
1

SD 121 – © Prof. D.A. Clausi

SYDE 121 
Section 1 - Introduction

• Today:
– 1.1 Computing Basics
– 1.2 Computing History
– 1.3 Computer Systems
– 1.4 Algorithms

• Readings:
– Ch. 1 Savitch (course text)
– SD121 Style Guide (on website) (Note: you 

will have to review this document as we 
progress through the course) 

SD 121 – © Prof. D.A. Clausi

1.1 Computing Basics

• What is a computer??
– device used to process data and/or information

data:  raw inputs
information: transformation of data into 

something meaningful

SD 121 – © Prof. D.A. Clausi

1.1 Computing Basics (cont.)

• Why do engineers learn about computers?
– essential tool for an engineer
– industry demands
– perform computational tasks
– life-skill:  add to 3 R’s
– develop logical problem solving skills

SD 121 – © Prof. D.A. Clausi

1.1 Computing Basics (cont.)

• What are computers used for??
– computations:  Matlab
– graphics:  CAD, image analysis
– business and management:  spreadsheets, scheduling
– communication:  email, cellular telephones
– automation:  robotics, HVAC
– information technology (IT): internet, GIS
– education

SD 121 – © Prof. D.A. Clausi

1.1 Computing Basics (cont.)

• Advantages of using a computer?
– performs calculations faster and more reliably 

than a human
– once algorithm works, can be applied over and 

over
– no fatigue
– do not have to pay the computer a salary!
– cheaper to simulate design first and then test

SD 121 – © Prof. D.A. Clausi

1.1 Computing Basics (cont.)

• Disadvantages of using a computer?
– special cases must be accounted for
– cannot “think” ... yet!
– frustrating/intimidating especially for first time users
– difficulties with qualitative reasoning/decision making
– expense (initial outlay, upkeep)
– usually quite difficult if not impossible to simulate the 

real world perfectly



2

SD 121 – © Prof. D.A. Clausi

1.2 Computer History Bits

• earliest computer? abacus ~2600 B.C.
• automatic mechanical calculator (Pascal, 1642)
• 1621: first slide rule
• Charles Babbage (1791 - 1871): father of modern 

computing
• Augusta Ada (1815 - 1853): iterative structures
• Alan Turing (1937): hypothetical machine
• Claude E. Shannon: boolean logic and switching circuits
• John Atanasoff (1939) built the ABC (Atanasoff Berry 

Computer) - first computer to use vacuum tubes
SD 121 – © Prof. D.A. Clausi

1.2 Computer History Bits (cont.)
• Collusus: machine used in WWII to break enemy codes
• Howard Aiken (1939) began work on a program controlled 

computer, the Mark I
• during Mark II development, dead moth caused relay to 

fail; the first computer “bug”!!!
• ENIAC (Electronic Numerical Integrator and Calculator) 

(1946); first large-scale computer (18,000 vacuum tubes)
• 1947: transistor
• UNIVAC (1951): first commercial computer
• 1954: development of Fortran; first high level 

programming language

SD 121 – © Prof. D.A. Clausi

1.2 Computer History Bits (cont.)
• 1959: first integrated circuit
• 1962: Paul Baran of RAND develops the idea of 

distributed, packet-switching networks
• 1963: PDP-1, first microcomputer
• 1964: IBM SYSTEM/360
• 1969: ARPANET goes online
• 1973: Basic aspects of Internet created
• 1977:  advent of first completely assembled personal 

computers (Apple Computer, Radio Shack, and 
Commodore)
– e.g. Apple II sold for $1,200, 16k of RAM, no monitor

SD 121 – © Prof. D.A. Clausi

1.2 Computer History Bits (cont.)
• 1981: first IBM PC appears
• 1982: TCP/IP (Transmission Control Protocol and 

Internet Protocol) is established as the standard for 
ARPANET

• 1984: Apple Macintosh debuts; GUI; 8-MHz, 32-
bit Motorola 68000 CPU; built-in 9” B/W screen

• 1984: MIDI standards established
• 1984: CD-ROM introduced
• 1985: Microsoft Windows 1.0 ships
• 1985: C++ issued (Bell Labs)

SD 121 – © Prof. D.A. Clausi

1.2 Computer History Bits (cont.)

• 1988: worm released on Internet
• 1989: Number of network hosts breaks 100,000.
• 1989: Tim Berners-Lee proposes WWW to CERN
• 1989: IRC implemented
• 1991: First webserver released
• 1993: Mosaic (webbrowser) released
• 1995: Java released
• 1996: 1 of 3 U.S. homes has a PC

SD 121 – © Prof. D.A. Clausi

1.3 Computer Systems

• What are the basic components of a 
computer?
– Hardware: physical components of the 

computer such as the monitor, keyboard, 
printer, computer chips, etc.

– Software: programs that run on the computer 
(eg. word processing, games)



3

SD 121 – © Prof. D.A. Clausi

1.3 Computer Systems (cont.)

CPU

BUS

MAIN
MEMORY

MOUSE

DRIVE

ETC.

• Hardware

SD 121 – © Prof. D.A. Clausi

1.3 Computer Systems (cont.)

• Information representation
– Memory: 1 bit: 0 or 1; 8 bits: 1 byte; usually 

use megabytes (Mb) (10e6 bytes) or gigabytes 
(Gb) (10e9 bytes)

– Text: ASCII; each character represented by 
different bit pattern

– Instructions: machine language

SD 121 – © Prof. D.A. Clausi

1.3 Computer Systems (cont.)

• Compilers
– source code (typed by human) (*.cpp) is 

converted using a compiler into the object code
– linker links multiple object codes into 

executable program (*.exe)

SD 121 – © Prof. D.A. Clausi

SD 121 – © Prof. D.A. Clausi

1.3 Computer Systems (cont.)

• PCs: generally used at home or business
• Workstations:  networking capability; 

originally the realm of UNIX O/S, now 
Windows NT as well

• Mainframe:  larger (and more expensive!) 
computer designed for many users

SD 121 – © Prof. D.A. Clausi

1.3 Computer Systems (cont.)
• What is a computer program?

– set of instructions that a computer follows to 
process raw data into meaningful information

• What is a programmer?
– person who writes computer programs

• What is a software engineer?
– person who designs, maintains, implements, 

manages, etc. computer programs



4

SD 121 – © Prof. D.A. Clausi

1.3 Computer Systems (cont.)

• Programming languages:
– low level: primitive eg. assembly language
– high level :  more readable statements eg. Java, 

C, C++, C#, Pascal, BASIC, FORTRAN 

• Assembly language statement may read as:
ADD X  Y  Z

• Comparable high level language statement:
Z = X + Y

SD 121 – © Prof. D.A. Clausi

1.4 Algorithms and Object 
Oriented Design 

• What is an algorithm?
– a set of deterministic steps that
– converts input information to output information

• An algorithm is:
– unambiguous, and 
– executable,  and
– terminates

SD 121 – © Prof. D.A. Clausi

Five-Step Problem Solving 
Methodology

I. Problem Analysis
II. Design
III. Coding and debugging
IV. Integration
V. Testing and Validation

SD 121 – © Prof. D.A. Clausi

I. Problem Analysis

Problem Statement: Understand what 
problem needs to be solved and prepare a 
concise problem statement.

Input/Output: Analyze and write down what 
are the necessary inputs and the outputs.

SD 121 – © Prof. D.A. Clausi

II. Design
• Problem Decomposition:  

– Top-down: divide problem iteratively into more 
manageable subproblems until solvable by hand

– Object/class design: organize data and 
functions into objects/classes

• Algorithm Design:
– study simple hand example
– algorithm design
– prepare pseudocode

SD 121 – © Prof. D.A. Clausi

Top-Down Design Process

Divide the problem into easier and easier subproblems



5

SD 121 – © Prof. D.A. Clausi

Top-Down Design Example

SD 121 – © Prof. D.A. Clausi

Design Continued....

• Hand Example:  
– Solve by hand an example.  If not possible go 

back and decompose the problem further!

• Algorithm Design:  
– The hand example should now help you make 

an algorithm (steps to follow to solve the 
problem) which can be applied to all problems 
of that kind!

SD 121 – © Prof. D.A. Clausi

III. Coding and Debugging

• Code
– Code your design (usually a single module at a 

time) into the chosen language. In this course 
we will use C++.

• Debug
– Debugging is a process of observing, 

identifying, and removing errors.
SD 121 – © Prof. D.A. Clausi

IV. Integration
• Integrate smaller modules to solve overall 

problem
• Complex with large scale programs with 

many programmers
• For simple problems this step can be 

combined with Step 3: Coding and 
debugging.

SD 121 – © Prof. D.A. Clausi

V. Testing and Validation

• Testing:  
– Test the program with various test cases and 

verify that the program is correct!

• Validation:
– Go back to the problem analysis step and check 

that the problem you have solved is what is 
required of you!

SD 121 – © Prof. D.A. Clausi

Simple Example
• Problem:  Given a student grade record, 

update the record by calculating the average 
of the grades.



6

SD 121 – © Prof. D.A. Clausi

I. Problem Analysis

• Problem Statement:  Calculate the average 
grade and write out the 
student_grade_record with the average.

• Input/Output Analysis: 
Input: student_grade_record 
Output: student_grade_record with the 

calculated average.
SD 121 – © Prof. D.A. Clausi

II. Design: Top-Down 
Design Process

Divide the problem into easier and easier subproblems

SD 121 – © Prof. D.A. Clausi

Top-Down Decomposition
SD 121 – © Prof. D.A. Clausi

Hand Example

Hand Example:  The average grade can be 
found by the following two steps:

sum =  90 + 78 + 55 + 67 + 75 = 365
average = sum/5 = 365/5 = 73

SD 121 – © Prof. D.A. Clausi

Algorithm Design

When the average has not yet been calculated
sum = grade1 + grade2 ... + gradeN
average = sum /N

Note: this pseudocode becomes more elaborate with 
larger programs

SD 121 – © Prof. D.A. Clausi

Object based Decomposition



7

SD 121 – © Prof. D.A. Clausi

Class Design

SD 121 – © Prof. D.A. Clausi

III. Coding
Solution 1:

SD 121 – © Prof. D.A. Clausi

Solution 2

SD 121 – © Prof. D.A. Clausi

Solution 3

SD 121 – © Prof. D.A. Clausi

Details on 

4. Integration

and

5. Testing and Validation

are not appropriate for presentation at 
the moment, but will be revisited.

SD 121 – © Prof. D.A. Clausi

Summary of problem solving methodology:

1. Problem Analysis:
· Problem Statement
· Input/output analysis

2. Design:
· Decomposition
· Class Design
· Hand Example
· Algorithm Design

3. Coding and Debugging:
4. Integration:
5. Testing and Validation:

U
S
E

T
H
I
S

A
L
W
A
Y
S!


