Wisihi , Λ−1

)
It is instructive to consider what happens if we do not assume we know s, i.e.,

considering the form of the distribution p(v | h) where we marginalize out s:

p(v | h,‖v‖2 ≤ R) =
1

P(h)
1
Z

∫
exp{−E(v,s,h)} ds

=
1
B

N

0 ,

(
Λ−

N

∑
i=1

hiWiα
−1
i W T

i

)−1
 (5.3)

The last equality holds only if the covariance matrix
(
Λ−∑

N
i=1 hiWiα

−1
i W T

i
)−1

is

positive definite. By marginalizing over the “slab” variates, s, the visible vec-

tor v remains (truncated) Gaussian-distributed, however the parametrization has

changed significantly as a function of h. The distribution p∗(v | s,h) uses h with s to

parametrize the conditional mean, whereas in the case of p∗(v | h), h parametrizes

the conditional covariance. Another critical difference between these two distribu-

tions over v is that the covariance matrix of the Gaussian p∗(v | h) is not diagonal.

As such, sampling from p∗(v | h) is potentially computationally intensive for large

v as it would require a matrix inverse for every weight update. Fortunately, we will

102

have no need to sample from p∗(v | h).

We now turn to the conditional p(si | v,h). The derivation is analogous to that

leading to Eq. 5.3. The conditional p(s | v,h) is Gaussian-distributed:

p(s | v,h) =
N

∏
i=1

N
(
hiα

−1
i W T

i v , α
−1
i

)
(5.4)

Here again, we see that the conditional distribution over s given v and h possess a

diagonal covariance enabling simple and efficient sampling of s from this conditional

distribution. The form of p(s | v,h) indicates that, given hi = 1, the expected value

of si is linearly dependent of v.

Similar to p(v | h), the distribution p(h | v) is obtained by marginalizing out the

slab variable s:

P(hi = 1 | v) =
1

p(v)
1
Zi

∫
exp{−E(v,s,h)} ds

= sigm
(

1
2

vTWiα
−1
i W T

i v−bi

)
, (5.5)

where sigm represents a logistic sigmoid. As with the conditionals p(v | s,h) and

p(s | v,h), the distribution of h given v factorizes over the elements of h. As a

direct consequence of the marginalization of s, the influence of v on P(hi | v) is

controlled by a term quadratic in vTWi, meaning that hi is active when v has a

significant projection onto the direction Wi (which is one of particular variance

among training data).

A choice of data representations: The spike and slab RBM is somewhat

unusual in that the use of dual latent variables, one continuous, and one binary,

offers us a choice of data representations, to be used in the particular task at

hand. One option is to marginalize over s, and use the binary h or its expecta-

tion P(h | v) as the data representation. Another option is to use [s1h1, . . . ,sNhN]

or [‖s1‖h1, . . . ,‖sN‖hN] or the corresponding expectations. These options possess

the property that, for active units, the model representation is equivariant to the

intensity of the input variable (within the bounded domain). This is a property

shared with the rectified linear units of Nair and Hinton (2010), and is thought to

103

be potentially beneficial in a range of vision tasks as it offers superior robustness

to variations in image intensity.

5.4 ssRBM Learning and Inference

As is typical of RBM-style models, learning and inference in the ssRBM is de-

pendent on the ability to efficiently draw samples from the model via Markov chain

Monte Carlo (MCMC). Inspection of the conditionals P(h | v), p(v | h), p(s | v,h)

and p(v | s,h) reveals some important property of the ssRBM model. First, let

us consider the standard RBM sampling scheme of iterating between P(h | v) and

p(v | h) with s marginalized out. Sampling from P(h | v) is straightforward, as equa-

tion 5.5 indicates that the hi are all independent given v. Under the assumption of

a positive definite covariance matrix, the conditional distribution p(v | h) is mul-

tivariate Gaussian with non-diagonal covariance:
(
Λ−∑

N
i=1 hiWiα

−1
i W T

i
)−1

. Thus

sampling from p(v | h) requires the inversion of the covariance matrix with every

weight update. For large input dimensionality D, this presents a challenging setting

for learning. Fortunately, we need not sample from p(v | h) directly, instead we can

instantiate the slab variable s by sampling from p(s | h,v) and then, given these

s samples and the h sampled from P(h | v), we can sample v from the conditional

p(v | s,h). Both these conditionals are Gaussian with diagonal covariance leading

to simple and efficient sampling.

Taken all together the triplet P(h | v), p(s | v,h) and p(v | s,h) form the basis of a

block-Gibbs sampling scheme that allows us to sample efficiently from the ssRBM.

Whenever a sample of v falls outside the ball ‖v‖2 ≤ R, we reject and resample from

the conditional p(v | s,h). The data likelihood gradient is

∂

∂θi

(
T

∑
t=1

log p(vt)

)
= −

T

∑
t=1

〈
∂

∂θi
E(vt ,s,h)

〉
p(s,h|vt)

+ T
〈

∂

∂θi
E(v,s,h)

〉
p(v,s,h)

, (5.6)

i.e., of the same form as for a standard RBM, only with the expectations over p(s,h |

104

vt) in the “clamped” condition, and over p(v,s,h) in the “unclamped” condition. In

training, we follow the stochastic maximum likelihood algorithm (also known as

persistent contrastive divergence, Tieleman, 2008; Younes, 1998), i.e., performing

only one or few updates of an MCMC chain between each parameter update.

The expectation of the gradient with respect to Wi in the “clamped” condition

(also called the positive phase) is:〈
∂

∂Wi
E(vt ,s,h)

〉
p(s,h|vt)

=−vt

(
µ

+
i,t

)T
ĥ+

i,t . (5.7)

Here ĥ+
i,t = p(hi | vt) and µ

+
i,t is the mean of the Gaussian density p(si|hi = 1,vt). In

the “unclamped” condition (negative phase) the expectation of the gradient with

respect to Wi is given by:〈
∂

∂Wi
E(v,s,h)

〉
p(v,s,h)

≈ 1
M

M

∑
m=1
−ṽm(µ

−
i,m)T ĥ−i,m. (5.8)

Where ĥ−i,m = p(hi | ṽm) and µ
−
i,m, is the mean of the Gaussian density p(si | hi = 1, ṽm).

The ṽm are samples drawn from the model via Gibbs sampling. The expectation

of the gradient with respect to bi is identical to that of the GRBM. Finally, the

expectation of the gradient with respect to Λ is given by:

〈
∂

∂Λ
E(vt ,s,h)

〉
p(s,h|vt)

=
1
2

vT
t vt (5.9)〈

∂

∂Λ
E(v,s,h)

〉
p(v,s,h)

≈ 1
M

M

∑
m=1

1
2

ṽT
mṽm (5.10)

One could also imagine updating α to maximize likelihood; however in our exper-

iments we simply treated α as a hyper-parameter.

As previously discussed, without the U(v;R) term in the joint density, the spike

and slab model is not parametrized to guarantee that the model constitutes a well

defined probability model with a finite partition function. To draw samples from

the model, we rely on a rejection sampling scheme based on U(v;R). However,

during training, we instead rely on a very important property of the likelihood

gradient to suppress samples from the model that are drawn in regions of the data

105

space unsupported by nearby data examples. As the parameters are updated, the

model may approach instability. If this occurs, negative phase or “unclamped”

samples are naturally drawn to the direction of the instability (i.e., outside the

range of the training data) and through their influence act to return the model to

a locally stable region of operation. Due to this stabilizing property of learning,

we actually do not include the U(v;R) term to the joint likelihood during learning.

Practically, training the model is straightforward provided the model is initialized

in a stable regime of the parameter space. For example, the values of α and Λ

must be sufficiently large to at least offset the initial values of W . We also use a

decreasing learning rate that also helps maintain the model in a stable region of the

parameter space. Training this way also ensures that the natural parametrization

of the ssRBM (excluding the U(v;R)) is almost always sufficient to ensure stability

during sampling and renders our rejection sampling strategy highly efficient.

5.5 Comparison to Previous Work

There exist a number of papers that aim to address the issue of modelling

natural images in the RBM context. The most relevant of these are the Product

of Student’s T-distribution (PoT) model (Welling et al., 2003) and the mean and

covariance Restricted Boltzmann Machine (mcRBM) (Ranzato and Hinton, 2010).

However before reviewing these models and their connections to the ssRBM, we

note that the idea of building Boltzmann Machines with products of binary and

continuous-valued variables was discussed in Williams (1993), Zemel et al. (1993),

and Freund and Haussler (1994). We also note that the covariance structure of

the ssRBM conditional p(v | h) (equation 5.3) is essentially identical to the product

of probabilistic principal components analysis (PoPPCA) model (Williams, 2001)

with components corresponding to the ssRBM weight vectors associated with the

active hidden units (hi = 1).

106

5.5.1 Product of Student’s T-distributions

The product of Student’s T-distributions model (Welling et al., 2003) is an

energy-based model where the conditional distribution over the visible units condi-

tioned on the hidden variables is a multivariate Gaussian (non-diagonal covariance)

and the complementary conditional distribution over the hidden variables given the

visibles are a set of independent Gamma distributions. The PoT model is similar

to our model in that it characterizes the covariance of real-valued inputs with real

valued hidden units, but in the case of the PoT model, the real valued hidden

units are Gamma-distributed rather than Gaussian-distributed as is the case for

the ssRBM.

The most significant difference between the ssRBM and the PoT model is how

they parametrize the covariance of the multivariate Gaussian over the visible units

(p(v | h) in the case of the ssRBM, equation 5.3). While the ssRBM characterizes

the covariance as
(
Λ−∑

N
i=1 hiWiα

−1
i W T

i
)−1

, the PoT model parametrized the con-

ditional covariance as
(
∑

N
i=1 uiWiW T

i
)−1

, where the ui are the Gamma-distributed

latent variables. The PoT latent variables use their activation to maintain con-

straints, decreasing in value to allow variance in the direction of the corresponding

weight vector. The spike and slab hi variables use their activation to pinch the pre-

cision matrix along the direction specified by the corresponding weight vector. The

two models diverge when the dimensionality of the hidden layer exceeds that of the

input. In the over-complete setting, sparse activation with the ssRBM parametriza-

tion permits significant variance (above the nominal variance given by Λ−1) only

in the select directions of the sparsely activated hi. This is a property the ssRBM

shares with sparse coding models (Grosse et al., 2007; Olshausen and Field, 1997)

where the sparse latent representation also encodes directions of variance above a

nominal value. An over-complete PoT model has a different interpretation: with an

over-complete set of constraints, variation of the input along a particular direction

would require decreasing potentially all constraints with positive projection in that

direction.

107

5.5.2 The Mean and Covariance RBM

One recently introduced and particularly successful approach to modelling real

valued data is the mean and covariance RBM. The mcRBM is a restricted Boltz-

mann machine designed to explicitly model both the mean and covariance of ele-

ments of the input. The mcRBM combines a variant of the earlier covariance RBM

(cRBM) model (Ranzato et al., 2010a) with a GRBM to capture the conditional

“mean”. Because of some surprising similarities between the cRBM and the ssRBM,

we will review the cRBM in some detail.

We take the number of cRBM hidden units to be Nc: hc ∈ {0,1}Nc , and the

dimensionality of the visible vector to be D: v ∈ RD. The cRBM model is defined

via the energy function:

Ec(v,hc) =−1
2

N

∑
i=1

K

∑
k=1

Pkihc
i
(
vTC:,k

)2−
N

∑
i=1

bc
i hc

i , (5.11)

where P is a pooling matrix with non-positive elements(p∈RK×N), N is the number

of hidden units, C:,k is the weight vector k (C ∈ RD×K) and bc is a vector of biases.

Defining the energy function in this way allows one to derive the pair of conditionals

for h and v respectively as:

P(hc
i = 1 | v) = sigm

(
1
2

K

∑
k=1

Pkihc
i
(
vTC:,k

)2−bc
i

)
,

p(v | hc) = N
(

0,
(
C diag(Phc)CT)−1

)
, (5.12)

where diag(v) is the diagonal matrix with vector v in its diagonal. That is, the

conditional Gaussian distribution possess a non-diagonal covariance.

In relation to the ssRBM, the first thing to note about the cRBM is the similarity

of the conditional for the binary latent variable, P(h | v) in the case of the ssRBM

(equation 5.5) and P(hc | v) in the case of the cRBM. Simplifying both models to

pool over a single variable (setting the P matrix to the negative identity in the case

of the cRBM and K = 1 in the ssRBM), both conditionals contain a 1
2(vTW)2 term

(with C≡W) and a constant bias. Remarkably, this occurs despite the two models

108

sharing relatively little in common at the level of the energy function.

Despite the similarity in the conditional distribution over the binary latent vari-

ables, the two models diverge in their expressions for the complementary conditions

over the visible variable v given the binary latents (comparing equations 5.3 and

5.12). While the ssRBM parametrizes the covariance as
(
Λ−∑

N
i=1 hiWiα

−1
i W T

i
)−1

;

the cRBM parametrizes the covariance as
(
C diag(Phc)CT)−1

. Similar to the PoT

model, the cRBM encodes the conditional covariance as a series of constraints to

be actively enforced. As is the case for the PoT model, we suggest that this form

of parametrization is not well suited to heavily over-complete models.

Despite different parameterizations of the conditional covariance, the ssRBM

and the cRBM share the property that the conditional distribution over v given

their respective binary latent variables is multivariate Gaussian with a non-diagonal

covariance. In the ssRBM, we have recourse to a simple diagonal-covariance Gaus-

sian conditional over v by instantiating the slab variables s, but there is no equiv-

alent recourse for the cRBM. As a result, the cRBM and the mcRBM are not

amenable to the kind of block Gibbs sampling available to the ssRBM and to more

standard RBMs (a large matrix inversion would be required for each Gibbs step).

In training the cRBM, samples are drawn using hybrid Monte Carlo (HMC) (Neal,

1994). As an MCMC sampler, HMC has been shown to be very effective for some

problems, but it suffers from a relatively large number of hyper-parameters that

must be tuned to yield well-mixing samples from the target distribution.

The mcRBM combines a GRBM with a cRBM such that there are two kinds

of hidden units, mean units hm and covariance units hc. The combined energy

function of the mcRBM is given by:

E(v,hc,hm) =−1
2

N

∑
i=1

K

∑
k=1

Pkihc
i

(
vT

‖v‖
C:,k

‖Ck‖

)2

−
N

∑
i=1

bc
i hc

i +
1
2

vT v−
M

∑
j=1

vTW:, jhm
j −

M

∑
j=1

bm
j hm

j

The mcRBM is not entirely equivalent to the combination of a cRBM and a GRBM,

109

as its energy function includes a normalization of both the Ck weight vectors and the

visible vector (to increase the robustness of the model to large contrast variations

in the input image).

In deriving the conditionals for the ssRBM, we saw that by manipulating how

we treat the slab variables s, we could fluidly move between modelling the con-

ditional mean and modelling the conditional covariance. From this perspective

it is revealing to think about the combination of the GRBM with the cRBM in

the mcRBM. One can think about an equivalent model, within the spike and slab

framework, where we take a subset of the ssRBM latent units and marginalize over

the corresponding slab variables s – these unit would encode the conditional co-

variance. With the remaining units we model the equivalent conditional mean by

imposing the constraint si = 1.

5.6 Experiments

We have run simulations to illustrate three key ideas related to the ssRBM

model: (a) it learns appealing filters to model natural images, (b) the spike variables

are meaningfully used in a trained model, and (c) the latent image representation

induced by the ssRBM makes the ssRBM a drop-in upgrade of the similar GRBM

and cRBM models on CIFAR-10 image-labelling, and is competitive with the more

complicated mcRBM.

5.6.1 Filters

The ssRBM learnt qualitatively similar filters in the pooled and un-pooled mod-

els, but the pooling induced interesting structure to the set of filters.

Figure 5.2 illustrates the filters learnt by an un-pooled (K = 1) ssRBM from a

large number (one million) of PCA-whitened 8x8 RGB image patches drawn from

the TinyImages dataset (Torralba et al., 2008). PCA-whitening retained 99% of the

variance with 74 dimensions. These filters were obtained by stochastic maximum

likelihood learning with the learning rate set to 10−4 for 20 000 training iterations

110

using minibatches of size 128. After 20 000 iterations the learning rate was reduced

in inverse proportion to the iteration number. No sparsification or regularization

was applied to the activations or model parameters. α was fixed to 1.5, the bias

was initialized to −1, the weights were initialized from a zero-mean Gaussian with

variance 10−4.

Figure 5.3 illustrates the effect of pooling K = 9 scale variables s with each

h. The pinwheel-like pattern was obtained by sharing columns W:,i between pools

using the sort of topographic map used in Ranzato and Hinton (2010). Clean

backgrounds in each filter were obtained by applying a small (10−4) `1 penalty to

the filter weights. All filters were brought into play by applying a small (.2) `1

penalty pushing each unit hi to have a marginal mean of .1. The topographic map

down-weighted the effective magnitude of each W column, so the initial range and

learning rate on W were raised accordingly.

5.6.2 The Effect of Spike Variables

Figure 5.4 illustrates the effect of the binary spike variables (h). The effect of

hi is to suppress the influence of filter W:,i when the filter response is weak. Once

h has been inferred from an observation v it induces a Gaussian conditional joint

distribution p(s,v | h) as well as a Gaussian conditional marginal p(v | h) in which the

covariance is determined by the filters that were unusually active.Figure 5.4 shows

Figure 5.2: Filters learnt by the unpooled ssRBM when applied to PCA-whitened
8x8 colour image patches. Note how some filters care about colour while others
surprisingly do not, achieving a form of disentangling of colour information from
shape information.

111

Figure 5.3: Filters learnt by a pooled spike and slab RBM with topographically
overlapping pools applied to PCA-whitened 8x8 color image patches. Pooling was
done across 3x3 groups (K = 9) units s giving rise to a degree of continuity across
the set of filters. Again, colour and grey-level filters nicely separate.

that the spike variables are indeed often 0, and eliminating potential directions of

covariance in the conditional marginal.

5.6.3 Learning Features for Classification

To evaluate the latent variables of the ssRBM as features for object classifica-

tion we adopted the testing protocol of Ranzato and Hinton (2010) which looked

at performance on CIFAR-10. CIFAR-10 comprises 40 000 training images, 10 000

validation images, and 10 000 test images. The images are 32-by-32 pixel RGB im-

ages. Each image is labelled with one of ten object categories (aeroplane, automo-

bile, bird, cat, deer, dog, frog, horse, ship, truck) according to the most prominent

object in the image. We produced image features from an ssRBM model trained

on patches using the same procedure as Ranzato and Hinton (2010) - a 7-by-7 grid

of (overlapping) 8-by-8 pixel patches was used to extract a 7-by-7 grid of mean-

values for h. The ssRBM had N h variables, so the concatenation of the h vectors

from each grid location yielded 49N features. We classified this feature vector us-

ing logistic regression, and we also experimented with back-propagating the error

gradient into the ssRBM parameters and finetuning this “feature extractor” as if it

and the classifier together were a single neural network.

112

8 6 4 2 0 2 4 6 8
product of s and h conditioned on v

103

104

105

106

107

Figure 5.4: The spike and slab effect - in green is the marginal (over a large number
of images) distribution over all si variables given hi = 1, and in blue is the marginal
distribution over all sihi products. The vertical axis is a log-scaled frequency of
occurrence. When slab variable s would have been small anyway, the spike variable
h tends to be zero, and thereby to make their product exactly zero.

We optimized hyper-parameters for this task by drawing 200 hyper-parameter

assignments randomly from a grid, performing 50 000 and 200 000 unsupervised

training iterations, measuring classification error, and sorting all these unsuper-

vised models by the validation set performance of the P(h|v) feature vector. The

random grid included variations in the number of unsupervised learning iterations

(50K, 200K), learning rate (.0003, .0001), initial Λ (10, 15, 20), number of latent

h variables N (100, 200,400), number of pooled s variables K per h (1,2,3), initial

range for W (.05, .1, .2), initial bias on each hi (-5, -4, -3), target sparsity for each

h (.05, .1, .2), weight of sparsity regularization (0, .1, .2, .4). The initial value of

α was fixed to 10.5. The best results with and without finetuning of the ssRBM

weight matrix are given in Table 5.I along with selected other results from the

literature.

We also experimented with “mean” units as in Ranzato and Hinton (2010) by

adding sihi pairs in which the si were fixed to 1. Reusing the best-performing hyper-

parameters, we simply added 81 mean units and repeated the training procedure.

Interestingly, as in Ranzato and Hinton (2010) we found that these additional mean

units improved the performance of the model for classification beyond what was

113

Table 5.I: The performance of the pooled and unpooled ssRBM models relative to
other models in the literature for CIFAR-10. 95% confidence intervals are given for
each score assuming the official test set size of ten thousand. The mssRBM model
is an ssRBM with 81 of the s units fixed to 1. Finetuned models were trained for
classification as convolutional neural networks with a single hidden layer.

Model Classification Rate (%)
mssRBM (finetuned) 69.9 ±0.9
mssRBM 68.7 ±0.9
mcRBM 68.2 ± 0.9
ssRBM (finetuned) 69.2 ±0.9
ssRBM 67.6 ±0.9
cRBM (900 factors) 64.7 ±0.9
cRBM (225 factors) 63.6 ±0.9
GRBM2 59.7 ±1.0

found by adding additional normal (unclamped) hidden units. This result, that a

hidden layer consisting of a mix of mean and pooled units is better than either one

alone, suggests that models with heterogeneous latent states (layers) represent an

interesting direction for future work. Ranzato and Hinton (2010) also demonstrate

superior classification performance by adding binary RBM layers (as in Hinton

et al. (2006)) on top of the latent binary variables of the mcRBM (70.7% for two

extra layers, 71.0% for five extra layers). We expect the ssRBM performance would

also show improve with additional layers.

5.7 Discussion

In this paper we introduce a new RBM model we call a spike and slab RBM. The

model is characterized by having a binary spike variable and a continuous slab vari-

able associated with each hidden unit. The introduction of the slab variables allows

the model to naturally capture covariance information while simultaneously main-

taining simple and efficient inference via a Gibbs sampling scheme. The ssRBM is

competitive with the current state-of-the-art on the CIFAR-10 object categoriza-

tion task.

114

Despite the similarity in the conditional distributions over the hidden binary

variables between the ssRBM and the cRBM, there are a number of important dis-

tinctions. First, the ssRBM is amenable to Gibbs sampling whereas when sampling

from the cRBM one must resort to hybrid Monte Carlo (HMC). While HMC is a

practical algorithm for sampling in the RBM framework, the simplicity of Gibbs

makes the ssRBM a more attractive option as a building block for more ambitious

models such as the deep Boltzmann machine (Salakhutdinov and Hinton, 2009)

and time-series models (Taylor and Hinton, 2009). Another difference between the

ssRBM and the cRBM is that the ssRBM induces sparse real valued representa-

tions of the data. In our limited experiments using this data representation, we

have not found it to be superior to using only P(h | v), however recent work Nair

and Hinton (2010) has demonstrated the importance of sparse real valued outputs

in achieving superior classification performance.

As discussed previously, without any restriction on either the visible layer do-

main or the binary hidden unit combinations, the energy of the spike and slab

model is not guaranteed to be bounded and consequently is not guaranteed to de-

fine a valid probability distribution. In practice this is fairly easily dealt with by

imposing either a bounded domain on v, as we have done, or by applying a global

penalty that is flat in the region of the training data and outside that region grows

sufficiently fast to overcome any negative growth arising from the energy function

(i.e., the term −∑
N
i=1 vTWisihi). As an alternative, one could restrict the covariance

of p(v | h) to remain positive definite and reject patterns of hidden unit activations

that violate this constraint. Under the mixture model interpretation of the RBM,

this approach may be interpreted as zeroing out the mixture components that vi-

olate the requirement that the mixture components be individually normalizable.

Finally, as our title insinuates, the ssRBM introduced here is simply one member

of a family of spike and slab RBMs. Different choices within the energy function

can lead to max-pooling behaviour among the filters or non-negative slab variables.

Further study is required to fully explore the model space.

CHAPTER 6

THE µ-SPIKE-AND-SLAB RBM

Title Unsupervised Models of Images by Spike and Slab RBMs

Authors Aaron Couville, James Bergstra, and Yoshua Bengio

Publication Submitted to ICML, 2011.

The spike and slab Restricted Boltzmann Machine (RBM) is defined by having

both a real valued slab variable and a binary spike variable associated with each

unit in the hidden layer. In this paper, we generalize and extend the spike and slab

RBM in two ways: (i) to include a non-zero mean in the distribution over observed

variables when conditioning on the binary spike variables, and (ii) to constrain

the parameters of the model so that all conditionals associated with the model are

always well defined – a guarantee absent from the original spike and slab RBM. The

inclusion of (i) improves the performance of the spike and slab RBM as a feature

learner and allows it to achieves competitive performance on the CIFAR-10 image

classification task. Surprisingly we find that each of several types of constraints (ii)

hurt classification performance – the model prefers to operate closer to the regime

of ill-definedness (sometimes actually crossing over, apparently quite harmlessly)

than our constraints permit. When trained in a convolutional configuration, the µ-

spike-and-slab RBM generates more realistic samples than similar methods, which

demonstrate that the model can capture the broad statistical structure of natural

images.

116

6.1 Introduction

Recently, there has been considerable interest in the problem of unsupervised

learning of features for supervised tasks in natural image domains. Approaches

based on unsupervised pretraining followed by either whole-model finetuning or

simply the linear classification of features dominate in benchmark tasks such as

CIFAR-10 (Krizhevsky, 2009).

One of most popular energy-based modelling paradigms for unsupervised feature

learning is the Restricted Boltzmann Machine (RBM). An RBM is a Markov ran-

dom field with a bipartite graph structure consisting of a visible layer and a hidden

layer. The bipartite structure excludes connections between the variables within

each layer so that the latent variables are conditionally independent given the visi-

ble variables and vice versa. The factorial nature of these conditional distributions

enables efficient Gibbs sampling which forms the basis of the most widespread RBM

learning algorithms such as contrastive divergence (Hinton, 2002) and stochastic

maximum likelihood (Tieleman, 2008).

The proposed spike and slab RBM (ssRBM) (Courville et al., 2010) departs

from other similar RBM-based models in the way the hidden layer latent units are

defined. They are modelled as the element-wise product of a real valued vector with

a binary vector, i.e., each hidden unit is associated with a binary spike variable and

a real-valued slab variable. The name spike and slab is inspired from terminology

in the statistics literature (Mitchell and Beauchamp, 1988), where the term refers

to a prior consisting of a mixture between two components: the spike, a discrete

probability mass at zero; and the slab, a density (typically uniformly distributed)

over a continuous domain.

In this paper, we introduce a generalization of the ssRBM model, which we

refer to as the µ-ssRBM. Relative to the original ssRBM, the µ-ssRBM includes

additional terms in the energy function which give extra modelling capacity. One

of the additional terms allows the model to form a conditional distribution of the

spike variables (by marginalizing out the slab variables, given an observation) that

117

is similar to the corresponding conditional of the recently introduced mean co-

variance RBM (mcRBM) (Ranzato and Hinton, 2010) and mPoT model (Ranzato

et al., 2010b). Conditional on both the observed and spike variables, the µ-ssRBM

slab variables and input are jointly Gaussian with diagonal covariance matrix; con-

ditional on both the spike and slab variables, the observed variables are Gaussian

with diagonal covariance. Thus, unlike the mcRBM or the more recent mPoT

model, the µ-ssRBM is amenable to simple and efficient Gibbs sampling. This

property of the ssRBM makes the model an excellent candidate as a building block

for the development of more sophisticated models such as the Deep Boltzmann

Machine (Salakhutdinov and Hinton, 2009).

One potential drawback of the spike and slab RBM is the lack of a guarantee

that the resulting model constitutes a valid density over the whole real space in

which the data exist. This issue is an important aspect of the analysis and variants

explored in this paper. We show several strategies that guarantee all conditionals

are well defined by adding energy terms to the µ-ssRBM. However, we find that

loosening the constraint experimentally yields better models.

6.2 The µ-Spike-and-Slab RBM

The µ-ssRBM describes the interaction between three random vectors: the

visible vector v representing the observed data, the binary “spike” variables h and

the real-valued “slab” variables s. The ith hidden unit is associated both with an

element hi of the binary vector and with an element si of the real-valued variable.

Suppose there are N hidden units: h ∈ [0,1]N and a visible vector of dimension D:

v ∈ RD. The µ-ssRBM model is defined via the energy function

E(v,s,h) =−
N

∑
i=1

vTWisihi +
1
2

vT

(
Λ +

N

∑
i=1

Φihi

)
v

+
1
2

N

∑
i=1

αis2
i −

N

∑
i=1

αiµisihi−
N

∑
i=1

bihi +
N

∑
i=1

αiµ
2
i hi, (6.1)

118

in which Wi denotes the ith weight vector (Wi ∈ RD), each bi is a scalar bias as-

sociated with hi, each αi is a scalar that penalizes large values of s2
i , and Λ is a

diagonal matrix that penalizes large values of ‖v‖2
2. In comparison with the orig-

inal ssRBM (Courville et al., 2010), the µ-ssRBM energy function includes three

additional terms. Firstly, the 1/2 vT (
∑

N
i=1 Φihi

)
v term, with non-negative diagonal

matrices Φi, i ∈ [1,N], establishes an h-dependent quadratic penalty on v. Sec-

ondly, associated with each slab variable is a mean parameter µ – from which the

µ-ssRBM takes its name. Finally, the ∑
N
i=1 αiµ

2
i hi term acts as an additional bias

term for the hi, which we include to simplify the parametrization of the condi-

tionals. In addition to offering additional flexibility to the µ-ssRBM to model the

statistics of natural images, the inclusion of the parameters µ = [µ1, . . . ,µN] and

Φ = [Φ1, . . . ,ΦN] also allows us to derive constraints on the model that ensure that

the model remains well-behaved over the entire data domain of RD.

The joint probability distribution over v, s = [s1, . . . ,sN] and h = [h1, . . . ,hN] is

defined as:

p(v,s,h) =
1
Z

exp{−E(v,s,h)} (6.2)

where Z is the normalizing partition function. We can think of the distribution

presented in Eqns. 6.1 and 6.2 as associated with the standard RBM bipartite graph

structure with the distinction that the hidden layer is composed of an element-wise

product of the random vectors s and h.

To gain insight into the µ-ssRBM model, we will look at the conditional distri-

butions p(v | s,h), p(s | v,h), P(h | v) and p(v | h). First, we consider the conditional

p(v | s,h):

p(v | s,h) =
1

p(s,h)
1
Z

exp{−E(v,s,h)} (6.3)

= N

(
v; Cv|s,h

N

∑
i=1

Wisihi, Cv|s,h

)
(6.4)

119

where Cv|s,h =
(
Λ + ∑

N
i=1 Φihi

)−1
. The conditional distribution of v given both s and

h is Gaussian-distributed with mean Cv|s,h ∑
N
i=1Wisihi and covariance Cv|s,h. Since

Λ and Φi are diagonal (for i ∈ [1,N]), the covariance matrix of p(v | s,h) is also

diagonal. Eqn. 6.4 shows the role played by the Φi in augmenting the precision

with the activation of hi. Indeed each hidden unit contributes a component not only

to the mean proportional to Wisi, but also to the global scaling of the conditional

mean (through Φi).

The conditional over the slab variables s given the spike variables h and the

visible units v is given by:

p(s | v,h) =
N

∏
i=1

N
(
v;
(
α
−1
i vTWi + µi

)
hi , α

−1
i
)
. (6.5)

As was the case with the conditional p(v | s,h), deriving the conditional p(s | v,h)

from the joint distribution in Eqn. 6.2 reveals a Gaussian distribution with diagonal

covariance. Eqn. 6.5 also shows how the mean of the slab variable si, given hi = 1,

is linearly dependent on v, and as the precision αi→ ∞, si converges in probability

to µi.

Marginalizing out the slab variables s yields the traditional RBM conditionals

p(v | h) and p(h | v). The conditional p(v | h) is also Gaussian,

p(v | h) =
1

P(h)
1
Z

∫
exp{−E(v,s,h)} ds

= N (Cv|h

N

∑
i=1

Wiµihi,Cv|h) (6.6)

where Cv|h =
(
Λ + ∑

N
i=1 Φihi−∑

N
i=1 α

−1
i hiWiW T

i
)−1

and this covariance matrix Cv|h is

positive definite. Note that the covariance is not obviously parametrized to guar-

antee that it is positive definite. In Section 6.3, we will discuss strategies to ensure

that Cv|h be positive definite via constraints on Λ and Φ. In marginalizing over

s, the visible vector v remains Gaussian-distributed, but the parametrization has

changed. While the distribution p(v | s,h) uses h with s to parametrize the condi-

120

tional mean with a corresponding diagonal covariance, the conditional p(v | h) uses

h to parametrize a non-diagonal covariance matrix (due to the ∑
N
i=1 α

−1
i hiWiW T

i

term) and a conditional mean mediated by µ .

Note that according to Eqn. 6.6, the conditional mean of v given h and prin-

cipal axis of conditional covariance are generally in a similar direction, and if(
Λ + ∑

N
i=1 Φihi

)
is a scalar matrix (equivalent to scalar× Identity) the two vectors

are in exactly the same direction. This is an important aspect of the inductive bias

of the model. Having the principal component of the conditional covariance in the

same direction as the mean has the property of p(v | h) being maximally invariant

to changes in ‖v‖2. This is a desirable property for a model of natural images where

‖v‖2 is particularly sensitive to illumination conditions and image contrast levels –

factors that are often irrelevant to tasks of interest such as object classification.

The final conditional that we will consider is the distribution over the latent

spike variables h given the visible vector, P(h | v) = ∏
N
i P(hi | v) and

P(hi = 1 | v) =
1

p(v)
1
Zi

∫
exp{−E(v,s,h)} ds

= σ

(
1
2

α
−1
i (vTWi)2 + vTWiµi−

1
2

vT
Φiv + bi

)
, (6.7)

where σ represents a logistic sigmoid. As with the conditionals p(v | s,h) and p(s |
v,h), the distribution of h given v factorizes over the elements of h. Eqn. 6.7 shows

the interaction between three data-dependent terms. The first term, 1
2α
−1
i (vTWi)2,

is the contribution due to the variance in s about its mean (note the scaling with

α
−1
i) and appears in the sigmoid as a result of marginalizing out s. This term is

always non-negative, so it always acts to increase P(hi | v). Countering this tendency

to activate hi is the other term quadratic in v, −1
2vT Φiv, that is always a non-

positive contribution to the sigmoid argument. In addition to these two quadratic

terms, there is the term vTWiµi whose behaviour mimics the data-dependent term

in the analogous GRBM version of the conditional distribution over h: PG(hi | v) =

σ
(
vTWi + bi

)
.

121

Another perspective on the behaviour of p(hi | v) as a function of v is gained by

considering an alternative arrangement of the terms:

P(hi= 1 | v) = σ(b̂i−
1
2

(v−ξv|hi)
TC−1

v|hi
(v−ξv|hi)), (6.8)

in which Cv|hi =
(
Φi−α

−1
i WiW T

i
)−1

, ξv|hi = Cv|hiWiµi and b̂i is a re-parameterization

of the bias that incorporates the remainder of the completion of the square. It is

evident from this form of P(hi = 1 | v) that, in the event that the matrix Cv|hi is

positive definite, then P(hi | v) reaches its maximum when v = Cv|hiWiµi. We can

easily confirm that the tail behaviour, as v departs from its maximum, is Gaussian:

for x→ ∞,

σ(−x2) =
exp(−x2)

1 + exp(−x2)
→ exp(−x2). (6.9)

We will look to take advantage of the µ-ssRBM relationship between Φi and

α
−1
i WiW T

i when we consider ways to constrain the covariance of p(v | h) to be

positive definite in Section 6.3.

To complete the exposition of the basic µ-ssRBM model, we present the free

energy f (v) of the visible vector.

f (v) =− log∑
h

∫
exp{−E(v,s,h)} ds

=
1
2

vT
Λv− 1

2

N

∑
i=1

log
(
2πα

−1
i
)
−

N

∑
i=1

log
[

1 + exp
{
−1

2
vTC−1

v|hi
v + vTWiµi + bi

}]

6.3 Positive Definite Parameterizations of the µ-ssRBM

Equation 6.6 reveals an important property of the µ-ssRBM model. The condi-

tional p(v | h) is only a well-defined Gaussian distribution if the covariance matrix

Cv|h is positive definite (PD). However, the covariance matrix is not parametrized to

guarantee that this condition is met. If there exists a vector x such that xTCv|hx≤ 0,

then the covariance matrix is not positive definite. In the original presentation of

the ssRBM in Courville et al. (2010), the possibility of the non-positive-definiteness

122

of the conditional covariance of v given h was dealt with by limiting the support

over the domain of v (i.e., RD) to a large but finite ball that encompasses all the

training data. Such an approach is feasible but is aesthetically unsatisfying. A

simple practical solution would be to mix a model with a ball constraint on ||v||
with a very flat Gaussian that will catch any outliers outside the ball.

Here, in the context of the µ-ssRBM model, we turn to the question of how

we can constrain the model parameters to guarantee that the model remains well-

behaved (i.e., all conditionals are well-defined probability densities). The problem

we face is ensuring that the covariance or equivalently the precision matrix of p(v | h)

is positive definite, i.e., we wish to satisfy the constraint:

xTC−1
v|h x > 0 ∀x 6= 0. (6.10)

To satisfy this constraint, we need to ensure that Λ + ∑
N
i=1 Φihi is large enough to

offset ∑
N
i=1 α

−1
i WiW T

i hi. We consider two basic strategies: (1) define Λ to be large

enough to offset a worst-case setting of the h; and (2) define the Φi to ensure that

the contribution of each active hi is itself PD.

6.3.1 Constraining Λ

One option to ensure that Cv|h remains PD for all patterns of h activation is to

constrain Λ to be large enough. In setting a constraint on Λ, we will ignore the

contribution of the Φi terms (which leads to non-tightness of the constraint). Since

the contribution of every α
−1
i WiW T

i hi term is negative semi-definite, the worst case

setting of the h would be to have hi = 1 for all i ∈ [1,N]. This implies that Λ must

be constrained such that:

xT

(
Λ−

N

∑
i=1

α
−1
i WiW T

i

)
x > 0 ∀x 6= 0. (6.11)

If we take Λ to be a scalar matrix: Λ = λ I, then the problem of enforcing a PD

precision matrix reduces to ensuring that λ is greater than the maximum eigenvalue

123

ρ of ∑
N
i=1 α

−1
i WiW T

i . In practice we can use the power iteration method to quickly

estimate ρ , set an upper bound on the maximum eigenvalue, and then simply

constrain λ > ρ throughout training.

6.3.2 Constraining Φ

Another option to ensure that Cv|h remains PD for all patterns of h activation

is to constrain Φi to be large enough. Let Wi j be the jth element of the filter Wi

(or equivalently, the i jth element of the weight matrix W) and let Φi j denote the

i jth element of the diagonal Φi matrix. We want to choose Φi such that:

J(x,Φi) = ∑
j

x2
jΦi j− (∑

j
wi jx j)2 > 0 ∀x ∈ RD,x 6= 0. (6.12)

This condition will be satisfied for all x if we can satisfy it for the x = u of norm

1 that minimizes J(x,Φi) (u is the eigenvector of the smallest eigenvalue of the

matrix
(
Φi−α

−1
i WiW T

i
)
). To find u, we define the Lagrangian L(x,Φi) = J(x,Φi)+

η(1−∑ j x2
j) to enforce the constraint ∑ j x2

j = 1. Setting ∂L
∂x j

= 0 we recover the set

of constraints:

∑
j

W 2
i j

Φi j−η
= 1, (6.13)

∑
j

W 2
i Φi j

(Φi j−η)2 > 1, (6.14)

η > 0. (6.15)

Consider the following general parametrization of Φi: Φi j = η + qα−1 W 2
i j

βi j
. This

particular form is chosen so that our constraint set gives us q = ∑ j βi j and βi j > 0.

So with Φi j parametrized as Φi j = ζi j + α−1 W 2
i j

βi j/∑ j βi j
with ζi j > 0, the covariance

matrix of p(v | h) is guaranteed to be PD. The parameter ζi j is an extra degree of

freedom to Φi j to be estimated through maximum likelihood learning.

We are free to choose the parametrization of the βi j provided βi j > 0. For

124

example, with the choice βi j = W 2
i j, Φi simplifies to

Φi j = ζi j + α
−1

∑
j

W 2
i jI (6.16)

where Φi j takes the form of a scalar matrix. Alternatively, we could choose βi j = 1

with the result that

Φi j = ζi j + α
−1DW 2

i j (6.17)

where the jth elements on the diagonal of Φi is scaled with W 2
i j.

While we are free to chose βi j > 0 as we would like, the decision affects the in-

ductive bias of the model. In the case of the Φi j parametrization given in Eqn. 6.16,

the presence of the ∑
N
i Φihi as a scaling on the mean of the conditional p(v | s,h)

(Eqn. 6.4) implies that the activation of any hi will have an effect on the scaling

of the mean across the entire visible vector (or layer) irrespective of how localized

is the corresponding filter Wi. Unsurprisingly, use of this parametrization tends to

encourage both sparsely active hi and Wi with relatively large receptive fields.

The Φi parametrization via Eqn. 6.17 has the property that the Φi receptive

fields are steered in the direction of Wi. When Wi is near zero, Φi has little effect

(unless it is mediated by ζi). This is an appealing property for modeling images or

other data that give rise to sparse receptive fields Wi.

A third alternative that offers a compromise between these two parametrizations

of Φi is obtained when βi j = W 2
i j + ε and

Φi j = ζi j + α
−1 W 2

i j

W 2
i j + ε

∑
j

(
W 2

i j + ε
)
. (6.18)

In this case, for Wi j � ε the Φi behaves similarly to that in Eqn. 6.17 narrowing

the influence of Φi to only those dimensions with a significant W 2
i j. However, for

Wi j� ε , Φi behaves like that in Eqn. 6.16.

125

6.3.3 Comparing strategies

The two general strategies to guarantee that the covariance matrix of p(v | h) is

positive definite are in some sense complementary. In the sparse operating regime

of the µ-ssRBM (most hi are inactive over most of the dataset), the Λ worst case

assumption that ∀i : hi = 1, becomes increasingly inaccurate and, as a result, the

constraint on Λ becomes increasingly conservative. Therefore in the sparse regime,

the Φ constraints would seem more appropriate. On the other hand, in a highly

non-sparse regime, the individual contributions of the Φ to the global precision

matrix can combine to form a more conservative PD precision matrix than would

result from a constrained Λ.

It is also possible to distribute responsibility for ensuring the constraint is

satisfied jointly to Λ and Φ. This would constitute a mixed strategy, appor-

tioning responsibility for compensating for a percentage of the negative definite

−∑
N
i=1 α

−1
i WiW T

i hi term to both Λ and Φ.

6.4 µ-ssRBM Learning and Inference

Learning and inference in the µ-ssRBM proceeds analogously to the original

ssRBM and is rooted in the ability to efficiently draw samples from the model

via Gibbs sampling. As with the original ssRBM, we seek a set of conditionals

that will enable simple and efficient Gibbs sampling. Since sampling from the

conditional p(v | h) would involve the computationally prohibitive step of inverting

a non-diagonal covariance matrix, we pursue a strategy of alternating sampling

from the conditionals P(h | v), p(s | v,h) and p(v | s,h). Each of these conditionals

has the property that the distribution factors over the elements of the random

vector, allowing us to efficiently draw samples from the model.

In training the µ-ssRBM, we use the stochastic maximum likelihood algorithm

(SML, also known as persistent contrastive divergence) (Tieleman, 2008), where

only one or a few Markov Chain (Gibbs) simulations are performed between each

parameter update. These samples are then used to approximate the expectations

126

over the model distribution p(v,s,h).

The data log likelihood gradient is

∂

∂θi

(
T

∑
t=1

log p(vt)

)
=−

T

∑
t=1

〈
∂

∂θi
E(vt ,s,h)

〉
p(s,h|vt)

+ T
〈

∂

∂θi
E(v,s,h)

〉
p(v,s,h)

This log likelihood gradient takes the form of a difference between two expectations,

with the expectations over p(s,h | vt) in what is called the “clamped” condition, and

the expectation over p(v,s,h) in the so-called “unclamped” condition. As with the

standard RBM, the expectations over p(s,h | vt) are amenable to analytic evaluation

and so sampling is not necessary in the clamped condition.

6.5 Comparison to Previous Work

There is now a significant body of work on modelling natural images with

RBM-based models. The closest connection to this work is to the original ss-

RBM (Courville et al., 2010) which we recover by setting the µ-ssRMB parameters

µi = 0 and Φi = 0 for all i ∈ [1,N]. A slightly less obvious limiting case of the

µ-ssRMB is the Gaussian RBM (GRBM). Setting Φi to be proportional to α
−1
i (as

discussed in Section 6.3) and taking αi = α→∞, we define a Dirac in s about µ , In

this limit, the conditionals p(v | h) and P(hi = 1 | v) (Eqns. 6.6 and 6.7 respectively)

are given by:

lim
α→∞

p(v | h) = N

(
v; Λ

−1
N

∑
i=1

Wiµihi, Λ
−1

)
(6.19)

lim
α→∞

P(hi = 1 | v) = σ
(
vTWiµi + bi

)
. (6.20)

If we fix µ = 1 and Λ = I, we recover the Gaussian RBM conditionals. Note that

the connection between the µ-ssRBM and the Gaussian RBM is mediated entirely

by the µ parameter, the original ssRBM has no such connection with the GRBM.

Beyond the ssRBM, the closest models to the µ-ssRBM are the mean and

covariance RBM (mcRBM) (Ranzato and Hinton, 2010) and the mean Product of

127

t-distributions model (mPoT) (Ranzato et al., 2010b). Like the µ-ssRBM, both of

these are energy-based models where the conditional distribution over the visible

units conditioned on the hidden variables is a multivariate Gaussian with nonzero

mean and a non-diagonal covariance matrix. However the µ-ssRBM differs from

these models in the way the conditional means and covariance interact. In both

the mcRBM and the mPoT model, the means are modelled by the introduction

of additional GRBM hidden units, whereas in the µ-ssRBM, each hidden unit can

potentially contribute to both the conditional mean and covariance. For the ith

hidden unit, the contribution to each is controlled by the relative values of the µi

and αi. With large |µi| and small αi, the unit predominantly contributes to the

conditional mean. Conversely, with large αi and small |µi|, the unit predominantly

contributes to the conditional covariance. The advantage of the µ-ssRBM approach

is that we are able to save one hyper-parameter by letting maximum likelihood

induction optimize the trade-off between mean and covariance modelling.

The mPoT and mcRBM also differ from the µ-ssRBM in how they parametrize

the covariance over the visible units. While the µ-RBM uses the h activations

to pinch the precision matrix along the direction specified by the corresponding

weight vector, both the mcRBM and the mPoT models use their latent variable

activations to maintain constraints, decreasing in value to allow variance in the

direction of the corresponding weight vector.

Interestingly, the µ-ssRBM term involving Φi is very similar to the covariance

term in the mcRBM energy function. The difference is that our restriction to a

diagonal Φi significantly limits what we can model with it. However, this restricted

structure allows us to sample efficiently from the model using Gibbs sampling which

is not available to either the mcRBM or the mPoT model. In addition, the roles of

these covariance terms are also quite different. In the mcRBM, the covariance term

is associated with the model’s feature vectors. In the µ-ssRBM, we use the Φi both

to help constrain the model’s conditionals to be well-defined, and in conjunction

with W , to help maximize the likelihood of the training data.

Finally, the covariance structure of the µ-ssRBM conditional p(v | h) (Eqn. 6.6)

128

is very similar to the product of probabilistic principal components analysis (PoP-

PCA) model (Williams, 2001) with components corresponding to the ssRBM weight

vectors associated with the active hidden units (hi = 1).

6.6 Experiments

We demonstrate the utility of the µ-ssRBM on the CIFAR-10 dataset by clas-

sifying the images and by sampling from the model. In particular, our experiments

are directed toward exploring the properties of the different elements of the model,

including the roles of µ and Φ and the effects of the various PD constraints on Λ

and Φ.

Our experiments are based on the CIFAR-10 image classification dataset con-

sisting of 40 000 training images, 10 000 validation images, and 10 000 test images.

The images are 32-by-32 pixel RGB images. Each image is labelled with one of

ten object categories (aeroplane, automobile, bird, cat, deer, dog, frog, horse, ship,

truck) according to the most prominent object in the image.

6.6.1 Classification

We evaluate the µ-ssRBM as a feature-extraction algorithm by plugging it into

the classification pipeline developed by Coates et al. (2010). In broad strokes, the

µ-ssRBM is fit to (192-dimensional) 8x8 RGB image patches, and then applied

convolutionally to the 32x32 images. The image patches (starting from pixels

between 0 and 255) on which the µ-ssRBM was trained were centred, and then

normalized by dividing by the square root of their variance plus a noise-cancelling

constant (10). The normalized patches were whitened by ZCA (Hyvärinen and Oja,

2000) with a small positive constant (.1) added to all eigenvalues. The resulting

patches (Figure 6.1, top left) are mostly grey with high spatial frequencies amplified,

and lower spatial frequencies attenuated. Our models were trained from the 16

non-overlapping 8x8 patches from each of the first 10 000 training set images in

CIFAR-10 (for a total of 160 000 training examples).

129

Models were trained for one hundred thousand minibatches of 100 patches. On

an NVIDIA GTX 285 GPU this training took on the order of 15 minutes for most

models. We used SML training (Tieleman, 2008). Classification was done with an

`2-regularized SVM. The SVM was applied to the conditional mean value of latent

spike (h) variables, extracted from every 8x8 image patch in the 32x32 CIFAR-10

image. Prior to classification, our conditional h values were spatially pooled into 9

regions, analogous to the 4 quadrants employed in Coates et al. (2010). For a model

with N hidden units, the classifier operated on a feature vector of 9N elements.

Table 6.I lists the performance of several variants on the µ-ssRBM model. For

this comparison all variants were trained with a small amount of sparsity aimed at

maintaining 15% activity, and were configured with 256 hidden units. The lines

labelled PD correspond to models that were constrained to have positive definite

covariance of p(v | h) while the lines labelled no PD are not. If µ = 0 appears in

a line the corresponding model was trained with µ = 0 or equivalently with the µ

terms removed from the energy function. The nomenclature for Φ is analogous.

This implies for instance that the original ssRBM model would correspond to the

no PD, µ = 0, Φ = 0 condition.

Table 6.I reveals that it is possible to constrain Φ to enforce that Cx|h is PD

and achieve classification results that match that of the original ssRBM. However,

if we take the same µ-ssRBM form and loosen the PD constraint, the model can

perform much better. Also of note is that both the µ and the Φ terms seem to

contribute approximately equally to improving the classification accuracy.

Table 6.II situates the performance of the µ-ssRBM in the literature of results

on CIFAR-10. The µ-ssRBM performs better than the most closely-related models

- the GRBM, cRBM, and mcRBM. Recent work by Coates et al. (2010) has shown

that a feature-extractor based on K-means actually out-performs these energy-

based approaches to feature extraction on CIFAR-10, in the limit of very large

hidden unit counts. Future work will look at more effective training strategies for

energy models in this regime.

130

Figure 6.1: (Top left) ZCA-whitened data used for patch-wise training. (Top right)
Filters W learnt when µ and Φ were fixed at zero. These filters produce edges
similar to many other models, and neatly separate black-and-white edges from
colour ones. Filters W (bottom left) and Φ (bottom right) learnt when µ and Φ are
fit to the data. The combination of W and Φ gives individual units more flexibility,
and gives rise to a richer variety of features that are better in classification.

131

Table 6.I: The performance of µ-ssRBM variants with 256 hidden units relative to
one another in CIFAR-10 image classification. 95% confidence intervals are given
for each score. Models labeled “no PD” were not constrained to be positive definite.

Model Accuracy (%)
no PD, µ free, Φ free 73.1 ±0.9
no PD, µ free, Φ = 0 71.43 ±0.9
no PD, µ = 0, Φ free 71.19 ±0.9
no PD, µ = 0, Φ = 0 68.92 ±0.9
PD by Diag. W (Eqn. 6.17) 69.1±0.9
PD by Λ (Eqn. 6.11 68.3±0.9
PD by scal. mat. (Eqn. 6.16) 67.1±0.9

Table 6.II: The performance of µ-ssRBM variants relative to other models in the
literature for CIFAR-10. 95% confidence intervals are given for each score assuming
the official test set size of ten thousand. The k-means results are copied from
Coates et al. (2010) The “conv. trained DBN” result is the convolutionally trained
two-layer DBN with rectified linear units, described in Krizhevsky (2010) GRBM,
cRBM, mcRBM results are copied from Ranzato and Hinton (2010)

Model Accuracy (%)
k-means (4000 units) 79.6 ± 0.9
conv. trained DBN 78.9 ±0.9
µ-ssRBM (4096 units) 76.7 ±0.9
k-means (1200 units) 76.2 ± 0.9
µ-ssRBM (1024 units) 76.2 ±0.9
k-means (800 units) 75.3 ± 0.9
µ-ssRBM (512 units) 74.1 ±0.9
µ-ssRBM (256 units) 73.1 ±0.9
k-means (400 units) 72.7 ± 0.9
k-means (200 units) 70.1 ± 0.9
mcRBM (225 factors) 68.2 ±0.9
cRBM (900 factors) 64.7 ±0.9
cRBM (225 factors) 63.6 ±0.9
GRBM 59.7 ±1.0

132

6.6.2 Sampling

To draw samples from the model, we trained it convolutionally, similarly to

Krizhevsky (2010). Our convolutional implementation of the µ-ssRBM included

256 fully-connected units to capture global structure, and 128 hidden units per

position for every position of an 8x8 RGB filter that fit within a padded CIFAR-

10 image. The images were padded with a 3-pixel mirrored image border and

attenuated, which is why the samples have a grey border. Filters W and Φ were

shared across the image, though scalar-parameters µi, αi, and hidden unit bias bi

were trained separately for each individual hidden unit (at each position). The

model was trained as before by stochastic maximum likelihood, with the difference

that the learning rate on the shared parameters W and Φ was reduced by a factor

of 30. Figure 6.2 illustrates some samples drawn from the model, drawn by taking

500 Gibbs steps from training data. The 500 steps were enough for the samples

to completely depart from the training data used to initialize the sampler. These

samples exhibit global coherence, and sharp region boundaries, a range of colours,

and natural-looking shading. Qualitatively, these samples are more varied and

interesting than samples from similar energy-based models, such as those featured

in Ranzato et al. (2010b).

6.7 Discussion

In this paper we have introduced the µ-ssRBM, a generalization of the ssRBM

that includes extra terms in the energy function. One of the extra terms permits

Figure 6.2: Samples from a convolutionally trained µ-ssRBM exhibit global coher-
ence, sharp region boundaries, a range of colours, and natural-looking shading.

133

the model to capture a non-zero mean in the Gaussian conditional p(v | h), bringing

the ssRBM framework in line with the recent work of Ranzato and Hinton (2010)

and Ranzato et al. (2010b) which also modelled the conditional of the observed

data given the latent variable value to be a general multivariate Gaussian with

non-zero mean and full covariance. Unlike these other approaches, instantiating

the slab vector s renders the µ-ssRBM amenable to efficient block Gibbs sampling.

The other functional term included in the µ-ssRBM energy function adds a pos-

itive definite diagonal contribution to the covariances associated with the Gaussian

conditions over the observations. This term was used to define variants of the

µ-ssRBM that were constrained to have well-defined conditional.

Still, our techniques for constraining the µ-ssRBM to have PD conditionals are

based on loose worst-case scenarios, and potentially leave room for improvement.

Our classification experiments indicate that the µ-ssRBM was able to use the extra

capacity offered by the addition of these elements to the energy function to improve

the classification accuracy. They also show that the addition of the PD constraint

comes at the cost of classification performance.

CHAPTER 7

RANDOM HYPER-PARAMETER SELECTION

title Random Search for Hyper-Parameter Optimization

author James Bergstra and Yoshua Bengio

Publication Submitted to the Journal of Machine Learning Research, March

2011.

This work compares grid search to other non-adaptive strategies for hyper-parameter

optimization, such as random guessing and low-discrepancy sequences (e.g. Sobol,

Halton) developed for Quasi-Monte-Carlo integration. Considering several datasets

and two learning algorithms known for having many hyper-parameters (neural net-

works and deep belief networks) we find that grid search is the slowest and least-

reliable method among those considered. When we view a learning algorithm as a

function from a hyper-parameter vector to a generalization score, we find that these

functions are typically dominated in any given neighbourhood by a small fraction

of the hyper-parameters, and show that this kind of geometry is not well suited to

lattice-based (grid) exploration. Our analysis casts some light on why recent “High

Throughput” methods achieve somewhat surprising success – we suggest that they

appear to search through a large number of hyper-parameters because most of those

hyper-parameters matter relatively little. We anticipate that growing interest in

large hierarchical models will place an increasing burden on techniques for hyper-

parameter optimization. This work shows that random search is a natural baseline

against which to judge progress in the development of sequential hyper-parameter

optimization algorithms.

136

7.1 Introduction

Machine learning is often about finding a model θ (∗) in some set Θ that mini-

mizes an expected loss L (x;θ) over i.i.d. samples x from a natural (grand truth)

distribution Gx (Bottou, 1998).

θ
(∗) = argminθ∈Θ Ex∼Gx [L (x;θ)] (7.1)

However, many sets Θ of interest (e.g. the set of all support vector machines,

the set of all neural networks, the set of all classifiers implemented in a particu-

lar library) are difficult to search efficiently. A learning algorithm A can be seen

as a function that maps datasets to models θ ∈ Θ, but often we have an efficient

algorithm A (e.g. a gradient-based algorithm) that can search only some part of

Θ. For example, neural networks for classification are typically optimized using

gradient-based algorithms, but these gradient-based algorithms cannot optimize

the (integer-valued) number of hidden units. When this occurs, it is conceptually

convenient to separate the parameters θ describing a model into two kinds: pa-

rameters φ (which we can optimize efficiently) and hyper-parameters λ (which we

cannot optimize efficiently). Where A has configuration variables of its own, we

will include these into λ too.

When a learning algorithm A forces us to divide θ in this way, we have θ =

(φ ,λ) ∈ (Φ×Λ). We can incorporate A into Equation 7.1 by splitting the argmin

over θ into separate minimizations over Λ and Φ,

λ
(∗) = argmin

λ∈Λ

(
min
φ∈Φ

Ex∼Gx [L (x;φ ,λ)]
)

= argmin
λ∈Λ

Ex∼Gx [L (x;A (λ))]. (7.2)

By construction, we do not have efficient algorithms for performing the opti-

mization implied by Equation 7.2. The (inefficient) technique for performing this

optimization is called cross-validation, it is simply the method of trying out several

137

values λ (1), ...,λ (S) for λ on a validation set X (valid) of data x ∼ Gx that is inde-

pendent of any training set used internally by A , and independent of the test set

X (test) used later to evaluate λ (∗) (see Bishop, 1995, pp. 32-33). In practice we

estimate λ (∗) using the procedure suggested by Equation 7.3.

λ
(∗) ≈ argmin

λ∈{λ (1),...,λ (S)}
meanx∈X (valid) L (x;A (λ)) . (7.3)

= argmin
λ∈{λ (1),...,λ (S)}

Ψ(λ) (7.4)

This paper is about how to do cross-validation when the number (S) of hyper-

parameter values in Λ becomes so large that the brute force approach suggested

by Equation 7.3 becomes too computationally expensive. Large values of S are

common because different hyper-parameters often vary independently of one an-

other. The number of possible joint values for λ is the product of the number

of possible values of each one. Grid search of K variables l(1)...l(K) in Λ is the

method of choosing sets of values L(1)...L(K) for the variables, and trying each of

the S = ∏k |L(k)| elements that are composed by elements from those sets. This

product over K sets makes grid search suffer from the so-called curse of dimension-

ality, because the number of joint values grows exponentially with the number of

hyper-parameters (Bellman, 1961).

Cross-validation can be seen as an optimization algorithm of a function that

maps from a hyper-parameter joint value to an expected loss. In this paper such

a function will be called a hyper-parameter response function, and denoted by a

Ψ (Equation 7.4). (This function is sometimes called the response surface in ex-

periment design literature.) Brute force search is not the only way to optimize

a such a function, but despite decades of research into global optimization (e.g.

Kirkpatrick et al. (1983); Nelder and Mead (1965); Powell (1994); Weise (2009))

and the publishing of several hyper-parameter optimization algorithms (e.g. Czogiel

et al. (2005); Hutter (2009); Nareyek (2003)), most machine learning researchers

still prefer to carry out this optimization by hand, and by grid search (e.g. Hinton

138

(2010); Larochelle et al. (2007); LeCun et al. (1998b) as well as software packages

such as libsvm (Chang and Lin, 2001) and scikits.learn1). We conjecture that there

are two reasons.

• Manual optimization remains popular because researchers are interested in

the behaviour of their algorithms in various conditions, and manual optimiza-

tion provides that intuition as a side-effect of the optimization process.

• Grid search remains popular because it is simple, easily parallelized, and

typically reliable because the function being optimized is too simple to require

an adaptive (i.e. non-brute-force) optimization algorithm.

This paper argues that grid search (i.e., regular lattice-based, brute force search)

should almost never be used. Instead, quasi-random or even pseudo-random ex-

periment designs (random experiments) should be preferred. Random experiments

are just as easily parallelized as grid search, just as simple to design, and more

reliable. Adaptive search algorithms are more complicated to implement and are

more difficult to parallelize. If a large compute cluster is available and random

or quasi-random search is efficient enough, then these may always be the fastest

algorithm (in terms of wall time) for hyper-parameter optimization.

Random search is efficient when the true hyper-parameter response function can

be approximated accurately by a surrogate that looks at just a small number of

hyper-parameters. It is not necessary that the identities of these hyper-parameters

are known, only that the property holds. This property of having low effective

dimension has been recognized in the literature of Quasi-Monte-Carlo (QMC) in-

tegration, and invoked to explain why QMC sometimes is much more efficient than

worst-case analysis theory would predict. In the context of hyper-parameter search,

the same notions of a low effective dimension and low discrepancy sets explains why

grid search is so inefficient compared with experiments derived from either pseudo-

random or quasi-random generators.

1scikits.learn: Machine Learning in Python (http://scikit-learn.sourceforge.net)

139

Like Drew and de Mello (2006), we draw the reader’s attention to the low ef-

fective dimensionality of a function family of interest, as a means of optimizing it

more efficiently. They present an algorithm that distinguishes between “important”

and “unimportant” dimensions: QMC is used to choose points in the important di-

mensions, and unimportant dimensions are “padded” with thinner coverage and

cheaper samples. Unlike them, we argue that for hyper-parameter selection (with

a few hundred trials in 6-20 dimensions) there is little or no advantage to quasi-

random generators compared with pseudo-random ones, and that the simplicity

and i.i.d. nature of trials drawn from a pseudo-random distribution makes them

preferable. The problem of distinguishing between important and unimportant

hyper-parameter dimensions is a feature selection problem. We draw on this con-

nection in our analysis in Section 7.5, and hope that this connection might inspire

more efficient hyper-parameter optimization algorithms in future work.

This paper is organized as follows. Section 7.2 describes the datasets used in

our experiments. Section 7.3 describes the bootstrap technique we use to estimate

generalization in large cross-validation experiments. Section 7.4 describes the “ran-

dom experiment efficiency curve” used to illustrate the results of our experiments.

Section 7.5 repeats neural network experiments from Larochelle et al. (2007) with

pseudo-random experiments, and shows (a) that random experiments are more ef-

ficient than grid ones and (b) how Gaussian Process regression characterizes the

low effective dimensionality of the hyper-parameter response function in that set-

ting. Section 7.5 also repeats deep belief network experiments from Larochelle

et al. (2007) with pseudo-random ones to show that pseudo-random experiments

are comparable to the heuristic hybrid manual and multi-resolution grid optimiza-

tion strategy used in the original work; deep belief networks are not so hard to

train after all. Section 7.6 describes how grid search becomes inefficient relative to

pseudo-random and quasi-random experiments when a hyper-parameter response

function has a low effective dimension, and shows in simulation that pseudo-random

experiments are competitive with quasi-random ones in the regime of interest. The

paper concludes in Section 7.7 that random experiments are generally better than

140

grid ones for optimizing hyper-parameters.

7.2 Datasets

Following the work of Larochelle et al. (2007); Vincent et al. (2008), we use a

variety of classification datasets that include many factors of variation.2

The mnist basic dataset is a subset of the well-known MNIST handwritten

digit dataset (LeCun et al., 1998a). This dataset has 28x28 pixel grey-scale images

of digits, each belonging to one of ten classes. We chose a different train/test/validation

splitting in order to have faster experiments and see learning performance differ-

ences more clearly. We shuffled the original splits randomly, and used 10000 train-

ing examples, 2000 validation examples, and 50000 testing examples. These images

are presented as white (1.0-valued) foreground digits against a black (0.0-valued)

background.

The mnist background images dataset is a variation on mnist basic in

which the white foreground digit has been composited on top of a 28x28 natural

image patch. Technically this was done by taking the max of the original MNIST

image and the patch. Natural image patches with very low pixel variance were

rejected. As with mnist basic there are 10 classes, 10000 training examples, 2000

validation examples, and 50000 test examples.

The mnist background random dataset is a similar variation on mnist basic

in which the white foreground digit has been composited on top of random uni-

form (0,1) pixel values. As with mnist basic there are 10 classes, 10000 training

examples, 2000 validation examples, and 50000 test examples.

The mnist rotated dataset is a variation on mnist basic in which the images

have been rotated by an amount chosen randomly between 0 and 2π radians. This

dataset included 10000 training examples, 2000 validation examples, 50000 test

examples.

The mnist rotated background images dataset is a variation on mnist

2Datasets: http://www.iro.umontreal.ca/∼lisa/twiki/bin/view.cgi/...
...Public/DeepVsShallowComparisonICML2007

141

Figure 7.1: From top to bottom, samples from the mnist rotated, mnist back-
ground random, mnist background images, mnist rotated background
images datasets. In all datasets the task is to identify the digit (0 - 9) and ignore
the various distracting factors of variation.

rotated in which the images have been rotated by an amount chosen randomly

between 0 and 2π radians, and then subsequently composited onto natural image

patch backgrounds. This dataset included 10000 training examples, 2000 validation

examples, 50000 test examples.

The rectangles dataset (Figure 7.2, top) is a simple synthetic dataset of out-

lines of rectangles. The images are 28x28, the outlines are white (1-valued) and the

backgrounds were black (0-valued). The height and width of the rectangles were

sampled uniformly, but when their difference was smaller than 3 pixels the samples

were rejected. The top left corner of the rectangles was also sampled uniformly,

with the constraint that the whole rectangle fits in the image. Each image is la-

belled as one of two classes: tall or wide. This task was easier than the MNIST

digit classification, so we only used 1000 training examples, and 200 validation

examples, but we still used 50000 testing examples.

The rectangles images dataset (Figure 7.2, bottom) is a variation on rectan-

gles in which the foreground rectangles were filled with one natural image patch,

and composited on top of a different background natural image patch. The process

142

for sampling rectangle shapes was similar to the one used for rectangles, except

a) the area covered by the rectangles was constrained to be between 25% and 75%

of the total image, b) the length and width of the rectangles were forced to be of

at least 10, and c) their difference was forced to be of at least 5 pixels. This task

was harder than rectangles so we used 10000 training examples, 2000 validation

examples, and 50000 testing examples.

The convex dataset (Figure 7.3) is a binary image classification task. Each

28x28 image consists entirely of 1-valued and 0-valued pixels. If the 1-valued pixels

form a convex region in image space, then the image is labelled as being convex

otherwise it is labelled as non-convex. The convex sets consist of a single convex

region with pixels of value 1.0. Candidate convex images were constructed by

taking the intersection of a number of half-planes whose location and orientation

were chosen uniformly at random. The number of intersecting half-planes was also

sampled randomly according to a geometric distribution with parameter 0.195.

A candidate convex image was rejected if there were less than 19 pixels in the

convex region. Candidate non-convex images were constructed by taking the union

of a random number of convex sets generated as above, but with the number of

half-planes sampled from a geometric distribution with parameter 0.07 and with a

minimum number of 10 pixels. The number of convex sets was sampled uniformly

from 2 to 4. The candidate non-convex images were then tested by checking a

convexity condition for every pair of pixels in the non-convex set. Those sets that

Figure 7.2: Top: Samples from the rectangles dataset. Bottom: Samples from the
rectangles images dataset. In both datasets, the image is formed by overlaying
a small rectangle on a background. The task in both datasets is to label the small
rectangle as being either tall or wide.

143

failed the convexity test were added to the dataset. The parameters for generating

the convex and non-convex sets were balanced to ensure that the conditional overall

pixel mean is the same for both classes.

7.3 Estimating Generalization

In large experiments, it often happens that there is a tie for the best valida-

tion set performance. This section describes our procedure for estimating test set

accuracy, which takes into account any uncertainty in the choice of which trial is

actually the best-performing one. To explain this procedure, we must distinguish

between estimates of performance Ψ(valid) = Ψ and Ψ(test) based on the validation

and test sets respectively:

Ψ
(valid)(λ) = meanx∈X (valid) L (x;A (λ)) , (7.5)

Ψ
(test)(λ) = meanx∈X (test) L (x;A (λ)) . (7.6)

Likewise, we must define the estimated variance V about these means on the vali-

dation and test sets:

V(valid)(λ) =
Ψ(valid)(λ)

(
1−Ψ(valid)(λ)

)
|X (valid)|−1

, and (7.7)

V(test)(λ) =
Ψ(test)(λ)

(
1−Ψ(test)(λ)

)
|X (test)|−1

. (7.8)

Figure 7.3: Samples from the convex dataset. The task is to identify whether the
set of white pixels is convex. The first, fourth, and fifth images above are convex,
the others are not.

144

In our experiments, where the L is a zero-one loss, this variance is based the

Bernoulli variance. With other loss functions the estimator of variance will gener-

ally be different.

The standard practice for evaluating a model found by cross-validation is to

report Ψ(test)(λ (s)) for the λ (s) that minimizes Ψ(valid)(λ (s)). However, when dif-

ferent trials have nearly optimal validation means, then it is not clear which test

score to report. To resolve the difficulty of choosing a winner, we report a weighted

average of all the test set scores, in which each one is weighted by the probability

that its particular λ (s) is in fact the best. In this view, the uncertainty arising from

X (valid) being a finite sample of Gx makes the test-set score of the “best model”

among λ (1), ...,λ (S) a random variable, z. This score z is distributed according

to a Gaussian mixture model whose S components have means µs = Ψ(test)(λ (s)),

variances σ2
s = V(test)(λ (s)), and weights ws defined by

ws = P
(

Z(s) > Z(s′), ∀s 6= s′
)

, where (7.9)

Z(i) ∼N
(

Ψ
(valid)(λ

(i)),V(valid)(λ
(i))
)

. (7.10)

To summarize, the performance z of the best model in an experiment of S trials

has mean µz and standard error σ2
z ,

µz =
S

∑
s=1

wsµs, and (7.11)

σ
2
z =

S

∑
s=1

ws
(
µ

2
s + σ

2
s
)
−µ

2
z . (7.12)

It is simple and practical to estimate weights ws by simulation. The procedure

for doing so is to repeatedly draw hypothetical validation scores Z(s) from Nor-

mal distributions whose means are the Ψ(valid)(λ (s)) and whose variances are the

standard errors V(valid)(λ (s)), and to count how often each trial generates a winning

score. Since the test scores of the best validation scores are typically relatively close,

ws need not be estimated very precisely and a few tens or hundreds of hypothetical

145

draws suffice.

7.4 The Random Experiment Efficiency Curve

Figure 7.4 illustrates the results of a random experiment: an experiment of 256

trials training neural networks to classify the rectangles dataset. Since the trials of

a random experiment are independently identically distribution (i.i.d.), a random

search experiment involving S i.i.d. trials can also be interpreted as N independent

experiments of s trials, as long as sN ≤ S. This interpretation allows us to estimate

statistics such as the minimum, maximum, median, and quantiles of any random

experiment of size s < S.

There are two general trends in random experiment efficiency curves, such as

the one in Figure 7.4: a sharp upward slope of the lower extremes as experiments

grow, and a gentle downward slope of the upper extremes. The sharp upward

slope occurs because when we take the maximum over larger subsets of the S trials,

the worst-performing trials are more rarely the best in any subset. It is natural

that larger experiments find trials with better scores. The shape of this curve

indicates the frequency of good models under random search, and quantifies the

relative volumes (in search space) of the various levels of performance. The gentle

downward slope occurs because as we take the maximum over larger subsets of

trials, we are less sure about which trial is actually the best. In large experiments

we average together good validation trials with unexpectedly high test scores with

other good validation trials with unexpectedly low test scores to arrive at a more

accurate estimate.

Figure 7.4 characterizes the range of performance that is to be expected from

experiments of various sizes, which is valuable information to anyone trying to

reproduce these results. If just four random trials fails to find a score of 70%,

then the problem is likely not in hyper-parameter selection. If Figure 7.4 had

included just one upper outlying point it would indicate random good fortune on

the experimenter’s part that might be difficult for others to reproduce, and would

146

1 2 4 8 16 32 64 128

experiment size (# trials)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80
ac

cu
ra

cy
rectangles images

Figure 7.4: A random experiment efficiency curve. The trials of a random experi-
ment are i.i.d, so an experiment of many trials (here, 256 trials optimizing a neural
network to classify rectangles) can be seen equally as several independent smaller
experiments. For example, at horizontal axis position 8, we consider our 256 trials
to be 32 experiments of 8 trials each. The vertical axis shows the generalization er-
ror of the best trial(s) from experiments of a given size, as determined by Eqn. 7.11.
When there is sufficiently many experiments of a given size (i.e., 10), the distribu-
tion of performance is illustrated by a box plot whose boxed section spans the lower
and upper quartiles and includes a line at the median. The whiskers above and
below each boxed section show the position of the most extreme data point within
1.5 times the inter-quartile range of the nearest quartile. Data points beyond the
whiskers are plotted with ’+’ symbols. When there are not enough experiments to
support a box plot, as occurs here for experiments of 32 trials or more, the best
generalization score of each experiment is shown by a scatter plot. The two thin
black lines across the top of the figure mark the upper and lower boundaries of a
95% confidence interval on the generalization of the best trial overall (Eqn. 7.12).

147

anyway disappear in the average of Eqn. 7.11 after more trials.

7.5 Relative Efficiency of Random Search

In this section we repeat several of the experiments of Larochelle et al. (2007)

using purely random experiments, to investigate the shape of the various hyper-

parameter response functions Ψ that arise. We begin in this section with a look at

hyper-parameter optimization in neural networks, and then use automatic relevance

determination in Gaussian Processes to characterize the low effective dimensionality

of the various Ψ. Section 7.5.3 looks at hyper-parameter optimization in Deep Belief

Networks (DBNs).

7.5.1 Case Study: Neural Networks

In Larochelle et al. (2007), the hyper-parameters of the neural network were

optimized by search over a grid of trials. We describe the hyper-parameter config-

uration space of our neural network learning algorithm in terms of the distribution

that we will use to randomly sample from that configuration space. The first

hyper-parameter in our configuration is the type of data preprocessing: with equal

probability, one of (a) none, (b) normalize (centre each feature dimension and di-

vide by its standard deviation), or (c) PCA (after removing dimension-wise means,

examples are projected onto principle components of the data whose norms have

been divided by their eigenvalues). Subsequently to choosing PCA preprocessing,

we must choose how many components to keep, we choose a fraction of variance to

keep with a uniform distribution between 0.5 and 1.0. Some authors choose to dis-

card a few leading eigenvectors of the PCA as well but we did not do this (Hyvärinen

et al., 2001). There have been several suggestions for how the random weights of a

neural network should be initialized (we will look unsupervised learning “pretrain-

ing” algorithms later in Section 7.5.3). We experimented with two heuristics: (a) a

hyper-parameter multiplier on random uniform draws from (−1,1) divided by the

square-root of the number of inputs (LeCun et al., 1998b), and (b) random normal

148

values scaled by the square root of 6 over the square root of the number of inputs

plus hidden units (Bengio and Glorot, 2010). The weights themselves were chosen

using one of three random seeds to the Mersenne Twister pseudo-random number

generator. In the case of the first heuristic, we chose a multiplier uniformly from

the range (0.2,2.0). The number of hidden units was drawn log-uniformly3 from

18 to 1024. We selected either a sigmoidal or tanh nonlinearity with equal prob-

ability. The output weights from hidden units to prediction units were initialized

to zero. The cost function was the mean error over minibatches of either 20 or

100 (with equal probability) examples at a time. The optimization algorithm was

stochastic gradient descent with [initial] learning rate ε0 drawn log-uniformly from

0.001 to 10.0. We offered the possibility of an annealed learning rate via a time

point t0 drawn log-uniformly from 300 to 30000. The effective learning rate εt after

t minibatch iterations was

εt =
t0ε0

max(t, t0)
. (7.13)

We permitted a minimum of 100 and a maximum of 1000 iterations over the training

data, stopping if ever, at iteration t, the best validation performance was observed

before iteration t/2. With 50% probability, an `2 regularization penalty was ap-

plied, whose strength was drawn log-uniformly from 3.1×10−7 to 3.1×10−5. This

sampling process covers roughly the same domain with the same density as the

grid used in Larochelle et al. (2007), except for the optional preprocessing steps.

The grid optimization of Larochelle et al. (2007) did not consider normalizing or

keeping only leading PCA dimensions of the inputs.

We formed experiments for each dataset by drawing S = 256 trials from this

distribution. The results of these experiments are illustrated in Figures 7.5 and

7.6. Random sampling of trials is surprisingly effective in these settings. Figure 7.5

shows that even among the fraction of jobs (71/256) that used no preprocessing, the

random search was able to do better than the grid search employed in Larochelle

3We will use the phrase drawn log-uniformly from A to B for 0 < A < B to mean drawing
uniformly in the log domain between log(A) and log(B), exponentiating to get a number between
A and B, and then, for integer-valued parameters, rounding to the nearest integer.

149

1 2 4 8 16 32

experiment size (# trials)

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

mnist basic

1 2 4 8 16 32

experiment size (# trials)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ac
cu

ra
cy

mnist background images

1 2 4 8 16 32

experiment size (# trials)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

mnist background random

1 2 4 8 16 32

experiment size (# trials)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

mnist rotated

1 2 4 8 16 32

experiment size (# trials)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

ac
cu

ra
cy

mnist rotated background images

1 2 4 8 16 32

experiment size (# trials)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

ac
cu

ra
cy

convex

1 2 4 8 16 32

experiment size (# trials)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

rectangles

1 2 4 8 16 32

experiment size (# trials)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

ac
cu

ra
cy

rectangles images

Figure 7.5: Neural network performance without preprocessing. Random exper-
iment efficiency curves of a single-layer neural network for eight of the datasets
used in Larochelle et al. (2007), looking only at trials with no preprocessing (7
hyper-parameters to optimize). The vertical axis is test set accuracy of the best
model by cross-validation, the horizontal axis is the experiment size (the number of
models compared in cross-validation). The dashed blue line represents grid search
accuracy for neural network models based on a selection by grids averaging 100
trials (Larochelle et al., 2007). Random searches of 4 trials match or outperform
grid searches.

150

1 2 4 8 16 32 64

experiment size (# trials)

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

mnist basic

1 2 4 8 16 32 64

experiment size (# trials)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ac
cu

ra
cy

mnist background images

1 2 4 8 16 32 64

experiment size (# trials)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

mnist background random

1 2 4 8 16 32 64

experiment size (# trials)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

mnist rotated

1 2 4 8 16 32 64

experiment size (# trials)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ac
cu

ra
cy

mnist rotated background images

1 2 4 8 16 32 64

experiment size (# trials)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

ac
cu

ra
cy

convex

1 2 4 8 16 32 64

experiment size (# trials)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

rectangles

1 2 4 8 16 32 64

experiment size (# trials)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

ac
cu

ra
cy

rectangles images

Figure 7.6: Neural network performance when standard preprocessing algorithms
are considered (9 hyper-parameters). Dashed blue line represents grid search ac-
curacy using (on average) 100 trials (Larochelle et al., 2007). Random searches
of 32 trials consistently find better results than previous estimates neural network
performance on these datasets.

151

et al. (2007). If we look at the full set of 256 trials (Figure 7.6) that consider normal-

izing the input and PCA preprocessing, we see that these preprocessing strategies

improve performance. These random experiments of 256 trials are consistently

better than grid search.

Note that the efficiency curves in Figures 7.5 and 7.6 reveal that different

datasets give rise to functions Ψ with different shapes. The mnist basic results

converge very rapidly toward what appears to be a global maximum. The fact

that experiments of just 4 or 8 trials often have the same maximum as much larger

experiments indicates that the region of Λ that gives rise to the best performance

is approximately a quarter or an eighth of the entire configuration space. If indeed

the random search has not missed a tiny region of significantly better preformance,

then we can say that random search has solved this problem in 4 or 8 guesses. It

is hard to imagine any optimization algorithm doing much better on a non-trivial

7-dimensional function. In contrast mnist rotated background images and

convex experiments find that even with experiments of 16 or 32 random trials,

there is considerable variation in the generalization of the reportedly best model.

This reveals that the Ψ function is more peaked, with small regions of good per-

formance that are still possible to find. For this sort of Ψ brute force techniques

are unreliable. In all cases though, random experiments of 64 trials or more find

consistently better results than grid search over an average of 100 trials.

7.5.2 The Low Effective Dimension of Ψ

The explanation for why random sampling of hyper-parameter configurations is

so much more effective than grid-based sampling lies in the shape of the function

Ψ. One simple way to characterize the shape of a high-dimensional function is to

look at how much it varies in each dimension. Without a closed form for Ψ(λ), we

can still estimate the relevance of each hyper-parameter in λ to the value of Ψ(λ).

Gaussian process regression gives us the statistical machinery to look at Ψ in this

way (Neal, 1998; Rasmussen and Williams, 2006).

We estimated the relevance of each hyper-parameter by fitting a Gaussian pro-

152

cess (GP) with squared exponential kernels to predict Ψ(λ) from λ . The squared

exponential kernel (also known as the Gaussian kernel) measures similarity between

two real-valued hyper-parameter values a and b by e−(a−b
l)2

. The positive-valued l

governs the sensitivity of the GP to changes in this hyper-parameter, or in other

words, the relevance of the hyper-parameter to the GP prediction. In the case of

the preprocessing hyper-parameter which assumed three categorical values, we used

a dot-product kernel with an isotropic length scale matrix between 1-of-N feature

vectors that encoded the category by the position of the 1. One wrinkle in our GP

modelling was the fact that the hyper-parameter governing the fraction of PCA

components to keep was irrelevant when the preprocessing was not by PCA. We

dealt with this by imputing a value of 1.0 for the other preprocessing methods, be-

cause they did in effect retain all of the principle components. The kernels defined

for each hyper-parameter were combined by multiplication.

Fitting a GP to Ψ means finding the relevance (1/l) for each hyper-parameter

that maximizes the likelihood of our data about Ψ. To compare relevance between

hyper-parameters we divide each length scale by the range of the corresponding

hyper-parameter. For hyper-parameters that were drawn log-uniformly (e.g. learn-

ing rate, number of hidden units), kernel calculations were based on the logarithm

of the effective value.

Figure 7.7 shows the relevance of each component of h in modelling Ψ(h). This

figure reveals two important properties of Ψ for neural networks that explain why

grid search performs so poorly relative to random experiments:

1. a small fraction of hyper-parameters matter for any one dataset,

2. but different hyper-parameters matter on different datasets.

These two properties taken together make grid search inefficient. To optimize Ψ

with a grid, we must have enough values along each dimension to do a good job of

optimizing that dimension when that dimension turns out to be relatively relevant.

However, when (on other problems for example) that dimension turns out to be

relatively irrelevant, then a grid experiment repeats nearly identical trials for each

153

0.0 0.5 1.0 1.5 2.0

hyper-parameter range / length scale

learning rate anneal.

learning rate

`2 penalty

initial W norm

initial W algo.

activation fn.

n. hidden units

PCA energy

preprocessing

mnist basic

0 1 2 3 4 5

hyper-parameter range / length scale

learning rate anneal.

learning rate

`2 penalty

initial W norm

initial W algo.

activation fn.

n. hidden units

PCA energy

preprocessing

mnist background images

0 20 40 60 80 100

hyper-parameter range / length scale

learning rate anneal.

learning rate

`2 penalty

initial W norm

initial W algo.

activation fn.

n. hidden units

PCA energy

preprocessing

mnist background random

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

hyper-parameter range / length scale

learning rate anneal.

learning rate

`2 penalty

initial W norm

initial W algo.

activation fn.

n. hidden units

PCA energy

preprocessing

mnist rotated

0 1 2 3 4 5 6 7

hyper-parameter range / length scale

learning rate anneal.

learning rate

`2 penalty

initial W norm

initial W algo.

activation fn.

n. hidden units

PCA energy

preprocessing

mnist rotated background images

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

hyper-parameter range / length scale

learning rate anneal.

learning rate

`2 penalty

initial W norm

initial W algo.

activation fn.

n. hidden units

PCA energy

preprocessing

convex

0.0 0.5 1.0 1.5 2.0 2.5

hyper-parameter range / length scale

learning rate anneal.

learning rate

`2 penalty

initial W norm

initial W algo.

activation fn.

n. hidden units

PCA energy

preprocessing

rectangles

0.0 0.5 1.0 1.5 2.0 2.5

hyper-parameter range / length scale

learning rate anneal.

learning rate

`2 penalty

initial W norm

initial W algo.

activation fn.

n. hidden units

PCA energy

preprocessing

rectangles images

Figure 7.7: Automatic Relevance Determination (ARD) applied to hyper-
parameters of neural network experiments. For each dataset, a small number
of hyper-parameters dominate performance, but the relative importance of each
hyper-parameter varies from one dataset to the next. Section 7.5.1 describes the
nine hyper-parameters in each panel.

154

value along that dimension. This repetition makes the grid exponentially inefficient

with respect to the number of relatively irrelevant dimensions.

7.5.3 Case Study: Deep Belief Networks

To see how random search compares with grid-assisted hand-tuning of a model

with many hyper-parameters, we look at the Deep Belief Network (DBN) model (Hin-

ton et al., 2006). A DBN is a multi-layer graphical model with directed and undi-

rected components. It is parameterized similarly to a multilayer neural network for

classification, and it has been argued that pretraining a multilayer neural network

by unsupervised learning as a DBN acts both to regularize the neural network to-

ward better generalization, and to ease the optimization associated with finetuning

the neural network for a classification task (Erhan et al., 2010).

A DBN classifier has many more hyper-parameters than a neural network.

Firstly, there is the number of units and the parameters of random initialization

for each layer. Secondly, there are hyper-parameters governing the unsupervised

learning pretraining algorithm for each layer. Finally, there are hyper-parameters

governing the global finetuning of the whole model for classification. For the details

of how DBN models are trained (stacking restricted Boltzmann machines trained

by contrastive divergence), the reader is referred to Larochelle et al. (2007), Hinton

et al. (2006) or Bengio (2009). We evaluated random search by training 1-layer,

2-layer and 3-layer DBNs, sampling from the following distribution:

• We chose 1,2,or 3 layers with equal probability.

• For each layer, we choose:

– a number of hidden units (log-uniformly between 128 and 4000),

– a weight initialization heuristic that followed from a distribution (uni-

form or normal), a multiplier (uniformly between 0.2 and 2), a decision

to divide by the fan-out (true or false),

155

– a number of iterations of contrastive divergence to perform for pretrain-

ing (log-uniformly from 1 to 10000),

– whether to treat the real-valued examples used for unsupervised pre-

training as Bernoulli means (from which to draw binary-valued training

samples) or as a samples themselves (even though they are not binary),

– an initial learning rate for contrastive divergence (log-uniformly between

0.0001 and 1.0),

– a time point at which to start annealing the contrastive divergence learn-

ing rate as in Equation 7.13 (log-uniformly from 10 to 10000).

• There was also the choice of how to preprocess the data. Either we used either

the raw pixels or we removed some of the variance using a ZCA transform (in

which examples are projected onto principle components, and then multiplied

by the transpose of the principle components to place them back in the inputs

space).

• If using ZCA preprocessing, we kept an amount of variance drawn uniformly

from 0.5 to 1.0.

• We chose to seed our random number generator with one of 2, 3, or 4.

• We chose a learning rate for finetuning of the final classifier log-uniformly

from 0.001 to 10.

• We chose an anneal start time for finetuning log-uniformly from 100 to 10000.

• We chose `2 regularization of the weight matrices at each layer during fine-

tuning to be either 0 (with probability 0.5), or log-uniformly from 10−7 to

10−4.

This hyper-parameter space includes 8 global hyper-parameters and 8 hyper-parameters

for each layer, for a total of 32 hyper-parameters for 3-layer models.

156

A grid search is not practical for the 32-dimensional search problem of DBN

model selection, because even just 2 possible values for each of 32 hyper-parameters

would yield more trials than we could conduct (232 > 109 trials and each can take

hours). For many of the hyper-parameters, especially real valued ones, we would

really like to try more than two values. The approach taken in Larochelle et al.

(2007) was a combination of manual search, multi-resolution grid search and coor-

dinate descent. The algorithm (including manual steps) is somewhat elaborate, but

sensible, and we believe that it is representative of how model search is typically

done in several research groups, if not the community at large. Larochelle et al.

(2007) describe it as follows:

“The hyper-parameter search procedure we used alternates between fix-

ing a neural network architecture and searching for good optimization

hyper-parameters similarly to coordinate descent. More time would

usually be spent on finding good optimization parameters, given some

empirical evidence that we found indicating that the choice of the opti-

mization hyper-parameters (mostly the learning rates) has much more

influence on the obtained performance than the size of the network.

We used the same procedure to find the hyper-parameters for DBN-1,

which are the same as those of DBN-3 except the second hidden layer

and third hidden layer sizes. We also allowed ourselves to test for much

larger first-hidden layer sizes, in order to make the comparison between

DBN-1 and DBN-3 fairer.

“We usually started by testing a relatively small architecture (between

500 and 700 units in the first and second hidden layer, and between 1000

and 2000 hidden units in the last layer). Given the results obtained

on the validation set (compared to those of NNet for instance) after

selecting appropriate optimization parameters, we would then consider

growing the number of units in all layers simultaneously. The biggest

networks we eventually tested had up to 3000, 4000 and 6000 hidden

157

units in the first, second and third hidden layers respectively.

“As for the optimization hyper-parameters, we would proceed by first

trying a few combinations of values for the stochastic gradient descent

learning rate of the supervised and unsupervised phases (usually be-

tween 0.1 and 0.0001). We then refine the choice of tested values for

these hyper-parameters. The first trials would simply give us a trend on

the validation set error for these parameters (is a change in the hyper-

parameter making things worse of better) and we would then consider

that information in selecting appropriate additional trials. One could

choose to use learning rate adaptation techniques (e.g. slowly decreas-

ing the learning rate or using momentum) but we did not find these

techniques to be crucial.

There was large variation in the number of trials used in Larochelle et al. (2007)

to optimize the DBN-3. One dataset (mnist background images) benefited from

102 grid trials, while another (mnist background random) only 13 because a

good result was found more quickly. The average number of grid trials across

datasets for the DBN-3 model was 41. In considering the number of trials per

dataset, it is important to bear in mind that the experiments on different datasets

were not performed independently. Rather, the experience drawn from earlier ex-

periments affected later ones.

Random search versions of the DBN experiments from Larochelle et al. (2007)

are shown in Figure 7.8. In this more challenging optimization problem random

search is still effective, but not clearly superior as it was in the case of neural net-

work optimization. Of the eight datasets used in our study, random search finds a

better model than the manual search in one (convex), an equally good model in

four (mnist basic, mnist rotated, rectangles, and rectangles images), and

a poorer model in three (mnist background images, mnist background ran-

dom, mnist rotated background images). In DBN optimization, we see that

even experiments with larger numbers of trials (64 and larger) still show significant

158

variability. This indicates that the regions of the search space with the best perfor-

mance are small, and random search is not reliably finding them. To find the best

hyper-parameter configurations reliably we must either use sequential optimization

algorithms, or use knowledge about Ψ to make the search easier.

7.6 Low Effective Dimension

The setting in which a high-dimensional function can be approximated well

by a function of a subset of its arguments has been studied in the context of

numerical integration. A function with this property is said to have a low effective

dimension (Caflisch et al., 1997). This property is invoked to explain why the

variance of QMC estimators is often observed to decrease more quickly than worst-

case analysis theory predicts. The worst-case analysis theory includes a term that

is exponential in the dimensionality of the integration domain, and it has been

argued that when a function has a low effective dimension, then it is the effective

dimensionality that should be used to estimate the variance of the estimator.

In our setting we wish to optimize rather than integrate over the hyper-parameter

configuration space, and that makes formal statements from the integration litera-

ture about low effective dimension inapplicable. Still, the basic principle of experi-

ment efficiency is similar. In QMC integration, we minimize variance by designing

a set of points with the property that they have low discrepancy with the uni-

form distribution. There are several definitions of low discrepancy, but they all try

to capture the intuition that the points should be roughly equidistant from their

neighbours, in order that there be no “clumps” or “holes” in the point set. This

same notion of coverage is what we would like from our trial sets. The challenge is

to design a set of trials so that no matter which dimensions turn out to be impor-

tant, we will still have a relatively low-discrepancy set of points when we project

all the trials onto the relevant subspace of the hyper-parameter domain Λ. A grid

of points appears to give even coverage, but a sub-space projection (especially one

that is aligned with the axes of the grid) results in very clear clumps of points,

159

1 2 4 8 16 32 64 128

experiment size (# trials)

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

mnist basic

1 2 4 8 16 32 64 128

experiment size (# trials)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

mnist background images

1 2 4 8 16 32 64 128

experiment size (# trials)

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

mnist background random

1 2 4 8 16 32 64 128

experiment size (# trials)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

mnist rotated

1 2 4 8 16 32 64 128

experiment size (# trials)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ac
cu

ra
cy

mnist rotated background images

1 2 4 8 16 32 64 128

experiment size (# trials)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

ac
cu

ra
cy

convex

1 2 4 8 16 32 64 128

experiment size (# trials)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

rectangles

1 2 4 8 16 32 64 128

experiment size (# trials)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

ac
cu

ra
cy

rectangles images

Figure 7.8: Deep Belief Network (DBN) performance according to random search
over 32 hyper-parameters. Results of grid-assisted manual search using an aver-
age 41 trials are shown in green (1-layer DBN) and red (3-layer DBN). Random
search finds a much better model on the convex dataset, but on other datasets the
algorithms are tied, or else the grid-assisted manual search holds a slight advan-
tage. The large variance in best-of-64 performance shows that the best-performing
models occupy a relatively small region of the search space; sequential (rather than
brute force) model selection algorithms will be necessary for effective optimization
in such cases.

160

which signal inefficient coverage of the low-dimensional space.

There are good choices beyond random (pseudo-random) point sets and grid

sets. In the context of QMC integration, other low-discrepancy sequences have

been introduced that are more uniform than pseudo-random draws and more robust

than grids to projection. Sequences such as the Sobol, Halton, and Niederreiter 4 all

have the property that low-dimensional projections of high-dimensional sequences

are also good low-discrepancy sequences.

One might wonder that if random experiments are better than grid experiments,

that experiments chosen based on low-discrepancy sequences might be better still.

Instead of running thousands of computationally demanding trials, we draw on

the geometrical information about typical Ψ functions gleaned from our Gaussian

Process analysis (Section 7.5.2) to address this question with a simulation.

The simulation search problem was to find a uniformly randomly placed multi-

dimensional target interval, which occupies 1% of the volume of a unit hyper-cube.

We looked at four variants of the search problem, in which the target was

1. a cube in a 3-dimensional space,

2. a box in a 3-dimensional space,

3. an equal-sided interval in a 5-dimensional space,

4. a hyper-rectangle in a 5-dimensional space.

The shape of the target rectangle in variants (2) and (4) was determined by sam-

pling side lengths uniformly from the unit interval, and then scaling the rectangle

to have a volume of 1%. This process gave the rectangles a shape that was often

wide or tall - much longer along some axes than others. The position of the target

was drawn uniformly among the positions totally inside the unit hyper-cube. In the

4These particular low-discrepancy sequences were chosen because they were implemented by
the GNU Scientific Library (et al, 2009). More information about these sequences can be found
as follows: Sobol (Antonov and Saleev, 1979), Halton (Halton, 1960), Niederrieter (Bratley et al.,
1992),

161

case of tall or wide targets, the indicator function [of the target] has a lower effec-

tive dimension than the dimensionality of the overall space because the dimensions

in which the target is elongated can be almost ignored.

The simulation experiment began with the generation of 100 search problems for

each of the four search problem variants. Then for each experiment design method

(grid, pseudo-random, Sobol, Halton, Niederreiter) we created experiments of 1, 2,

3, and up to 512 trials. There are many possible grid experiments of any size in

multiple dimensions, especially for non-prime experiment sizes. We did not test

every possible grid, instead we tested every grid with a monotonic resolution. For

example, for experiments of size 16 in 5 dimensions, we tried the five grids with

resolutions (1, 1, 1, 1, 16), (1, 1, 1, 2, 8), (1, 1, 2, 2, 4), (1, 1, 1, 4, 4), (1, 2, 2, 2,

2). Since the target intervals were generated in such a way that rectangles identical

up to a permutation of side lengths have equal probability, grids with monotonic

resolution are representative of all grids. The score of an experiment design method

for each experiment size was the fraction of the 100 targets that it found.

There are many possible random seeds and pseudo-random generators, so to

characterize the performance of random search, we used the analytic expectation.

The expected probability of finding the target is 1 minus the probability of missing

the target with every single one of T trials in the experiment. If the volume of the

target relative to the unit hypercube is (v/V = 0.01) and there are T trials, then

this probability of finding the target is

1− (1− v
V

)T = 1− .99T (7.14)

Figure 7.9 illustrates the efficiency of several low-discrepancy sequences at find-

ing the multidimensional intervals, relative to the performance of all possible grids

of each size and the expected performance of a pseudo-random experiment. There

was no clear winner among these low-discrepancy sequences, but they were all much

better at finding the high-dimensional non-square intervals than any of the basic

grid experiments. In the 3-dimensional variants of the search problem, the experi-

162

0 100 200 300 400 500

experiment size (# trials)

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

random

Sobol

Niederreiter

Halton

grids

0 100 200 300 400 500

experiment size (# trials)

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

random

Sobol

Niederreiter

Halton

grids

0 100 200 300 400 500

experiment size (# trials)

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

random

Sobol

Niederreiter

Halton

grids

0 100 200 300 400 500

experiment size (# trials)

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

random

Sobol

Niederreiter

Halton

grids

3
-D

S
e
a
rc

h
5
-D

S
e
a
rc

h

Hyper-cube Target Hyper-rectangle Target

Figure 7.9: The efficiency in simulation of low-discrepancy sequences relative to
grid and pseudo-random experiments. The simulation tested how reliably various
experiment design methods locate a multidimensional interval occupying 1% of a
unit hyper-cube. There is one grey circle in each sub-plot for every grid of every
experiment size. Low-discrepancy sequences (tested: Sobol, Halton, Niederreiter)
are slightly better than the expected performance (bold black) of pseudo-random
guessing. Hyper-parameter search is most typically like the bottom-right scenario.
Grid search experiments are inefficient for finding elongated regions in high dimen-
sions (i.e., bottom-right). Left: All sides of the target interval have the same length
in 3 and 5 dimensions. Right: The sides of the target interval have different lengths,
finding the target requires higher search resolution in some dimensions than others.

163

ments based on low-discrepancy sequences were more efficient than pseudo-random

experiments when experiments were larger than 20 or 30 trials. However, in the

5-dimensional variants the advantage of low-discrepancy sequences over pseudo-

random experiments disappeared. With just a few hundred trials, the coverage of

low-discrepancy sequences is still so sparse that it is not readily distinguishable

from pseudo-random points.

7.7 Conclusion

Grid search experiments are common in the literature of empirical machine

learning, where they are used to optimize the hyper-parameters of learning algo-

rithms. It is also common to perform multi-stage, multi-resolution grid experiments

that are more or less automated, because a grid experiment with a fine-enough

resolution for optimization would be prohibitively expensive. We have presented

evidence that pseudo-random experiments are more efficient than grid experiments

for hyper-parameter selection for several kinds of learning algorithms on several

datasets. Pseudo-random experiments are more efficient because hyper-parameter

functions in practice include more- and less-important dimensions. Grid search

experiments allocate too many trials to the exploration of dimensions that do not

matter and suffer from poor coverage in dimensions that are critically important.

We find that compared to the grid search experiments of Larochelle et al. (2007),

a single random search is able to search the original experiment space more ef-

ficiently than the heuristic, adaptive, multi-stage grid-based procedure, and using

fewer trials than the original experiments is able to find even better results both

within the original configuration space and beyond. Critically, random search in

these cases is a viable replacement for both the grid experiment and the researcher

having to tune and refine the grid. Random search is a more reliable algorithm for

hyper-parameter selection than grid search, just as easy to implement, just as easy

to parallelize, and can be expected to find better models with fewer jobs.

Random experiments are also easier to carry out than grid experiments for

164

practical reasons related to the statistical independence of every trial.

• The experiment can be stopped any time and the trials form a complete

experiment.

• If extra computers become available, new trials can be added to an experiment

without having to adjust the grid and commit to a much larger experiment.

• Every trial can be carried out asynchronously.

• If the computer carrying out a trial fails for any reason, its trial can be either

abandoned or restarted without jeopardizing the experiment.

Random search is not incompatible with a controlled experiment. To investigate

the effect of one hyper-parameter of interest X, we recommend random search

(instead of grid search) for optimizing over other hyper-parameters. Choose one

set of random values for these remaining hyper-parameters and use that same set

for each value of X.

Random experiments with large numbers of trials also bring attention to the

question of how to measure test error of an experiment when many trials have some

claim to being best. When using a relatively small validation set, the uncertainty

involved in selecting the best model by cross-validation can be larger than the un-

certainty in measuring the test set performance of any one model. It is important

to take both of these sources of uncertainty into account when reporting the uncer-

tainty around the best model found by a model search algorithm. This technique

is useful to all of experiments (including both random and grid) in which multiple

trials achieve approximately the best performance.

Low-discrepancy sequences developed for QMC integration are also good alter-

natives to grid-based experiments. In low dimensions (e.g. 1-4) our simulated re-

sults suggest that they can hold some advantage over pseudo-random experiments,

but that in higher numbers of dimensions this advantage disappears. At the same

time, the trials of a low-discrepancy experiment are not i.i.d. and that makes

it more challenging or impossible (depending on the nature of the sequence) to

165

subdivide one low-discrepancy experiment into several smaller low-discrepancy ex-

periments. It is not generally possible to estimate performance statistics in the ran-

dom efficiency curves from the results of an experiment based on a low-discrepancy

sequence.

Finally, the hyper-parameter optimization strategies considered here are non-

adaptive; that is to say they do not vary the course of the experiment by considering

any results that may already be available. Future work should consider sequential,

adaptive search/optimization algorithms in settings where many hyper-parameters

must be optimized jointly and the effective dimensionality is high. Current work

in that direction is promising (Hutter, 2009; Hutter et al., 2011; Srinivasan and

Ramakrishnan, 2011). We hope that future work in that direction will consider

random search of the form studied here as a baseline for performance, rather than

grid search.

CHAPTER 8

THEANO

Title Theano: A CPU and GPU Math Compiler in Python

Author James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lam-

blin, Razvan Pascanu, Guillaume Desjardins, Joseph Turian,

David Warde-Farley, and Yoshua Bengio

Publication Proceedings of the 9th Python in Science Conference (SCIPY

2010)

Theano is a compiler for mathematical expressions in Python that combines

the convenience of NumPy’s syntax with the speed of optimized native machine

language. The user composes mathematical expressions in a high-level descrip-

tion that mimics NumPy’s syntax and semantics, while being statically typed and

functional (as opposed to imperative). These expressions allow Theano to provide

symbolic differentiation. Before performing computation, Theano optimizes the

choice of expressions, translates them into C++ (or CUDA for GPU), compiles

them into dynamically loaded Python modules, all automatically. Common ma-

chine learning algorithms implemented with Theano are from 1.6× to 7.5× faster

than competitive alternatives (including those implemented with C/C++, NumPy,

and MATLAB) when compiled for the CPU and between 6.5× and 44× faster when

compiled for the GPU. This paper illustrates how to use Theano, outlines the scope

of the compiler, shows benchmarking results on both CPU and GPU processors,

and explains its overall design.

168

8.1 Introduction

Python is a powerful and flexible language for describing large-scale mathemat-

ical calculations, but the Python interpreter is in many cases a poor engine for

executing them. One reason is that Python uses full-fledged Python objects on

the heap to represent simple numeric scalars. To reduce the overhead in numeric

calculations, it is important to use array types such as NumPy’s ndarray so that

single Python objects on the heap can stand for multidimensional arrays of numeric

scalars, each stored efficiently in the host processor’s native format.

NumPy (Oliphant, 2007) provides an N-dimensional array data type, and many

functions for indexing, reshaping, and performing elementary computations (exp,

log, sin, etc.) on entire arrays at once. These functions are implemented in C

for use within Python programs. However, the composition of many such NumPy

functions can be unnecessarily slow when each call is dominated by the cost of

transferring memory rather than the cost of performing calculations (Alted, 2010).

The numexpr library1 goes one step further by providing a loop fusion optimization

that can glue several element-wise computations together. Unfortunately, numexpr

requires an unusual syntax (the expression must be encoded as a string within the

code), and at the time of this writing, numexpr is limited to optimizing element-

wise computations. Cython (Behnel et al., 2009) and scipy.weave2 address Python’s

performance issue by offering a simple way to hand-write crucial segments of code

in C (or a dialect of Python which can be easily compiled to C, in Cython’s case).

While this approach can yield significant speed gains, it is labour-intensive: if the

bottleneck of a program is a large mathematical expression comprising hundreds of

elementary operations, manual program optimization can be time-consuming and

error-prone, making an automated approach to performance optimization highly

desirable.

Theano, on the other hand, works on a symbolic representation of mathemat-

1numexpr: http://code.google.com/p/numexpr/
2SciPy Weave module (http://docs.scipy.org/doc/scipy/reference/tutorial/weave.

html)

169

ical expressions, provided by the user in a NumPy-like syntax. Access to the full

computational graph of an expression opens the door to advanced features such

as symbolic differentiation of complex expressions, but more importantly allows

Theano to perform local graph transformations that can correct many unneces-

sary, slow or numerically unstable expression patterns. Once optimized, the same

graph can be used to generate CPU as well as GPU implementations (the latter

using CUDA) without requiring changes to user code.

Theano is similar to SymPy 3 in that both libraries manipulate symbolic math-

ematical graphs, but the two projects have a distinctly different focus. While

SymPy implements a richer set of mathematical operations of the kind expected in

a modern computer algebra system, Theano focuses on fast, efficient evaluation of

primarily array-valued expressions.

Theano is free open source software, licensed under the New (3-clause) BSD

license. It depends upon NumPy, and can optionally use SciPy. Theano includes

many custom C and CUDA code generators which are able to specialize for par-

ticular types, sizes, and shapes of inputs; leveraging these code generators requires

gcc (CPU) and nvcc (GPU) compilers, respectively. Theano can be extended with

custom graph expressions, which can leverage scipy.weave, PyCUDA, Cython,

and other numerical libraries and compilation technologies at the user’s discretion.

Theano has been actively and continuously developed and used since January 2008.

It has been used in the preparation of numerous scientific papers and as a teaching

platform for machine learning in graduate courses at l’Université de Montéal. Doc-

umentation and installation instructions can be found on Theano’s website.4 All

Theano users should subscribe to the (low traffic) announce mailing list5. There

are medium traffic mailing lists for developer6 discussion and user support7.

This paper is divided as follows: Section 8.2 shows how Theano can be used to

3SymPy: Python Library for Symbolic Mathematics. (http://www.sympy.org/)
4website: http://www.deeplearning.net/software/theano
5Announcements: http://groups.google.com/group/theano-announce
6Developer discussion: http://groups.google.com/group/theano-dev
7User support: http://groups.google.com/group/theano-users

170

solve a simple problem in statistical prediction. Section 8.3 presents some results of

performance benchmarking on problems related to machine learning and expression

evaluation. Section 8.4 gives an overview of the design of Theano and the sort of

computations to which it is suited. Section 8.5 provides a brief introduction to the

compilation pipeline. Section 8.6 outlines current limitations of our implementation

and planned additions to Theano.

8.2 Case Study: Logistic Regression

To get a sense of how Theano feels from a user’s perspective, we will look at

how to solve a binary logistic regression problem. Binary logistic regression is a

classification model parameterized by a weight matrix W and bias vector b. The

model estimates the probability P(Y = 1|x) (which we will denote with shorthand

p) that the input x belongs to class y = 1 as:

P(Y = 1|x(i)) = p(i) =
eWx(i)+b

1 + eWx(i)+b
(8.1)

The goal is to optimize the log probability of N training examples (x(i),y(i))

with respect to W and b (where 0 < i≤ N). To maximize the log likelihood we will

instead minimize the (average) negative log likelihood:

L (NLL)(W,b) =− 1
N ∑

i
y(i) log p(i) +(1− y(i)) log(1− p(i)) (8.2)

To make it a bit more interesting, we can also include an `2 penalty on W ,

giving a cost function L (W,b) defined as:

L (W,b) = L (NLL)(W,b)+ 0.01∑
i

∑
j

w2
i j (8.3)

In this example, tuning parameters W and b will be done through stochastic

gradient descent (SGD) on L (W,b). Stochastic gradient descent is a method for

minimizing a differentiable loss function which is the expectation of some per-

171

example loss over a set of training examples. SGD estimates this expectation with

an average over one or several examples and performs a step in the approximate

direction of steepest descent. Though more sophisticated algorithms for numerical

optimization exist, in particular for smooth convex functions such as L (W,b),

stochastic gradient descent is a competitive method when the number of training

examples is large or when training examples arrive in a continuous stream (Bottou,

1998).

The SGD algorithm repeatedly updates W as follows:

W ←W − ε
1
N′∑i

∂L (W,b)
∂W

∣∣∣∣
x=x(i),y=y(i)

(8.4)

where ε is the learning rate and N′ is the number of examples with which we will

approximate the gradient. The update on b is likewise

b← b− ε
1
N′∑i

∂L (W,b)
∂b

∣∣∣∣
x=x(i),y=y(i)

. (8.5)

Implementing this minimization procedure in Theano involves the following four

conceptual steps:

1. declaring symbolic variables,

2. using these variables to build a symbolic expression graph,

3. compiling Theano functions, and

4. calling said functions to perform numerical computations.

The code listings in Figures 8.1 - 8.4 illustrate these steps with a working program

that fits a logistic regression model to random data.

The code in Figure 8.1 declares four symbolic variables x, y w, and b to represent

the data and parameters of the model. Each tensor variable is strictly typed to

include its data type, its number of dimensions, and the dimensions along which

it may broadcast (like NumPy’s broadcasting) in element-wise expressions. The

172

1: import numpy
2: import theano.tensor as T
3: from theano import shared, function
4:
5: x = T.matrix()
6: y = T.lvector()
7: w = shared(numpy.random.randn(100))
8: b = shared(numpy.zeros(()))
9: print "Initial model:"

10: print w.get_value(), b.get_value()

Figure 8.1: Logistic regression, part 1: declaring variables.

variable x is a matrix of the default data type (float64), and y is a vector of type

long (or int64). Each row x[i] will store an example x(i), and each element y[i]

will store the corresponding label y(i). The number of examples to use at once

represents a trade-off between computational and statistical efficiency.

The shared() function creates shared variables for W and b and assigns them

initial values. Shared variables behave much like other Theano variables, with

the exception that they also have a persistent value. A shared variable’s value

is maintained throughout the execution of the program and can be accessed with

.get_value() and .set_value(), as shown in line 10.

11: p_1 = 1 / (1 + T.exp(-T.dot(x, w)-b))
12: xent = -y*T.log(p_1) - (1-y)*T.log(1-p_1)
13: cost = xent.mean() + 0.01*(w**2).sum()
14: gw,gb = T.grad(cost, [w,b])
15: prediction = p_1 > 0.5

Figure 8.2: Logistic regression, part 2: the computation graph.

The code in Figure 8.2 specifies the computational graph required to perform

stochastic gradient descent on the parameters of our cost function. Since Theano’s

interface shares much in common with that of NumPy, lines 11-15 should be self-

explanatory for anyone familiar with that module. On line 11, we start by defining

P(Y = 1|x(i)) = 1 as the symbolic variable p_1. Notice that the matrix multiplication

and element-wise exponential functions are simply called via the T.dot and T.exp

functions, analogous to numpy.dot and numpy.exp. xent defines the cross-entropy

loss function, which is then combined with the `2 penalty on line 13, to form the

cost function of Eqn. 8.3 and denoted by cost.

Line 14 is crucial to our implementation of SGD, as it performs symbolic dif-

173

ferentiation of the scalar-valued cost variable with respect to variables w and b.

T.grad operates by iterating backwards over the expression graph, applying the

chain rule of differentiation and building symbolic expressions for the gradients

on w and b. As such, gw and gb are also symbolic Theano variables, representing

∂L /∂W and ∂L /∂b respectively. Finally, line 15 defines the actual prediction

(the prediction variable) of the logistic regression by thresholding P(Y = 1|x(i)).

16: predict = function(inputs=[x],
17: outputs=prediction)
18: train = function(
19: inputs=[x,y],
20: outputs=[prediction, xent],
21: updates={w:w-0.1*gw, b:b-0.1*gb})

Figure 8.3: Logistic regression, part 3: compilation.

The code of Figure 8.3 creates the two functions required to train and test our

logistic regression model. Theano functions are callable objects that compute zero

or more outputs from values given for one or more symbolic inputs. For example,

the predict function computes and returns the value of prediction for a given

value of x. Parameters w and b are passed implicitly - all shared variables are

available as inputs to all functions as a convenience to the user.

Line 18 (Figure 8.3) which creates the train function highlights two other

important features of Theano functions: the potential for multiple outputs and

updates. In our example, train computes both the prediction (prediction) of

the classifier as well as the cross-entropy error function (xent). Computing both

outputs together is computationally efficient since it allows for the reuse of in-

termediate computations, such as dot(x,w). The optional updates parameter

enables functions to have side-effects on shared variables. The updates argument is

a dictionary which specifies how shared variables should be updated after all other

computation for the function takes place, just before the function returns. In our

example, calling the train function will update the parameters w and b with new

values as per the SGD algorithm.

Our example concludes (Figure 8.4) by using the functions train and predict

to fit the logistic regression model. Our data D in this example is just four ran-

174

22: N = 4
23: feats = 100
24: D = (numpy.random.randn(N, feats),
25: numpy.random.randint(size=N,low=0, high=2))
26: training_steps = 10
27: for i in range(training_steps):
28: pred, err = train(D[0], D[1])
29: print "Final model:",
30: print w.get_value(), b.get_value()
31: print "target values for D", D[1]
32: print "prediction on D", predict(D[0])

Figure 8.4: Logistic regression, part 4: computation.

dom vectors and labels. Repeatedly calling the train function (lines 27-28) fits

our parameters to the data. Note that calling a Theano function is no different

than calling a standard Python function: the graph transformations, optimizations,

compilation and calling of efficient C-functions (whether targeted for the CPU or

GPU) have all been done under the hood. The arguments and return values of

these functions are NumPy ndarray objects that interoperate normally with other

scientific Python libraries and tools.

8.3 Benchmarking Results

Theano was developed to simplify the implementation of complex high-performance

machine learning algorithms. This section presents performance in two processor-

intensive tasks from that domain: training a Multi-Layer Perceptron (MLP) and

training a convolutional network. We chose these architectures because of their

popularity in the machine learning community and their different computational

demands. Large matrix-matrix multiplications dominate in the MLP example and

two-dimensional image convolutions with small kernels are the major bottleneck

in a convolutional network. More information about these models and their as-

sociated learning algorithms is available from the Deep Learning Tutorials.8 The

implementations used in these benchmarks are available online.9

CPU timing was carried out on an Intel(R) Core(TM)2 Duo CPU E8500 @

3.16GHz with 2 GB of RAM. All implementations were linked against the BLAS

8Deep Learning Tutorials: http://deeplearning.net/tutorial/
9Benchmarking code: http://github.com/pascanur/DeepLearningBenchmarks

175

implemented in the Intel Math Kernel Library, version 10.2.4.032 and allowed to use

only one thread. GPU timing was done on a GeForce GTX 285. CPU computations

were done at double-precision, whereas GPU computations were done at single-

precision.

Our first benchmark involves training a single layer MLP by stochastic gradi-

ent descent. Each implementation repeatedly carried out the following steps: (1)

multiply 60 784-element input vectors by a 784× 500 weight matrix, (2) apply

an element-wise hyperbolic tangent operator (tanh) to the result, (3) multiply the

result of the tanh operation by a 500× 10 matrix, (4) classify the result using a

multi-class generalization of logistic regression, (5) compute the gradient by per-

forming similar calculations but in reverse, and finally (6) add the gradients to

the parameters. This program stresses element-wise computations and the use of

BLAS routines.

Figure 8.5: Fitting a Multi-Layer Perceptron to simulated data with various im-
plementations of stochastic gradient descent. These models have 784 inputs, 500
hidden units, a 10-way classification, and are trained 60 examples at a time.

Figure 8.5 compares the number of examples processed per second across dif-

ferent implementations. We compared Theano (revision #ec057beb6c) against

176

NumPy 1.4.1, MATLAB 7.9.0.529, and Torch 5 (a machine learning library written

in C/C++) 10 on the CPU and GPUMat 0.2511 for MATLAB on the GPU.

When running on the CPU, Theano is 1.8x faster than NumPy, 1.6x faster than

MATLAB, and 7.5x faster than Torch 5. Theano’s speed increases 5.8x on the GPU

from the CPU, a total increase of 11x over NumPy (CPU) and 44x over Torch 5

(CPU). GPUmat brings about a speed increase of only 1.4x when switching to the

GPU for the MATLAB implementation, far less than the 5.8x increase Theano

achieves through CUDA specializations.

Figure 8.6: Fitting a convolutional network using various software packages. The
benchmark stresses convolutions of medium-sized (256 by 256) images with small
(7 by 7) filters.

Because of the difficulty in implementing efficient convolutional networks, we

only benchmark against known libraries that offer a pre-existing implementation.

We compare against EBLearn (Sermanet et al., 2009) and Torch, two libraries writ-

ten in C++. EBLearn was implemented by members of Yann LeCun’s lab at NYU,

who have done extensive research in convolutional networks. To put these results

10Torch5 (http://torch5.sourceforge.net) was designed and implemented with flexibility
in mind, not speed (Ronan Collobert, p.c.).

11GPUmat: GPU toolbox for MATLAB (http://gp-you.org)

177

into perspective, we implemented approximately half (no gradient calculation) of

the algorithm using SciPy’s signal.convolve2d function. This benchmark uses

convolutions of medium sized images (256× 256) with small filters (7× 7). Fig-

ure 8.6 compares the performance of Theano (both CPU and GPU) with that of

competing implementations. On the CPU, Theano is 2.2x faster than EBLearn, its

best competitor. This advantage is owed to the fact that Theano compiles more

specialized convolution routines. Theano’s speed increases 4.9x on the GPU from

the CPU, a total of 10.7x over EBLearn (CPU). On the CPU, Theano is 5.8x faster

than SciPy even though SciPy is doing only half the computations. This is because

SciPy’s convolution routine has not been optimized for this application.

We also compared Theano with numexpr and NumPy for evaluating element-

wise expressions on the CPU (Figure 8.7). For small amounts of data, the extra

function-call overhead of numexpr and Theano makes them slower. For larger

amounts of data, and for more complicated expressions, Theano is fastest because

it uses an implementation specialized for each expression.

1e3 1e5 1e7
0

1

2

3

4

5

6

7

S
p
e
e
d
 u

p
 v

s
N

u
m

P
y

a**2 + b**2 + 2*a*b

1e3 1e5 1e7
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
2*a + 3*b

1e3 1e5 1e7
Dimension of vectors a and b

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

S
p
e
e
d
 u

p
 v

s
N

u
m

P
y

a+1

1e3 1e5 1e7
Dimension of vectors a and b

0

5

10

15

20

25

30

35

40
2*a + b**10

Figure 8.7: CPU Speed comparison between NumPy, numexpr, and Theano for
different sizes of input on four element-wise formulae. In each subplot, the solid blue
line represents Theano, the dashed red line represent numexpr, and performance is
plotted with respect to NumPy.

178

8.4 What kinds of work does Theano support?

Theano’s expression types cover much of the same functionality as NumPy, and

include some of what can be found in SciPy. Table 8.I lists some of the most-used

expressions in Theano. More extensive reference documentation is available on

Theano’s website.

Theano’s strong suit is its support for strided N-dimensional arrays of integers

and floating point values. Signed and unsigned integers of all native bit widths

are supported, as are both single-precision and double-precision floats. Single-

precision and double-precision complex numbers are also supported, but less so - for

example, gradients through several mathematical functions are not implemented.

Roughly 90% of expressions for single-precision N-dimensional arrays have GPU

implementations. Our goal is to provide GPU implementations for all expressions

supported by Theano.

Random numbers are provided in two ways: via NumPy’s random module, and

via an internal generator from the MRG family (L’Ecuyer et al., 1993). Theano’s

RandomStreams replicates the numpy.random.RandomState interface, and acts as

a proxy to NumPy’s random number generator and the various random distribu-

tions that use it. The MRG_RandomStreams class implements a different random

number generation algorithm (called MRG31k3p) that maps naturally to GPU ar-

chitectures. It is implemented for both the CPU and GPU so that programs can

produce the same results on either architecture without sacrificing speed. The

MRG_RandomStreams class offers a more limited selection of random number distri-

butions than NumPy though: uniform, normal, and multinomial.

Sparse vectors and matrices are supported via SciPy’s sparse module. Only

compressed-row and compressed-column formats are supported by most expres-

sions. There are expressions for packing and unpacking these sparse types, some

operator support (e.g. scaling, negation), matrix transposition, and matrix multi-

plication with both sparse and dense matrices. Sparse expressions currently have

no GPU equivalents.

179

Table 8.I: Overview of Theano’s core functionality. This list is not exhaustive, and
is superseded by the online documentation. More details are given in text for items
marked with an asterisk. dimshuffle is like numpy.swapaxes.

Operators +, -, /, *, **, //, eq, neq, <, <=, >, >=, &, |, ^

Allocation alloc, eye, [ones,zeros]_like, identity{_like}

Indexing* basic slicing (see set_subtensor and inc_subtensor

for slicing lvalues); limited support for advanced in-
dexing

Mathematical
Functions

exp, log, tan[h], cos[h], sin[h], real, imag, sqrt,
floor, ceil, round, abs

Tensor
Operations

all, any, mean, sum, min, max, var, prod, argmin,
argmax, reshape, flatten, dimshuffle

Conditional cond, switch

Looping Scan

Linear Algebra dot, outer, tensordot, diag, cholesky, inv, solve

Calculus* grad

Signal
Processing

conv2d, FFT, max_pool_2d

Random RandomStreams, MRG_RandomStreams

Printing Print

Sparse compressed row/col storage, limited operator support,
dot, transpose, conversion to/from dense

Machine Learning sigmoid, softmax, multi-class hinge loss

180

There is also support in Theano for arbitrary Python objects. However, there

are very few expressions that make use of that support because the compilation

pipeline works on the basis of inferring properties of intermediate results. If an

intermediate result can be an arbitrary Python object, very little can be inferred.

Still, it is occasionally useful to have such objects in Theano graphs.

Theano has been developed to support machine learning research, and that has

motivated the inclusion of more specialized expression types such as the logistic

sigmoid, the softmax function, and multi-class hinge loss.

8.5 Compilation by theano.function

What happens under the hood when creating a function? This section outlines,

in broad strokes, the stages of the compilation pipeline. Prior to these stages, the

expression graph is copied so that the compilation process does not change any-

thing in the graph built by the user. As illustrated in Figure 8.8, the expression

graph is subjected to several transformations: (1) canonicalization, (2) stabiliza-

tion, (3) specialization, (4) optional GPU transfer, (5) code generation. There is

some overlap between these transformations, but at a high level they have different

objectives. (The interested reader should note that these transformations corre-

spond roughly, but not exactly to the optimization objects that are implemented

in the project source code.)

8.5.1 Canonicalization

The canonicalization transformation puts the user’s expression graph into a

standard form. For example, duplicate expressions are merged into a single ex-

pression. Two expressions are considered duplicates if they carry out the same

operation and have the same inputs. Since Theano expressions are purely func-

tional (i.e., cannot have side effects), these expressions must return the same value

and thus it is safe to perform the operation once and reuse the result. The symbolic

gradient mechanism often introduces redundancy, so this step is quite important.

181

Canonicalization

Stabilization

Specialization

GPU Transfer

Code Generation

Figure 8.8: The compilation pipeline for functions compiled for GPU. Functions
compiled for the CPU omit the GPU transfer step.

For another example, sub-expressions involving only multiplication and division

are put into a standard fraction form (e.g. a / (((a * b) / c) / d) -> (a *

c * d) / (a * b) -> (c * d) / (b)). Some useless calculations are eliminated

in this phase, for instance cancelling out uses of the a term in the previous ex-

ample, but also reducing exp(log(x)) to x, and computing outright the values

of any expression whose inputs are fully known at compile time. Canonicalization

simplifies and optimizes the graph to some extent, but its primary function is to

collapse many different expressions into a single normal form so that it is easier to

recognize expression patterns in subsequent compilation stages.

8.5.2 Stabilization

The stabilization transformation improves the numerical stability of the com-

putations implied by the expression graph. For instance, consider the function

log(1 + exp(x)), which tends toward zero as limx→−∞, and x as limx→−∞. Due

to limitations in the representation of double precision numbers, the computation

as written yields infinity for x > 709. The stabilization phase replaces patterns

like one with an expression that simply returns x when x is sufficiently large (using

doubles, this is accurate beyond the least significant digit). It should be noted that

182

this phase cannot guarantee the stability of computations. It helps in some cases,

but the user is still advised to be wary of numerically problematic computations.

8.5.2.1 Specialization

The specialization transformation replaces expressions with faster ones. Ex-

pressions like pow(x,2) become sqr(x). Theano also performs more elaborate

specializations: for example, expressions involving scalar-multiplied matrix addi-

tions and multiplications may become BLAS General matrix multiply (GEMM)

nodes and reshape, transpose, and subtensor expressions (which create copies

by default) are replaced by constant-time versions that work by aliasing memory.

Expressions subgraphs involving element-wise operations are fused together (as in

numexpr) in order to avoid the creation and use of unnecessary temporary vari-

ables. For instance, if we denote the a + b operation on tensors as map(+, a, b),

then an expression such as map(+, map(*, a, b), c) would become map(lambda

ai,bi,ci: ai*bi+ci, a, b, c). If the user desires to use the GPU, expressions

with corresponding GPU implementations are substituted in, and transfer expres-

sions are introduced where needed. Specialization also introduces expressions that

treat inputs as workspace buffers. Such expressions use less memory and make

better use of hierarchical memory, but they must be used with care because they

effectively destroy intermediate results. Many expressions (e.g. GEMM and all

element-wise ones) have such equivalents. Reusing memory this way allows more

computation to take place on GPUs, where memory is at a premium.

8.5.3 Moving Computation to the GPU

Each expression in Theano is associated with an implementation that runs on

either the host (a host expression) or a GPU device (a GPU expression). The

GPU-transfer transformation replaces host expressions with GPU expressions. The

majority of host expression types have GPU equivalents and the proportion is

always growing.

183

The heuristic that guides GPU allocation is simple: if any input or output of an

expression resides on the GPU and the expression has a GPU equivalent, then the

GPU equivalent is substituted in. Shared variables storing float32 tensors default

to GPU storage, and the expressions derived from them consequently default to

using GPU implementations. It is possible to explicitly force any float32 variable

to reside on the GPU, so one can start the chain reaction of optimizations and use

the GPU even in graphs with no shared variables. It is possible (though awkward,

and discouraged) to specify exactly which computations to perform on the GPU

by disabling the default GPU optimizations.

Tensors stored on the GPU use a special internal data type with an interface

similar to the ndarray. This data type fully supports strided tensors, and arbitrary

numbers of dimensions. The support for strides means that several operations such

as the transpose and simple slice indexing can be performed in constant time.

8.5.4 Code Generation

The code generation phase of the compilation process produces and loads dynamically-

compiled Python modules with specialized implementations for the expressions in

the computation graph. Not all expressions have C (technically C++) implementa-

tions, but many (roughly 80%) of Theano’s expressions generate and compile C or

CUDA code during theano.function. The majority of expressions that generate

C code specialize the code based on the dtype, broadcasting pattern, and num-

ber of dimensions of their arguments. A few expressions, such as the small-filter

convolution (conv2d), further specialize code based on the size the arguments will

have.

Why is it so important to specialize C code in this way? Modern x86 archi-

tectures are relatively forgiving of code that does not make good use techniques

such as loop unrolling and prefetching contiguous blocks of memory, and only the

conv2d expression goes to any great length to generate many special case implemen-

tations for the CPU. By comparison, GPU architectures are much less forgiving

of code that is not carefully specialized for the size and physical layout of func-

184

tion arguments. In response, the code generators for GPU expressions like GpuSum,

GpuElementwise, and GpuConv2d generate a wider variety of implementations than

their respective host expressions. With the current generation of graphics cards, the

difference in speed between a näıve implementation and an optimal implementation

of an expression as simple as matrix row summation can be an order of magnitude

or more. The fact that Theano’s GPU ndarray-like type supports strided tensors

makes it even more important for the GPU code generators to support a variety

of memory layouts. These compile-time specialized CUDA kernels are integral to

Theano’s GPU performance.

8.6 Limitations and Future Work

While most of the development effort has been directed at making Theano pro-

duce fast code, not as much attention has been paid to the optimization of the

compilation process itself. At present, the compilation time tends to grow super-

linearly with the size of the expression graph. Theano can deal with graphs up

to a few thousand nodes, with compilation times typically on the order of sec-

onds. Beyond that, it can be impractically slow, unless some of the more expensive

optimizations are disabled, or pieces of the graph are compiled separately.

A Theano function call also requires more overhead (on the order of microsec-

onds) than a native Python function call. For this reason, Theano is suited to

applications where functions correspond to expressions that are not too small (see

Figure 8.7).

The set of types and operations that Theano provides continues to grow, but

it does not cover all the functionality of NumPy and covers only a few features of

SciPy. Wrapping functions from these and other libraries is often straightforward,

but implementing their gradients or related graph transformations can be more dif-

ficult. Theano does not yet have expressions for sparse or dense matrix inversion,

nor linear algebra decompositions, although work on these is underway outside

of the Theano trunk. Support for complex numbers is also not as widely imple-

185

mented or as well-tested as for integers and floating point numbers. NumPy arrays

with non-numeric dtypes (strings, Unicode, Python objects) are not supported at

present.

We expect to improve support for advanced indexing and linear algebra in the

coming months. Documentation online describes how to add new operations and

new graph transformations. There is currently an experimental GPU version of the

scan operation, used for looping, and an experimental lazy-evaluation scheme for

branching conditionals.

The library has been tuned for expressions related to machine learning with

neural networks, and it is not as well tested outside of this domain. Theano is not

a powerful computer algebra system, and it is an important area of future work to

improve its ability to recognize numerical instability in complicated element-wise

expression graphs.

Debugging Theano functions can require non-standard techniques and Theano

specific tools. The reason is two-fold: 1) definition of Theano expressions is sepa-

rate from their execution, and 2) optimizations can introduce many changes to the

computation graph. Theano thus provides separate execution modes for Theano

functions, which allows for automated debugging and profiling. Debugging entails

automated sanity checks, which ensure that all optimizations and graph transfor-

mations are safe (Theano compares the results before and after their application),

as well as comparing the outputs of both C and Python implementations.

We plan to extend GPU support to the full range of C data types, but only

float32 tensors are supported as of this writing. There is also no support for sparse

vectors or matrices on the GPU, although algorithms from the CUSPARSE package

should make it easy to add at least basic support for sparse GPU objects.

8.7 Conclusion

Theano is a mathematical expression compiler for Python that translates high

level NumPy-like code into machine language for efficient CPU and GPU compu-

186

tation. Theano achieves good performance by minimizing the use of temporary

variables, minimizing pressure on fast memory caches, making full use of gemm and

gemv BLAS subroutines, and generating fast C code that is specialized to sizes and

constants in the expression graph. Theano implementations of machine learning

algorithms related to neural networks on one core of an E8500 CPU are up to 1.8

times faster than implementations in NumPy, 1.6 times faster than MATLAB, and

7.6 times faster than a related C++ library. Using a Nvidia GeForce GTX285

GPU, Theano is an additional 5.8 times faster. One of Theano’s greatest strengths

is its ability to generate custom-made CUDA kernels, which can not only signifi-

cantly outperform CPU implementations but alternative GPU implementations as

well.

Acknowledgements

Theano has benefited from the contributions of many members of the machine

learning group in the computer science department (Départment d’Informatique et

de Recherche Operationelle) at l’Université de Montréal, especially Arnaud Berg-

eron, Thierry Bertin-Mahieux, Olivier Delalleau, Douglas Eck, Dumitru Erhan,

Philippe Hamel, Simon Lemieux, Pierre-Antoine Manzagol, and François Savard.

The authors acknowledge the support of the following agencies for research funding

and computing support: NSERC, RQCHP, CIFAR, SHARCNET and CLUMEQ.

CHAPTER 9

CONCLUSIONS AND FUTURE WORK

This dissertation examined how to incorporate knowledge of the visual system’s

complex cells into artificial neural networks for image classification. Chapter 3

showed that randomly initialized models based on visual area V1’s complex cells

generalize better from labelled training examples than conventional neural net-

works whose hidden units are more like V1’s simple cells. Chapters 4, 5, and 6

developed interpretations for complex-cell-based visual system models as probabil-

ity distributions and presented tractable algorithms for fitting those distributions

to unlabelled data. Taken together, these results show that complex cell models

are a better foundation for visual object discrimination than simple cell models,

and that unsupervised learning methods can tune them as discriminative features

by modelling images.

This research demanded two auxiliary technical innovations: an algorithm for

selecting model hyper-parameters, and software that could provide symbolic dif-

ferentiation and leverage both CPU and GPU architectures. Chapter 7 presented

random search as an algorithm for model selection, and argued, based on the idea

that hyper-parameter response functions have low effective dimension, that random

search is more efficient than grid search. Chapter 8 described Theano, an optimizing

compiler written in Python, which provides symbolic differentiation and generates

optimized C code for model training and testing routines on the CPU or GPU.

Both of these tools have been useful to me, as well as the other members of the

learning group at the University of Montreal. Now that they have been published,

I hope they will help others outside the lab who are engaged in similar pursuits.

The following sections address open questions for future work to explore.

188

9.1 Hyper-parameter Optimization

As we explore models with increasing numbers of hyper-parameters, it becomes

more important to formalize the practice of hyper-parameter optimization. Ran-

dom search is a first step, but sequential methods such as those of Srinivasan and

Ramakrishnan (2011) and Hutter et al. (2011) offer much greater promise. The key

to the success of these sequential methods is the estimation of a response surface

as results come in, which predicts performance at points that have not yet been

tried. In Chapter 7 I used a Gaussian Process to model the response surface, but

any other prediction method could be considered instead. One particularity to

this prediction problem is that often hyper-parameters are known to be irrelevant,

based on the value of other hyper-parameters (e.g. the number of PCA components

to use is irrelevant when the preprocessing algorithm is not PCA). Future work will

explore how to incorporate this knowledge into prediction algorithms.

9.2 Sum Pooling vs. Max Pooling

Chapter 3 looked at a number of complex-cell-like parameterizations in terms

of their ability to support object discrimination by a linear classifier. Two findings

from those experiments were that (a) an exponent of 2 on rectified linear responses

was better than 1 or 3 (where 3 is more like max-pooling), and (b) for any given

number of linear filters, performance was better when they were grouped into pools.

Both of these findings are consistent with those of Hyvärinen and Köster (2007),

which looked at modelling images using subspace ICA methods (strictly unsuper-

vised learning). The first finding (a) suggests that the max-pooling in convolu-

tional neural networks such as LeCun et al. (1998a) and Riesenhuber and Poggio

(1999) might be less effective than sum-of-squares pooling, but additional empirical

comparisons on various datasets would be necessary to form a conclusion regarding

which is generally better. The second conclusion (b) is potentially inconsistent with

the CIFAR-10 results obtained during hyper-parameter optimization of Chapter 5

on the ssRBM. In that search, I tried models of 100, 200, and 300 hidden units

189

pooling over 1, 2, or 3 linear filters each, and found that 100 hidden units pooling

over 3 linear filters performed less well than 300 hidden units pooling over 1 fil-

ter each. The evidence for inconsistency is weak because the trials of Chapters 3

and 5 involved different datasets, different models, and different classifiers, but the

µ-ssRBM is a good model on which to base an experiment that explores this in-

consistency. It might be that pre-training does more good in single-filter hidden

units than multi-filter hidden units, or it might be the case that the CIFAR-10

dataset is unlike the datasets used in Chapter 3. Max-pooling can be implemented

in ssRBMs by partitioning the binary (spike) hidden variables into groups, in which

at most one unit may be on at a time. This contrasts sum-pooling (Chapter 5),

which occurs across groups of slab variables. It would be interesting to come back

to the question of pool size and the utility of sum-pooling versus max-pooling in

µ-ssRBMs, in which the size of sum-pooling groups and max-pooling groups can

be manipulated independently.

9.3 Scaling with Nested Models

The convolutional architecture presented in Chapter 6 is one option for scaling

ssRBM models up to larger images, but another related architecture that borrows

something from SIFT features and dynamic routing (Grimes and Rao, 2005; Ol-

shausen et al., 1993; Tenenbaum and Freeman, 2000) will offer faster learning and

a more valuable structured image representation.

Suppose that E(0)(v,s,h) denotes the energy of a µ-ssRBM defined for an image-

patch s, a vector of spike variables h, and slab variables s (as described in Chap-

ter 6). Whereas the pooled ssRBM is an energy model of three sets of random

variables (v,s,h), the nested ssRBM (nssRBM) is a model of five sets of random

variables (v,s,h,u,g). The u and g are an additional set of spike and slab variables

that will be nested within the hidden variables s and h. Supposing that the nssRBM

has R hidden units h, each one (hr ∈ {0,1}) of which multiplies some corresponding

190

slab vector sr ∈ RL, the energy function of the nssRBM is

E(1)(v,s,h,u,g) =
R

∑
r=1

v′Trsrhr + E(0)(sr,ur,gr)hr. (9.1)

Each transformation Tr is a linear one that reduces (in inference from v) the poten-

tially large number of pixels in v down to something resembling an image patch in

sr. When all the Tr serve simply to extract image patches, this is similar (except

for the use of h) to the convolutional model presented in Chapter 6. But each Tr

need not simply extract pixel patches, it can be parametrized to fetch sub-images

at various rotations and scales, as well as non-affine shapes - perhaps even arbitrary

linear transforms. My hope is that the various Tr represent the space of features

considered by the SIFT algorithm. As in a convolutional architecture, we can reuse

the same patch model E(0) to recognize familiar shapes under the variety of trans-

formations. We can even use the same learning principles that train the rest of

the model to learn the transformation matrices Tr. If the Tr matrices are them-

selves parametrized by amounts of translation, rotation, and scaling, then those

parameters become latent variables of the model that can themselves be sampled

or optimized for individual examples for even better likelihood. Except for these

latent parameters of each Tr the nested ssRBM adds something like depth without

compromising the tractability of conditional inference.

Preliminary experiments on this sort of model based on sparse coding, rather

than RBM learning, were submitted to NIPS 2010 (Bergstra et al., 2010b). With

E(0) in Eqn. 9.1 implemented by a single Gaussian in sr with mean µ (rather than

an ssRBM), we sampled a fixed set of R = 1000 transformation matrices Tr to span

a range of positions, scales, and orientations, and used the sparse coding algorithm

of Olshausen and Field (1996) to learn a factored sparse coding dictionary formed

by transforming a single source filter µ into 1000 random positions, scales, and

orientations. A model trained from 5000 greyscale CIFAR-10 images is illustrated

in Figure 9.1. Our point in Bergstra et al. (2010b) was that normal (un-factored)

sparse coding models cannot learn such a good dictionary from so few images.

191

Figure 9.1: The single source filter and a subset of the factored sparse coding
dictionary of 1000 elements learnt from just 5000 greyscale CIFAR-10 images.

Another result, not discussed in that manuscript, was that a grid (lattice) allocation

of transformations in location, scale, and orientation Tr is much less efficient than a

randomized allocation. These two results both speak to the tractability of learning

in the nested ssRBM model. There is often a desire to learn everything in a model so

that it fits the data as well as possible, but there are advantages to restricting Tr to

rigid spatial transformations. When Tr is parametrized by amounts of translation,

scaling, and rotation, it is easy to visualize the second-layer components of the

model. It is more natural to put a prior over rigid transformations, so that the

transformations themselves become variables in the model. These coordinates also

suggest an intriguing possibility of identifying hidden units not by an index, but

instead by the amount of rotation, of translation, and of scaling that they effectively

apply to the input. Perhaps this style of encoding can eventually lead to more

structured parameterizations of complex shapes (e.g. “there is a circle-type shape

a bit to the left of a line-type shape”).

9.4 Slow Features in Energy Models

The principle of slowness is appealing, but I feel that the combination of sub-

space ICA-like algorithm with slow-feature regularization used in Chapter 4 is dif-

192

ficult to combine with the energy-based approach in the ssRBM. The decorrelation

term was necessary in a model with explicit quadratic terms such as that of Rust

et al. (2005), because drawing negative samples in such a model is computationally

expensive. In contrast, the ssRBM uses implicit quadratic terms and support effi-

cient Gibbs sampling. Thus the decorrelation part of the training algorithm from

Chapter 4 is unnecessary when using an ssRBM, but the slowness criterion is still

interesting.

Unlike earlier examples of slow feature learning based on regularization, energy-

based models (like other probability models) can actually learn slowness from data.

Any binary latent variable h in an energy model of images can be turned into a

slow feature by an energy term such as the one in Eqn. 9.2,

E(slow)(h(1),h(2)) = [h(1)h(2)]′S[h(1)h(2)]. (9.2)

Slowness requires training on pairs of images rather than individual images. In

Eqn. 9.2, h(1) ∈ {0,1} is a binary hidden unit in the first image, h(2) ∈ {0,1} is the

same binary hidden unit in the second image, and S ∈ R2×2 encodes the energy

contribution of each possible configurations of h(1) and h(2). A negative diagonal

and a positive off-diagonal in S encourage unit h to take the same value in both

images.

9.5 Complex Cell Models and Depth

The term deep learning refers both to the practice of combining unsupervised

learning (pretraining) with supervised learning (finetuning), and to the use of that

practice to train multilayer models. Deep learning architectures such as those of

Hinton et al. (2006); Kavukcuoglu et al. (2010); Lee et al. (2009); Ranzato et al.

(2008); Salakhutdinov and Hinton (2009); Vincent et al. (2008) use layers whose

units operate in a manner consistent with V1 simple cells. The second layer units in

these multilayer models can be seen as pooling together the activations of first layer

units, and thus having the capacity to operate like complex cell models. Hubel and

193

Wiesel (1962) as well as many others since have hypothesized that complex cells

do act on input from simple cells. More recently though, the distinction between

simple and complex cells has come under dispute (Finn and Ferster, 2007; Kouh

and Poggio, 2008; Rust et al., 2005), and by corollary, the idea that simple ones feed

into complex ones. Consequently, I think it is both more useful and more accurate

to think of deep architectures for vision in terms of the connectivity between layers

and the type of each layer, which can vary independently. My work has explored

different types of layers, but not different numbers of them. Many approaches in

the literature to stacking RBMs and DAEs extend naturally to stacking ssRBMs.

The empirical question of how well these approaches work in various applications

is an interesting one for future work.

9.6 Revisiting the Feed-forward Model

In Chapter 2 (Section 2.3.6, “Time, Feedback and Learning in the Visual Sys-

tem”) The feed-forward rate model hypothesis is a statement about how visual

cortex infers the patterns of activity that support effective decision making. It is

a statement about what aspects of neural function in the pathway from the retina

to the visual cortex and beyond are irrelevant to a mathematical understanding of

the perception and judgement of visual input: that the precise timing of spikes is

of limited or no importance; that the numerous backprojections are of limited or

no importance; that the temporal nature of retinal input is of limited or no im-

portance. Any or all of these simplifying assumptions could be false, which could

have various implications for our mathematical and computational understanding

of vision.

For the precise timing of spikes to be important, it would have to be the case

that neurons do in fact organize their firing patterns among a population in ways

that are awkward or impossible to express in rate models (Gray, 1999). The chal-

lenge of artificial vision starts with the mystery of how to make sense of vast pixel

arrays. If it could be demonstrated that the spike patterns of retinal ganglion cells

194

were temporally structured as a population, it could provide modellers with insight

as to why and how spike timing is relevant. On the other hand, if spike timing is

mainly important for its role in Hebbian learning via spike time dependent plastic-

ity, then spike timing may just be a artifact of the neural implementation of learning

algorithms and data structures for representing stimuli that can be implemented

perfectly well in rate models. From a modeling perspective, the successes of various

rate-based models together with the availability of algorithms for optimization and

statistical learning continue to make rate-based models more appealing.

The role of backprojections in inference (short time scale neural activity pat-

terns) is a subject of ongoing debate. On the feed-forward side of the debate we

have models such as Ferster and Miller (2000); Fukushima (1980, 2007); LeCun

et al. (1998a); Riesenhuber and Poggio (1999) in which feedback is perhaps used

for learning, but not for inference at all. On the other extreme are models in which

lateral connections and feedback play a dominant role in inference (Hawkins and

Blakeslee, 2002; Johson and Olshausen, 2003; Karklin and Lewicki, 2003; Lee and

Mumford, 2003; Murray et al., 2002; Olshausen and Field, 1996; Rozell et al., 2008;

Salakhutdinov and Hinton, 2009). In these models backprojections are invoked

to implement inference in probability models where the the posterior distribution

over latent variables is not factorial. There are hybrid models such as predictive

sparse decomposition (Ranzato et al., 2008) that present a feed-forward processing

path as acting as a fast approximate surrogate for a slower, more correct inference

procedure that can be used directly once it has finished, and serves as a training

signal for the fast path. There are also hybrid models such as ARTSCAN and

ARTSCENE that include several feed-forward components, and a few points of

feedback that would use backprojections in a neural implementation (Fazl et al.,

2009; Grossberg, 1987; Grossberg and Huang, 2009). These models invoke back

projections to implement an attentional mechanism that up-regulates or down-

regulates the activities of intermediate variables (neurons). No backprojections are

required for inference in the models I’ve presented in this dissertation, but they

would be required in future work that extends these models to larger systems with

195

more latent variables.

The role of backprojections in learning is also still unclear. The supervised learn-

ing algorithms described in this thesis represent one theory for why backprojections

exist: namely to transport a gradient signal from later stages in the calculation of

a cost function back to the synaptic weights involved with earlier stages of the

computation. The biological plausibility of the error backpropagation algorithm

has been a subject of debate since its introduction twenty five years ago (Arbib,

2003; Rumelhart et al., 1986a). The unsupervised learning algorithms described in

this thesis depend equally on the backward propagation of information, though not

the backpropagation of an error gradient specifically. The negative-phase sampling

involved in fitting RBM-like models requires computations to proceed both from

visible to hidden variables and vice versa. There is some support from the reciprocal

nature of neural connectivity that cells in cortex could be implementing some sort

of blocked Gibbs sampling, but it remains a question for future neurophysiological

exploration (Ungerleider and Pessoa, 2008).

I think the main reason that the temporal aspect of vision has been ignored

is that computational modelling experiments call for simulations that have, in the

past, been too computationally demanding to be practical. There is evidence that

we are able to recognize objects in a scene from a still glimpse (Hung et al., 2005),

but when it comes to learning, there is evidence that eye movements (if not also a

moving environment) are critical to the development of the visual system (Buisseret,

1995; Buisseret et al., 1978). It may be that motion provides the strongest cues to

learning structure in the world, and whatever ability we have to recognize objects

from glimpses is merely a by-product of our learning of that structure. Work on

slow feature learning begins to explore this possibility, but there other possibilities

and I look forward to looking at supervised and unsupervised learning problems on

video in future work.

If if it important to learn from a temporal signal, what sort of video should

we study? If we would like to study the development of the visual system, we

should study the input received by the visual system. It’s not so hard to image

196

obtaining such data: one could attach a camera to a newborn’s forehead and record

its entire lifetime of visual stimulation. With this data, artificial systems could be

pitted against the developing animal on identical perception tasks at many stages

as the animal matures into an adult. Engineers and scientists are great at making

incremental improvements toward a quantitatively defined objective; we should

strive to define an objective that is as relevant as possible to the understanding of

how the brain learns to see.

Although it is certainly important to apply our modelling effort to the right sort

of temporal data, it may also be the case that no video alone is sufficient to train

an artificial visual system. Several behavioural and electrophysiological results on

cats with and without motor control suggest that even the entire history of visual

input to a developing animal is insufficient for the development of a normal visual

system and a normal capacity for visually guided behaviour (Hein et al., 1979;

Held and Hein, 1963). These studies, suggest that is crucial that the visual system

receive proprioceptive feedback from the sensorimotor system regarding what the

animal (particularly its eyes) are doing, so that the brain can develop an under-

standing of how its actions affect its perception. Perhaps this propagation of this

feedback is part of the reason for so many backprojections in the visual system.

To study this sort of development with computer models, we must use real agents

in real environments (autonomous robots with cameras), or else artificial agents in

computer-rendered worlds. Algorithms for reinforcement learning are well devel-

oped, perhaps not to the same level as linear classification algorithms, but I think

to a level that we can use reinforcement learning algorithms to test the represen-

tations inferred by increasingly effective unsupervised models (Sutton and Barto,

1998). On the neuroscience side, behavioural experiments are much easier to per-

form than intracranial recordings, which anyway after many decades leave many

questions unanswered regarding the non-linear behaviour of individual neurons and

the role of plasticity (Olshausen and Field, 2005). Alan Turing described intelli-

gence in terms of behaviour indistinguishable from that of an intelligent agent, and

I think we should bear that in mind more literally as we continue to search for

197

artificial intelligence by machine learning.

BIBLIOGRAPHY

Y. S. Abu-Mostafa. The Vapnik-Chervonenkis dimension: Information ver-

sus complexity in learning. Neural Computation, 1(3):312–317, 1989. doi:

10.1162/neco.1989.1.3.312.

E. H. Adelson and J. R. Bergen. Spatiotemporal energy models for the perception

of motion. Journal of the Optical Society of America, 2(2):284–299, 1985.

E. L. Allwein, R. E. Shapire, and Y. Singer. Reducing multiclass to binary: A

unifying approach for margin classifiers. Journal of Machine Learning Research,

1:113–141, 2000.

F. Alted. Why modern CPUs are starving and what can be done about it. Com-

puting in Science and Engineering, 12(2):68–71, 2010.

J.R. Anderson. The Adaptive Character of Thought. Lawrence Erlbaum Associates,

1990.

I. A. Antonov and V. M. Saleev. An economic method of computing LPτ -sequences.

USSR Computational Mathematics and Mathematical Physics, 19(1):252–256,

1979.

M. A. Arbib. The Handbook of Brain Theory and Neural Networks. MIT Press,

2003.

H. B. Barlow. Possible principles underlying the transformation of sensory mes-

sages. Sensory Communication, pages 217–234, 1961.

M. F. Bear, B. Connors, and M. Paradiso. Neuroscience: Exploring the Brain.

Lippincott Williams & Wilkins, Hagerstown, MD, 2007. ISBN 0-7817-6003-8.

S. Becker and G. E. Hinton. Learning mixture models of spatial coherence. Neural

Computation, 5(2):267–277, 1993.

200

S. Becker, S. Thrun, and K. Obermayer, editors. Advances in Neural Information

Processing Systems 15 (NIPS’02), Cambridge, MA, 2003. MIT Press.

S. Behnel, R. W. Bradshaw, and D. S. Seljebotn. Cython tutorial. In G. Varoquaux,

S. van der Walt, and J. Millman, editors, Proceedings of the 8th Python in Science

Conference, pages 4 – 14, Pasadena, CA USA, 2009.

A. J. Bell and T. J. Sejnowski. An information-maximization approach to blind

separation and blind deconvolution. Neural Computation, 7:1129–1159, 1995.

A. J. Bell and T. J. Sejnowski. The ’independent components’ of natural scenes

are edge filters. Vision Research, 37:3327–3338, 1997.

R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University

Press, New Jersey, 1961.

Y. Bengio. Learning deep architectures for AI. Foundations and Trends in Machine

Learning, 2(1):1–127, 2009. doi: 10.1561/2200000006.

Y. Bengio and X. Glorot. Understanding the difficulty of training deep feedforward

neural networks. In Teh and Titterington (2010), pages 249–256.

Y. Bengio and Y. LeCun. Scaling learning algorithms towards AI. In L. Bottou,

O. Chapelle, D. DeCoste, and J. Weston, editors, Large Scale Kernel Machines.

MIT Press, 2007.

Y. Bengio, O. Delalleau, and N. Le Roux. The curse of highly variable functions

for local kernel machines. In Y. Weiss, B. Schölkopf, and J. Platt, editors,

Advances in Neural Information Processing Systems 18 (NIPS’05), pages 107–

114, Cambridge, MA, 2006. MIT Press.

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training

of deep networks. In Schölkopf et al. (2007), pages 153–160.

201

Y. Bengio, D. Schuurmans, C. Williams, J Lafferty, and A. Culotta, editors.

Advances in Neural Information Processing Systems 22 (NIPS’09), 2009. MIT

Press.

A. C. Berg and J. Malik. Geometric blur and template matching. In Proceedings

of the Computer Vision and Pattern Recognition Conference (CVPR’01), 2001.

J. Bergstra and Y. Bengio. Slow, decorrelated features for pretraining complex

cell-like networks. In Bengio et al. (2009), pages 99–107.

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization.

Journal of Machine Learning Research, 2011. Submitted (11-077).

J. Bergstra, G. Desjardins, P. Lamblin, and Y. Bengio. Quadratic polynomials learn

better image features. Technical Report 1337, Département d’Informatique et

de Recherche Opérationnelle, Université de Montréal, April 2009.

J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins,

J. Turian, and Y. Bengio. Theano: a CPU and GPU math expression com-

piler. In Proceedings of the Python for Scientific Computing Conference (SciPy),

June 2010a. Oral.

J. Bergstra, A. Courville, and Y. Bengio. On the statistical inefficiency of sparse

coding. Submitted to Lafferty et al. (2010)., 2010b.

J. Bergstra, M. Mandel, and D. Eck. Scalable genre and tag prediction with spectral

covariance. In Proceedings of the 11th International Society for Music Informa-

tion Retrieval Conference (ISMIR), pages 507–512, August 2010c.

J. Bergstra, Y. Bengio, and J. Louradour. Suitability of V1 energy models for

object classification. Neural Computation, 23(3):774–790, March 2011a.

J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins,

J. Turian, and Y. Bengio. Deep learning in Python with Theano. Journal of

Machine Learning Research, 2011b. In preparation.

202

P. Berkes and L. Wiskott. Slow feature analysis yields a rich repertoire of complex

cell properties. Journal of Vision, 5(6):579–602, 2005.

P. Berkes, R. E. Turner, and M. Sahani. A structured model of video reproduces pri-

mary visual cortical organizations. PLoS Computational Biology, 5(9):e1000495,

2009a. doi: 10.1371/journal.pcbi.1000495.

P. Berkes, B. L. White, and J. Fiser. No evidence for active sparsification in the

visual cortex. In Bengio et al. (2009), pages 108–116.

C. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,

London, UK, 1995.

G. G. Blasdel and G. Salama. Voltage sensitive dyes reveal a modular organization

in monkey striate cortex. Nature, 321:579–585, 1986.

A. B. Bonds. Role of inhibition in the specification of orientation selectivity of cells

in the cat striate cortex. Vision Neuroscience, 2:41–55, 1989.

A. Bordes, L. Bottou, P. Gallinari, and J. Weston. Solving multiclass support vector

machines with LaRank. In Z. Ghahramani, editor, Proceedings of the Twenty-

fourth International Conference on Machine Learning (ICML’07), pages 89–96.

ACM, 2007.

A. Bordes, L. Bottou, and P. Gallinari. SGD-QN: Careful quasi-newton stochastic

gradient descent. Journal of Machine Learning Research, 10:1737–1754, 2009.

See also ?.

A. Bosch, A. Zisserman, and Munoz X. Representing shape with a spatial pyramid

kernel. In International Conference on Image and Video Retrieval (CIVR), 2007.

L. Bottou. Online algorithms and stochastic approximations. In D. Saad, editor,

Online Learning and Neural Networks. Cambridge University Press, Cambridge,

UK, 1998.

203

P. Bratley, B. L. Fox, and H. Niederreiter. Implementation and tests of low-

discrepancy sequences. Transactions on Modeling and Computer Simulation,

(TOMACS), 2(3):195–213, 1992.

C. E. Bredfeldt and D. L. Ringach. Dynamics of spatial frequency tuning in

macaque V1. Journal of Neuroscience, 22(5):1976–84, March 2002.

M. Brown and D. G. Lowe. Invariant features from interest point groups. In British

Machine Vision Conference (BMVC), pages 656–665, Cardiff, Wales, September

2002.

P. Buisseret. Influence of extraocular muscle proprioception on vision. Physiology

Review, 75:323–338, 1995.

P. Buisseret, E. Gary-Bobo, and M. Imbert. Ocular motility and recovery of orien-

tation properties of visual cortical neurons in dark-reared kittens. Nature, 272:

816–817, 1978.

C. Cadieu. Probabilistic Models of Phase Variables for Visual Representation and

Neural Dynamics. PhD thesis, University of California, Berkeley, 2009.

C. Cadieu and B. A. Olshausen. Learning transformational invariants from natural

movies. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Ad-

vances in Neural Information Processing Systems 21 (NIPS’08), pages 209–216.

MIT Press, 2009.

R. E. Caflisch, W. Morokoff, and A. Owen. Valuation of mortgage backed securities

using brownian bridges to reduce effective dimension, 1997.

M. Carandini. What simple and complex cells compute. Journal of Physiology,

577:463–466, 2006.

M. Carandini and D. J. Heeger. Summation and division by neurons in primate

visual cortex. Science, 264(5163):1333–1336, May 1994.

204

M. A. Carreira-Perpiñan and G. E. Hinton. On contrastive divergence learning. In

R. G. Cowell and Z. Ghahramani, editors, Proceedings of the Tenth International

Workshop on Artificial Intelligence and Statistics (AISTATS’05), pages 33–40.

Society for Artificial Intelligence and Statistics, 2005.

J. R. Cavanaugh, W. Bair, and J. A. Movshon. Nature and interaction of signals

from the receptive field center and surround in macaque V1 neurons. Journal of

Neurophysiology, 88:2530–2546, 2002.

C. Chang and C. Lin. LIBSVM: A Library for Support Vector Machines, 2001.

H. Chen and A. F. Murray. A continuous restricted Boltzmann machine with an

implementable training algorithm. IEE Proceedings of Vision, Image and Signal

Processing, 150(3):153–158, 2003. doi: 10.1049/ip-vis:20030362.

Y. Chen, S. Anand, S. Martinez-Conde, S. L. Macknik, Y. Bereshpolova, H. A.

Swadlow, and J. Alonso. The linearity and selectivity of neuronal responses in

awake visual cortex. Journal of Vision, 9(9):1–17, 2009.

A. Coates, H. Lee, and A. Ng. An analysis of single-layer networks in unsuper-

vised feature learning. NIPS Deep Learning and Unsupervised Feature Learning

Workshop, 2010.

R. Collobert and J. Weston. A unified architecture for natural language processing:

Deep neural networks with multitask learning. In International Conference on

Machine Learning, ICML, 2008.

C. E. Connor, S. L. Brincat, and A. Pasupathy. Transformation of shape infor-

mation in the ventral pathway. Current Opinions in Neurobiology, 17:140–147,

2007.

C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273–297,

1995.

205

A. Courville, J. Bergstra, and Y. Bengio. The spike and slab restricted Boltzmann

machine. NIPS Deep Learning and Unsupervised Feature Learning Workshop,

2010.

A. Courville, J. Bergstra, and Y. Bengio. The spike and slab restricted Boltzmann

machine. In Proc. of The Fourteenth International Conference on Artificial In-

telligence and Statistics (AISTATS’11), 2011a. Accepted.

A. Courville, J. Bergstra, and Y. Bengio. Unsupervised models of images by spike

and slab RBMs. International Conference on Machine Learning (ICML), 2011b.

Submitted.

D. D. Cox and J. J. DiCarlo. Does learned shape selectivity in inferior temporal

cortex automatically generalize across retinal position? Neuroscience, 28(40):

10045–10055, 2008.

D. D. Cox, P. Meier, N. Oertelt, and J. J. DiCarlo. “Breaking” position invariant

object recognition. Nature Neuroscience, 8:1145–1147, 2005.

D. D. Cox, N. Pinto, D. Doukan, B. Cordas, and J. J. DiCarlo. A high-throughput

screening approach to discovering good forms of visual representation. Abstract

and poster, COSYNE, 2008.

C. A. Curcio and K. A. Allen. Topography of ganglion cells in human retina.

Journal of Computational Neurology, 300(1), October 1990.

I. Czogiel, K. Luebke, and C. Weihs. Response surface methodology for optimizing

hyper parameters. Technical report, Universität Dortmund Fachbereich Statistik,

September 2005.

G. E. Dahl, M. Ranzato, A. Mohamed, , and G. E. Hinton. Phone recognition with

the mean-covariance restricted Boltzmann machine. In J. Lafferty, C. Williams,

J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, Advances in Neural In-

formation Processing Systems 23, pages 469–477, 2010.

206

P. Dayan and L. F. Abbott. Theoretical Neuroscience. The MIT Press, 2001.

D. Decoste and B. Schölkopf. Training invariant support vector machines. Machine

Learning, 46:161–190, 2002. doi: 10.1023/A:1012454411458.

E. Doi and M. S. Lewicki. A theory of retinal population coding. In Advances in

Neural Information Processing Systems 19, Cambridge, 2007. MIT Press.

J. Dowling. Retina. Scholarpedia, 2(12):3487, 2007. doi: 10.4249/scholarpedia.3487.

S. S. Drew and T. Homem de Mello. Quasi-monte carlo strategies for stochastic

optimization. In Proc. of the 38th Conference on Winter Simulation, pages 774

– 782, 2006.

S. Edelman, N. Intrator, and T. Poggio. Complex cells and object recognition.

Unpublished, 1997.

D. Erhan, P. Manzagol, Y. Bengio, S. Bengio, and P. Vincent. The difficulty

of training deep architectures and the effect of unsupervised pre-training. In

Proceedings of The Twelfth International Conference on Artificial Intelligence

and Statistics (AISTATS’09), pages 153–160, Clearwater, FL, 2009.

D. Erhan, Y. Bengio, A. Courville, P. Manzagol, P. Vincent, and S. Bengio. Why

does unsupervised pre-training help deep learning? Journal of Machine Learning

Research, 11:625–660, 2010.

M. Galassi et al. GNU Scientific Library Reference Manual, 3rd edition, 2009.

B. F. Farley, H. Yu, D. Z. Jin, and M. Sur. Alteration of visual input results in

a coordinated reorganization of multiple visual cortex maps. Journal of Neuro-

science, 27:10299–10310, 2007.

A. Fazl, S. Grossberg, and E. Mingolla. View-invariant object category learning,

recognition, and search: How spatial and object attention are coordinated using

surface-based attentional shrouds. Cognitive Psychology, 58:1–48, 2009.

207

D. Ferster and K. D. Miller. Neural mechanisms of orientation selectivity in the

visual cortex. Annual Reviews in Neuroscience, 23:441–471, 2000.

D. J. Field. What is the goal of sensory coding? Neural Computation, 6:559–601,

1994.

I. M. Finn and D. Ferster. Computational diversity in complex cells of cat primary

visual cortex. Journal of Neuroscience, 27(36):9638–9648, September 2007.

R. A. Fisher. The use of multiple measurements in taxonomic problems. Ann.

Eugenics, 7(111), 1936.

V. H. Franz, K. R. Gegenfurtner, H. H. Bülthoff, and M. Fahle. Grasping visual

illusions: No evidence for a dissociation between perception and action. Psycho-

logical Science, 11(1):20–25, January 2000. doi: 10.1111/1467-9280.00209.

M. Franzius, H. Sprekeler, and L. Wiskott. Slowness and sparseness lead to place,

head-direction, and spatial-view cells. PLoS Computational Biology, 3(8):e166,

2007.

Y. Freund and D. Haussler. Unsupervised learning of distributions on binary vectors

using two layer networks. Technical Report UCSC-CRL-94-25, University of

California, Santa Cruz, 1994.

K. Fukushima. Neocognitron: A self-organizing neural network model for a mecha-

nism of pattern recognition unaffected by shift in position. Biological Cybernetics,

36(4):193–202, 1980.

K. Fukushima. Neocognitron. Scholarpedia, 2(1):1717, 2007.

J. L. Gallant, C. E. Connor, S. Rakshit, J. W. Lewis, and D. C. Van Essen. Neural

responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque

monkey. Journal of Neurophysiology, 76:2718–2739, 1996.

208

M. A. Goodale and A. D. Milner. Separate visual pathways for perception and

action. Trends in Neuroscience, 15(1):20–25, January 1992. doi: doi:10.1016/

0166-2236(92)90344-8.

C. M. Gray. The temporal correlation hypothesis of visual feature integration: Still

alive and well. Neuron, 24:31–47, 1999.

K. Gregor and Y. LeCun. Learning fast approximations of sparse coding. In L. Bot-

tou and M. Littman, editors, Proceedings of the Twenty-seventh International

Conference on Machine Learning (ICML-10), pages 399–406. ACM, 2010.

D. B. Grimes and R. P.N. Rao. Bilinear sparse coding for invariant vision. Neural

Computation, 17(1):47 – 73, 2005.

S. Grossberg. Competitive learning: From interactive activation to adaptive reso-

nance. Cognitive Science, 11:23–63, 1987.

S. Grossberg and T.-R. Huang. ARTSCENE: A neural system for natural scene

classification. Vision, 9(4):1–19, 2009. doi: 10.1167/9.4.6.

R. Grosse, R. Raina, H. Kwong, and A. Y. Ng. Shift-invariant sparse coding for

audio classification. In Proceedings of the 23th Conference in Uncertainty in

Artificial Intelligence (UAI’07), 2007.

J. H. Halton. On the efficiency of certain quasi-random sequences of points in

evaluating multi-dimensional integrals. Numerische Mathematik, 2:84–90, 1960.

E. J. Hartman, J. D. Keeler, and J. M. Kowalski. Layered neural networks with

Gaussian hidden units as universal approximations. Neural Computation, 2(2):

210–215, 1990.

M. Haüsser and B. Mel. Dendrites: Bug or feature? Current Opinion in Neurobi-

ology, 13:372–383, 2003.

J. Hawkins and S. Blakeslee. On Intelligence. Times Books, New York, 2002.

209

D. J. Heeger. Normalization of cell responses in cat striate cortex. Visual Neuro-

science, 9(2):181–198, 1992.

J. Hegdé and D. C. Van Essen. Selectivity for complex shapes in primate visual

area V2. Journal of Neuroscience, 20:1–6, 2000.

A. Hein, F. Vital-Durand, W. Salinger, and R. Diamond. Eye movements initiate

visual-motor development in the cat. Science, 204:1321–1322, 1979.

R. Held and A. Hein. Movement-produced stimulation in the development of visu-

ally guided behavior. Comparative and Physiological Psychology, 56(5):872–876,

1963.

G. E. Hinton. Training products of experts by minimizing contrastive divergence.

Neural Computation, 14:1771–1800, 2002.

G. E. Hinton. To recognize shapes, first learn to generate images. In P. Cisek,

T. Drew, and J. Kalaska, editors, Computational Neuroscience: Theoretical In-

sights into Brain Function. Elsevier, 2007.

G. E. Hinton. A practical guide to training restricted Boltzmann machines. Tech-

nical Report 2010-003, University of Toronto, 2010. version 1.

G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with

neural networks. Science, 313(5786):504–507, July 2006.

G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief

nets. Neural Computation, 18:1527–1554, 2006.

K. Hornik. Multilayer feedforward networks are universal approximators. Neural

Networks, 2(5):359–366, 1989. doi: 10.1016/0893-6080(89)90020-8.

J. C. Horton. Ocular integration in human visual cortex. Canadian. Journal of

Ophthalmology, 41:584–593, 2006.

210

P. O. Hoyer and A. Hyvärinen. Independent component analysis applied to feature

extraction from colour and stereo images. Network: Computation in Neural

Systems, 11(3):191–210, 2000.

D. Hubel and T. N. Wiesel. Receptive fields and functional architecture of monkey

striate cortex. The Journal of physiology, 195(1):215–43, 1968.

D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functional

architecture in the cat’s visual cortex. Journal of Physiology, 160(1):106–154,

1962.

C. Hung, G. Kreiman, T. Poggio, and J. J. DiCarlo. Fast readout of object identity

from macaque inferior temporal cortex. Science, 310:863–866, 2005.

J. Hurri and A. Hyvärinen. Temporal coherence, natural image sequences, and the

visual cortex. In Becker et al. (2003), pages 141–148.

F. Hutter. Automated Configuration of Algorithms for Solving Hard Computational

Problems. PhD thesis, University of British Columbia, 2009.

F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based optimization

for general algorithm configuration. In LION-5, 2011. Extended version as UBC

Tech report TR-2010-10.

A. Hyvärinen. Statistical models of natural images and cortical visual representa-

tion. Topics in Cognitive Science, 2:251–264, 2009.

A. Hyvärinen and P. O. Hoyer. A two-layer sparse coding model learns simple

and complex cell receptive fields and topography from natural images. Vision

Research, 41(18):2413–2423, 2001.

A. Hyvärinen and U. Köster. Complex cell pooling and the statistics of natural

images. Network: Computation in Neural Systems, 18:81–100, 2007.

A. Hyvärinen and E. Oja. Independent component analysis: Algorithms and ap-

plications. Neural Networks, 13(4–5):411–430, 2000.

211

A. Hyvärinen, P. O. Hoyer, and M. Inki. Topographic independent component

analysis. Neural Computation, 13(7):1527–1558, 2001.

J. S. Johson and B. A. Olshausen. Timecourse of neural signatures of object recog-

nition. Vision, 3:499–512, 2003.

H. E. Jones, W. Wang, and A. M. Sillito. Spatial organization and magnitude of

orientation contrast interactions in primate V1. Journal of Neurophysiology, 88:

2796–2808, 2002.

Y. Karklin and M. S. Lewicki. Learning higher-order structures in natural images.

Network: Computation in Neural Systems, 14:483–499, 2003.

Y. Karklin and M. S. Lewicki. Emergence of complex cell properties by learning to

generalize in natural scenes. Nature, 457:83–86, November 2008. doi: 10.1038/

nature07481.

S. Kastner and L. G. Ungerleider. Mechanisms of visual attention in the human

cortex. Annual Reviews in Neuroscience, 23:315–341, 2000.

K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun. Learning invariant features

through topographic filter maps. In Proceedings of the Computer Vision and

Pattern Recognition Conference (CVPR’09). IEEE Press, 2009.

K. Kavukcuoglu, P. Sermanet, Y. Boureau, K. Gregor, M. Mathieu, and Y. LeCun.

Learning convolutional feature hierarchies for visual recognition. In NIPS, 2010.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated anneal-

ing. Science, 220(4598):671–680, 1983.

E. Kobatake and K. Tanaka. Neuronal selectivities to complex object features in

the ventral visual pathway of the macaque cerebral cortex. Journal of Neuro-

physiology, 71:856–867, 1994.

212

T. Kohonen. Emergence of invariant-feature detectors in the adaptive-subspace

self-organizing map. Biological Cybernetics, 75(4):281–291, 1996. doi: 10.1007/

s004220050295.

D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors. Advances in Neural

Information Processing Systems 21 (NIPS’08), 2009. MIT Press.

K. P. Körding, C. Kayser, W. Einhäuser, and P. König. How are complex cell prop-

erties adapted to the statistics of natural stimuli? Journal of Neurophysiology,

91:206–212, 2004.

M. M. Kouh and T. T. Poggio. A canonical neural circuit for cortical nonlinear

operations. Neural Computation, 20(6):1427–51, 2008.

G. Kreiman, C. P. Hung, A. Kraskov, R. Q. Quiroga, T. Poggio, and J. J. DiCarlo.

Object selectivity of local field potentials and spikes in the macaque inferior

temporal cortex. Neuron, 49:433–445, 2006. doi: 10.1016/j.neuron.2005.12.019.

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical

report, University of Toronto, 2009.

A. Krizhevsky. Convolutional deep belief networks on CIFAR-10. Technical report,

University of Toronto, 2010.

J. Lafferty, C. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors.

Advances in Neural Information Processing Systems 23, 2010. MIT Press.

H. Larochelle and Y. Bengio. Classification using discriminative restricted Boltz-

mann machines. In W. W. Cohen, A. McCallum, and S. T. Roweis, editors,

Proceedings of the Twenty-fifth International Conference on Machine Learning

(ICML’08), pages 536–543. ACM, 2008.

H. Larochelle and G. E. Hinton. Learning to combine foveal glimpses with a third-

order Boltzmann machine. In Lafferty et al. (2010), pages 1243–1251.

213

H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical

evaluation of deep architectures on problems with many factors of variation. In

Z. Ghahramani, editor, Proceedings of the Twenty-fourth International Confer-

ence on Machine Learning (ICML’07), pages 473–480. ACM, 2007.

S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid

matching for recognizing natural scene categories. In Proceedings of the Computer

Vision and Pattern Recognition Conference (CVPR’06), 2006.

N. Le Roux, P. Manzagol, and Y. Bengio. Topmoumoute online natural gradient

algorithm. In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Ad-

vances in Neural Information Processing Systems 20, pages 849–856. MIT Press,

Cambridge, MA, 2008.

Y. LeCun. The MNIST database of handwritten digits. http://yann.lecun.com/

exdb/mnist/, 1998-.

Y. LeCun. Une procedure d’apprentissage pour reseau a seuil assymetrique. In

Proc. of Cognitiva 85: A la Frontiere de l’Intelligence Artificielle des Sciences

de la Connaissance des Neurosciences, pages 599–604, Paris, 1985.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,

and L. D. Jackel. Backpropagation applied to handwritten zip code recognition.

Neural Computation, 1(4):541–551, 1989.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11):2278–2324, November

1998a.

Y. LeCun, L. Bottou, G. Orr, and K. Muller. Efficient backprop. In G. Orr and

K. Muller, editors, Neural Networks: Tricks of the Trade. Springer, 1998b.

Y. LeCun, F. Huang, and L. Bottou. Learning methods for generic object recogni-

tion with invariance to pose and lighting. In Proceedings of the Computer Vision

214

and Pattern Recognition Conference (CVPR’04), volume 2, pages 97–104, Los

Alamitos, CA, USA, 2004. IEEE Computer Society. doi: 10.1109/CVPR.2004.

144.

P. L’Ecuyer, F. Blouin, and R. Couture. A search for good multiple recursive

generators. ACM Transactions on Modeling and Computer Simulation, 3:87–98,

1993.

H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding algorithms. In

B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information

Processing Systems 19 (NIPS’06), pages 801–808. MIT Press, 2008a.

H. Lee, C. Ekanadham, and A. Y. Ng. Sparse deep belief net model for visual

area V2. In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances

in Neural Information Processing Systems 20 (NIPS’07), pages 873–880, Cam-

bridge, MA, 2008b. MIT Press.

H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks

for scalable unsupervised learning of hierarchical representations. In L. Bottou

and M. Littman, editors, Proceedings of the Twenty-sixth International Confer-

ence on Machine Learning (ICML’09). ACM, 2009.

T. S. Lee and D. Mumford. Hierarchical Bayesian inference in the visual cortex.

Journal of the Optical Society of America A, 20(7):1434–1448, 2003.

G. Leuba and R. Kraftsik. Changes in volume, surface estimate, three-dimensional

shape and total number of neurons of the human primary visual cortex from

midgestation until old age. Anatomy and Embryology, 190(4):351–366, 1994.

doi: 10.1007/BF00187293.

N. Li and J. J. DiCarlo. Unsupervised natural experience rapidly alters invariant

object representation in visual cortex. Science, 321(5895):1502–1507, 2008.

G. Loosli, S. Canu, and L. Bottou. Training invariant support vector machines

using selective sampling. In L. Bottou, O. Chapelle, D. DeCoste, and J. Weston,

215

editors, Large Scale Kernel Machines, pages 301–320. MIT Press, Cambridge,

MA., 2007.

D. G. Lowe. Object recognition from local scale-invariant features. In Proceedings

of the International Conference on Computer Vision 2 (ICCV), pages 1150–1157,

1999. doi: 10.1109/ICCV.1999.790410.

D. G. Lowe. Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision, 60(2):91–110, 2004.

S. Lyu and E. P. Simoncelli. Statistically and perceptually motivated nonlinear

image representation. In B. E. Rogowitz, T. N. Pappas, and S. J. Daly, editors,

Proc. SPIE, Conf. on Human Vision and Electronic Imaging XII, volume 6492,

pages 67–91. Society of Photo-Optical Instrumentation, 2007. doi: 10.1117/12.

729071.

J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization

and sparse coding. Journal of Machine Learning Research, 11:10–60, 2010.

J. Martens. Deep learning via hessian-free optimization. In L. Bottou and

M. Littman, editors, Proceedings of the Twenty-seventh International Confer-

ence on Machine Learning (ICML-10), pages 735–742. ACM, 2010.

J. H. R. Maunsell and S. Treue. Feature-based attention in visual cortex. Trends

in Neuroscience, 29:317–322, 2006.

C. McCollough. Adaptation of edge-detectors in the human visual system. Science,

149:1115–1116, 1965.

M. L. Minksy and S. A. Papert. Perceptrons. MIT Press, Cambridge, MA, 1969.

T. J. Mitchell and J. J. Beauchamp. Bayesian variable selection in linear regression.

J. Amer. Statistical Assoc., 83(404):1023–1032, 1988.

216

M. Mobahi, R. Collobert, and J. Weston. Deep learning from temporal coherence

in video. In L. Bottou and M. Littman, editors, Proceedings of the Twenty-sixth

International Conference on Machine Learning (ICML’09). ACM, 2009.

J. A. Movshon, I. D. Thompson, and D. J. Tolhurst. Receptive field organization of

complex cells in the cat’s striate cortex. Journal of Physiology, 283:79–99, 1978.

S. O. Murray, D. Kersten, B. A. Olshausen, P. Schrater, and D. L. Woods. Shape

perception reduces activity in human primary visual cortex. Proceedings of the

National Academy of Science, 99(23):15164–15169, 2002.

J. Mutch and D. G. Lowe. Object class recognition and localization using sparse

features with limited receptive fields. International Journal of Computer Vision

(IJCV), 80:45–57, 2008.

V. Nair and G. E. Hinton. Implicit mixtures of restricted Boltzmann machines. In

Koller et al. (2009), pages 1145–1152.

V. Nair and G. E. Hinton. Rectified linear units improve restricted Boltzmann

machines. In J. Fürnkranz and T. Joachims, editors, Proceedings of the 27th In-

ternational Conference on Machine Learning (ICML-10), pages 807–814, Haifa,

Israel, June 2010. Omnipress.

K. I. Naka and W. A. Rushton. S-potentials from luminosity units in the retina of

fish (cyprinidae). The Journal of physiology, 185(3):587–99, 1966.

A. Nareyek. Choosing search heuristics by non-stationary reinforcement learning.

Applied Optimization, 86:523–544, 2003.

R. M. Neal. Bayesian Learning for Neural Networks. PhD thesis, Dept. of Computer

Science, University of Toronto, 1994.

R. M. Neal. Assessing relevance determination methods using DELVE. In C. M.

Bishop, editor, Neural Networks and Machine Learning, pages 97–129. Springer-

Verlag, 1998.

217

J. A. Nelder and R. Mead. A simplex method for function minimization. The

Computer Journal, 7:308–313, 1965.

D. Q. Nykamp and D. L. Ringach. Full identification of a linear-nonlinear system

via cross-correlation analysis. Journal of Vision, 2:1–11, 2002.

T. E. Oliphant. Python for scientific computing. Computing in Science & Engi-

neering, 9:10, 2007.

B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties

by learning a sparse code for natural images. Nature, 381:607–691, 1996.

B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: a

strategy employed by V1? Vision Research, 37:3311–3325, December 1997.

B. A. Olshausen and D. J. Field. How close are we to understanding V1? Neural

Computation, 17:1665–1699, 2005.

B. A. Olshausen, C. H. Anderson, and D. C. Van Essen. A neurobiological model

of visual attention and invariant pattern recognition based on dynamical routing

of information. Neuroscience, 13(11):4700–4719, November 1993.

A. Pasupathy and C. E. Connor. Shape representation in area V4: Position-specific

tuning for boundary conformation. Journal of Neurophysiology, 86:2505–2519,

2001.

B. Pesaran, M. J. Nelson, and R. A. Andersen. Dorsal premotor neurons encode

the relative position of the hand, eye, and goal during reach planning. Neuron,

51(1):125–34, 2006.

A. Peters, B. R. Payne, and J. Budd. A numerical analysis of the geniculocortical

input to striate cortex in the monkey. Cerebral Cortex, 4:215–229, 1994.

N. Pinto, D. D. Cox, and J. J. DiCarlo. Why is real-world visual object recognition

hard? PLoS Computational Biology, 4(1), 2008. doi: doi:10.1371/journal.pcbi.

0040027.

218

N. Pinto, D. Doukhan, J. J. DiCarlo, and D. D. Cox. A high-throughput screening

approach to discovering good forms of biologically inspired visual representation.

PLoS Comput Biol, 5(11):e1000579, 11 2009.

K. Popper. Logik der Forschung. Julius Springer Verlag, Vienna, 1935.

M. J. D. Powell. A direct search optimization method that models the objective

and constraint functions by linear interpolation. Advances in Optimization and

Numerical Analysis, pages 51–67, 1994.

R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: Transfer

learning from unlabeled data. In Z. Ghahramani, editor, Proceedings of the

Twenty-fourth International Conference on Machine Learning (ICML’07), pages

759–766. Omnipress, 2007.

M. Ranzato and G. E. Hinton. Modeling pixel means and covariance using fac-

torized third-order Boltzmann machines. In Proceedings of the Computer Vision

and Pattern Recognition Conference (CVPR’10). IEEE Press, 2010.

M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun. Efficient learning of sparse

representations with an energy-based model. In Schölkopf et al. (2007), pages

1137–1144.

M. Ranzato, Y. Boureau, and Y. LeCun. Sparse feature learning for deep belief

networks. In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances

in Neural Information Processing Systems 20 (NIPS’07), pages 1185–1192. MIT

Press, 2008.

M. Ranzato, A. Krizhevsky, and G. E. Hinton. Factored 3-way restricted Boltzmann

machines for modeling natural images. In Teh and Titterington (2010).

M. Ranzato, V. Mnih, and G. Hinton. Generating more realistic images using gated

MRF’s. In Lafferty et al. (2010), pages 2002–2010.

219

R. P. N. Rao and D. H. Ballard. Predictive coding in the visual cortex: a functional

interpretation of some extra-classical receptive-field effects. Nature Neuroscience,

2(1), January 1999.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.

MIT Press, 2006.

P. A. Rhodes. Recoding patterns of sensory input: Higher-order features and

the function of nonlinear dendritic trees. Neural Computation, 20(8):2000–2036,

2008.

M. Riesenhuber and T. Poggio. Hierarchical models of object recognition in cortex.

Nature Neuroscience, 2:1019–1025, 1999.

F. Rosenblatt. Principles of Neurodynamics. Spartam Books, 1962.

C. J. Rozell, D. H. Johnson, R. G. Baraniuk, and B. A. Olshausen. Sparse coding

via thresholding and local competition in neural circuits. Neural Computation,

20:2526–2563, 2008.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by

back-propagating errors. Nature, 323:533–536, 1986a.

D. E. Rumelhart, J. L. McClelland, and the PDP Research Group. Parallel Dis-

tributed Processing: Explorations in the Microstructure of Cognition, volume 1.

MIT Press, Cambridge, 1986b.

N. Rust, O. Schwartz, J. A. Movshon, and E. Simoncelli. Spatiotemporal elements

of macaque V1 receptive fields. Neuron, 46(6):945–956, 2005.

R. Salakhutdinov and G. E. Hinton. Deep Boltzmann machines. In Proceedings

of The Twelfth International Conference on Artificial Intelligence and Statistics

(AISTATS’09), volume 5, pages 448–455, Clearwater, FL, April 2009.

220

R. Salakhutdinov, A. Mnih, and G. E. Hinton. Restricted Boltzmann machines

for collaborative filtering. In Z. Ghahramani, editor, Proceedings of the Twenty-

fourth International Conference on Machine Learning (ICML’07), pages 791–

798, New York, NY, 2007. ACM.

T. Sato, T. Kawamura, and E. Iwai. Responsiveness of inferotemporal single units

to visual pattern stimuli in monkeys performing discrimination. Experimental

Brain Research, 38:313–319, 1980.

B. Schölkopf, J. Platt, and T. Hoffman, editors. Advances in Neural Information

Processing Systems 19 (NIPS’06), 2007. MIT Press.

N. N. Schraudolph. Fast curvature matrix-vector products for second-order gradient

descent. Neural Computation, 14(7):1723–1738, 2002.

N. N. Schraudolph and T. Graepel. Combining conjugate direction methods with

stochastic approximation of gradients. In Proceedings of the Ninth International

Workshop on Artificial Intelligence and Statistics (AISTATS), pages 7–13. Soci-

ety for Artificial Intelligence and Statistics, 2003.

N. N. Schraudolph, J. Yu, and S. Günter. A stochastic quasi-newton method

for online convex optimization. In Proceedings of the Eleventh International

Conference on Artificial Intelligence and Statistics (AISTATS’07), pages 436–

443. Journal of Machine Learning Research, 2007.

P. Sermanet, K. Kavukcuoglu, and Y. LeCun. EBLearn: Open-source energy-based

learning in C++. In Proc. International Conference on Tools with Artificial

Intelligence (ICTAI’09). IEEE, 2009.

T. Serre, G. Kreiman, M. Kouh, C. Cadieu, U. Knoblich, and T. Poggio. A quanti-

tative theory of immediate visual recognition. Progress in Brain Research, Com-

putational Neuroscience: Theoretical Insights into Brain Function, 165:33–56,

2007a.

221

T. Serre, A. Oliva, and T. Poggio. A feedforward architecture accounts for rapid

categorization. Proceedings of the National Academy of Sciences, USA, 104(15):

6424–6429, 2007b. doi: 10.1073/pnas.0700622104.

L. Shams and C. von der Malsburg. The role of complex cells in object recognition.

Vision Research, 42(22):2547–2554, 2002.

E. P. Simoncelli and B. A. Olshausen. Natural image statistics and neural repre-

sentations. Annual Reviews in Neuroscience, 24:1193–1216, 2001.

P. Smolensky. Information processing in dynamical systems: Foundations of har-

mony theory. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Dis-

tributed Processing: Explorations in the Microstructure of Cognition. Volume 1:

Foundations. MIT Press, Cambridge, MA, 1986.

H. Sprekeler, C. Michaelis, and L. Wiskott. Slowness: An objective for spike-timing-

dependent plasticity? PLoS Computational Biology, 3(6):e112, June 2007. doi:

doi:10.1371/journal.pcbi.0030112.

A. Srinivasan and G. Ramakrishnan. Parameter screening and optimisation for ILP

using designed experiments. Journal of Machine Learning Research, 12:627–662,

February 2011.

I. H. Stevenson, B. Cronin, M. Sur, and K. P. Körding. Sensory adaptation and

short term plasticity as Bayesian correction for a changing brain. PLoS ONE, 5

(8):e12436, 2010. doi: 10.1371/journal.pone.0012436.

I. Sutskever, G. E. Hinton, and G. Taylor. The recurrent temporal restricted

Boltzmann machine. In Koller et al. (2009), pages 1601–1608.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT

Press, Cambridge, MA, 1998.

N. V. Swindale. Visual map. Scholarpedia, 3(6):4607, 2008. doi: 10.4249/

scholarpedia.4607.

222

G. Taylor and G. E. Hinton. Factored conditional restricted Boltzmann machines

for modeling motion style. In L. Bottou and M. Littman, editors, Proceedings

of the 26th International Conference on Machine Learning (ICML’09), pages

1025–1032, Montreal, June 2009. Omnipress.

Y. W. Teh and M. Titterington, editors. Proc. of The Thirteenth International

Conference on Artificial Intelligence and Statistics (AISTATS’10), 2010.

J. B. Tenenbaum and W. T. Freeman. Separating style and content with bilinear

models. Neural Computation, 12(6):1247–1283, 2000.

T. Tieleman. Training restricted Boltzmann machines using approximations to the

likelihood gradient. In W. W. Cohen, A. McCallum, and S. T. Roweis, editors,

Proceedings of the Twenty-fifth International Conference on Machine Learning

(ICML’08), pages 1064–1071. ACM, 2008.

A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: A large dataset

for non-parametric object and scene recognition. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 30(11):1958–1970, 2008.

J. Turian, J. Bergstra, and Y. Bengio. Quadratic features and deep architectures for

chunking. In North American Chapter of the Association for Computational Lin-

guistics - Human Language Technologies (NAACL HLT), pages 245–248, Boul-

der, Colorado, June 2009. Association for Computational Linguistics.

A. Turing. Computing machinery and intelligence. Mind, 59(236):433–60, 1950.

C. W. Ueberhuber. Minimization methods. In Numerical Computation (Volume

2), pages 325–335. Springer, 1997.

Ungerleider and Mishkin. Two cortical visual systems. In D. J. Ingle, M. A.

Goodale, and R. J. W. Mansfield, editors, Analysis of Visual Behavior. MIT

Press, 1982.

223

L. G. Ungerleider and L. Pessoa. What and where pathways. Scholarpedia, 3(11):

5342, 2008.

V. N. Vapnik. Estimation of Dependences based on Empirical Data: Addendum 1.

Springer Verlag, 1982.

V. N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1989.

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York,

1995.

V. N. Vapnik and A. Chervonenkis. On the uniform convergence of the relative

frequencies of events to their probablities. Theory Prob. Appl., 16:264–280, 1971.

V. N. Vapnik, E. Levin, and Y. LeCun. Measuring the VC-dimension of a learning

machine. Neural Computation, 6(5):851 – 876, 1994. doi: 10.1162/neco.1994.6.

5.851.

P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol. Extracting and composing

robust features with denoising autoencoders. In W. W. Cohen, A. McCallum, and

S. T. Roweis, editors, Proceedings of the Twenty-fifth International Conference

on Machine Learning (ICML’08), pages 1096–1103. ACM, 2008.

P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. A. Manzagol. Stacked

denoising autoencoders: Learning useful representations in a deep network with

a local denoising criterion. Machine Learning Research, 11:3371–3408, 2010.

L. Von Melchner, S. L. Pallas, and M. Sur. Visual behavior mediated by retinal

projections directed to the auditory pathway. Nature, 404:871–876, 2000.

M. J. Wainwright, O. Schwartz, and E. P. Simoncelli. Natural image statistics

and divisive normalization: Modeling nonlinearity and adaptation in cortical

neurons. In Probabilistic Models of the Brain: Perception and Neural Function,

pages 203–222. MIT Press, 2002.

224

T. Weise. Global Optimization Algorithms - Theory and Application. Self-

Published, second edition, 2009. Online available at http://www.it-weise.de/.

M. Welling, G. E. Hinton, and S. Osindero. Learning sparse topographic represen-

tations with products of Student-t distributions. In Becker et al. (2003), pages

1359–1366.

M. Welling, M. Rozen-Zhi, and G. E. Hinton. Exponential family harmoniums with

an application to information retrieval. In L. K. Saul, Y. Weiss, and L. Bottou,

editors, Advances in Neural Information Processing Systems 17 (NIPS’04), pages

1481–1488, Cambridge, MA, 2005. MIT Press.

J. Weston, F. Ratle, and R. Collobert. Deep learning via semi-supervised embed-

ding. In W. W. Cohen, A. McCallum, and S. T. Roweis, editors, Proceedings

of the Twenty-fifth International Conference on Machine Learning (ICML’08),

pages 1168–1175, Helsinki, Finland, 2008. ACM. doi: 10.1145/1390156.1390303.

C. K. I. Williams. Continuous-valued Boltzmann machines. Unpublished

Manuscript, March 1993.

C. K. I. Williams. On a connection between kernel PCA and metric multidimen-

sional scaling. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances

in Neural Information Processing Systems 13 (NIPS’00), pages 675–681. MIT

Press, 2001.

H. R. Wilson and J. D. Cowan. Excitatory and inhibitory interactions in localized

populations of model neurons. Biophysical Journal, 12(1):1–24, Jan 1972.

L. Wiskott and T. Sejnowski. Slow feature analysis: Unsupervised learning of

invariances. Neural Computation, 14(4):715–770, 2002.

R. Wyss, P. König, and P. Verschure. A model of the ventral visual system based

on temporal stability and local memory. PLoS Biology, 4(120), 2006.

225

L. Younes. On the convergence of Markovian stochastic algorithms with rapidly

decreasing ergodicity rates. In Stochastics and Stochastics Models, pages 177–

228, 1998.

R. S. Zemel, C. K. I. Williams, and M. Mozer. Directional-unit Boltzmann ma-

chines. In Advances in Neural Information Processing Systems 5 (NIPS’92),

pages 172–179, San Francisco, CA, 1993. Morgan Kaufmann Publishers Inc.

C. Zetzsche, G. Krieger, and B. Wegmann. The atoms of vision: Cartesian or

polar? Journal of the Optical Society of America A, 16(7):1554–1565, 1999. doi:

10.1364/JOSAA.16.001554.

