
1

SD 121 – © Prof. D.A. Clausi

Section 2 - C/C++ Basics

This section will cover:
2.1 Simple C++ Program
2.2 Use of Variables
2.3 Expressions
2.4 Input/Output
2.5 Programming Errors
2.6 Programming Style

SD 121 – © Prof. D.A. Clausi

2.1 A Simple C++ Program
// marks2.cpp
//
// Program to determine the final mark based on the average of
// midterm and final exam grades.

/* Note that comments can also be
placed between
brackets like this */

#include <iostream>
using namespace std;
int main()
{

double midterm = 0.0;
double finalexam = 0.0;
double average = 0.0;

cout << "Enter midterm and final exam grades: " << endl;
cin >> midterm >> finalexam;
cout << "You entered " << midterm << " and " << finalexam << endl;

average = (midterm + finalexam)/2.0;
cout << "Average of midterm and final exam is"

<< average << endl;

return 0;
}

SD 121 – © Prof. D.A. Clausi

1) Use of Brackets

• Two bracket types used to document eg.
/* This format used in C & C++; can be spread
over multiple lines; cannot imbed these
symbols */

or
// This format used in C++ only; single line
// comments only; you will generally use these
// in 121; can be imbedded in /* … */ brackets

SD 121 – © Prof. D.A. Clausi

2) #include <iostream>
• Known as a “compiler directive” (starts

with a ‘#’)
• Treats library ‘iostream’ as though it were

part of the program
• iostream takes care of the C++ input &

output (I/O) streams eg. “streams” of data
from keyboard or sent to monitor, etc.

• #include <iostream.h> is an old style;
not part of the standard

SD 121 – © Prof. D.A. Clausi

2) using namespace std;

• Terms:
– ‘using’ is known as a ‘directive’
– ‘namespace’ is a reserved ‘keyword’
– ‘std’ is a type of namespace (the standard namespace)

• A namespace stores collection of names
• Why? So many names in C++! Ambiguities

removed by selecting appropriate namespace

SD 121 – © Prof. D.A. Clausi

3) int main()

• Example of a function: block of computer
code set aside from the main code to
perform a particular task

• Every C++ program has a main function
• Every function can “return” information
• More on functions and return types later

2

SD 121 – © Prof. D.A. Clausi

4) { … }

• Curly brackets enclose functions and other
blocks of code to be set apart in the
computer code

• Code within curly brackets is normally
indented - not required by the compiler, but
used to make the code more readable

• See the SD121 Style Guide

SD 121 – © Prof. D.A. Clausi

5) double midterm = 0.0;
• Variable declaration: datatype is “double” and

variable name is “midterm”
• Variables must be declared prior to using them
• Normally declare on separate lines eg. use

double midterm; // declare w/o initializing
double finalexam = 0.0; // w/ initializing

as opposed to (also acceptable to the compiler):
double midterm, finalexam;

• Declare any time before variable used eg. halfway thru
program is ok; most other programming languages do
not allow this

SD 121 – © Prof. D.A. Clausi

6) ;

• Most C/C++ lines of code end in a “;”
• Compilers interpret a “;” as being at the end

of a line of code
• Programs made readable by placing these

statements on separate lines (compiler really
doesn’t care, but we do!)

SD 121 – © Prof. D.A. Clausi

7) cout << " " << endl;

• Output statement: sends data to the monitor
• “string” (a list of characters) is passed to the

object “cout” (the standard output screen)
• An arrow “<< ” (the insertion operator)

indicates direction of the stream of data ie.
string being sent to the monitor

• ‘endl’ moves cursor to next line

SD 121 – © Prof. D.A. Clausi

8) cin >> midterm >> finalexam;

• Input statement: keyboard entry (the “standard
input” represented by “object” cin) & passed first
to midterm and then to finalexam

• Any “white space” (tab, return key, space) can be
used to separate the data entry

• “>>” is the extraction operator ie. extracts data
from the stream

• cout & cin are coded in the iostream library ie.
you must include iostream to use them

SD 121 – © Prof. D.A. Clausi

9) average = (midterm + finalexam)/2.0;

• Example of a calculation
• ‘=‘ has a different meaning than that found

in mathematics
– Math: lhs is equal to rhs
– Computers: rhs is “assigned to” lhs

• ‘=‘ known as the “assignment operator”
• Only one variable represented on lhs

3

SD 121 – © Prof. D.A. Clausi

2.2 Variables
• Programs store data using variables eg.

some_value = 5;
• In general:

→ variables can store different data types (e.g. numbers, text)
→ variables must be declared (memory must be reserved)
→ each variable has its own memory address
→ values of variables can be changed (usually!)
→ variable names should be meaningful (code is then more

readable), e.g. use ‘velocity’ instead of v

SD 121 – © Prof. D.A. Clausi

2.2 Variables (cont.)
C++ Rules for Variable Names:
• Letters, digits, and underscore allowed in name (no spaces)
• Must start with a letter or underscore symbol (_)
• C++ is case-sensitive, e.g. myname MyName MYNAME

are all different variables. The naming convention for
variables is lowercase

• Allowable or interpretable lengths vary from compiler to
compiler

• Cannot use reserved words, e.g. main (see Appendix 1 of
Savitch for list)

SD 121 – © Prof. D.A. Clausi

2.2 Variables (cont.)
• Each variable has unique data type

associated with it.
Name Memory Range
short int 2 bytes ± 32,767
int 4 bytes ±2,147,483,647
long 4 bytes ± 2,147,483,647
unsigned int 4 bytes 0 – 4,294,967,294
float 4 bytes 10-38 to 1038 (7 digits precision)
double 8 bytes 10-308 to 10308 (15 digits precision)
long double 10 bytes 10-4932 to 104932 (19 digits precision)

• Generally use (for SD121) int and double

SD 121 – © Prof. D.A. Clausi

2.2 Variables (cont.)

• A note about ranges and precision …
– Integers are exact!
– Floating point numbers are approximations
– For example, the two variables DO NOT store the

same value (although it might appear so!)
int integer_val = 3; // stores 3 exactly

double double_val = 3.0; // stores approximation

SD 121 – © Prof. D.A. Clausi

2.2 Variables (cont.)
• ‘int’ used when variable only requires

integer values eg. counters
• ‘double’ used when real numbers required
• Use scientific notation (no commas!) eg.

3.14
7.71e3 is equivalent to 7710 or 7.71x103

– 7.71 is the “mantissa” (double or int) and 3 is the
exponent (int)

SD 121 – © Prof. D.A. Clausi

2.2 Variables (cont.)

• Characters: letters, digits, and punctuation
char initial = ‘b’;

– Learn how to represent words later
• Boolean data type: stores binary data

bool flag = true;
bool decision = false;

4

SD 121 – © Prof. D.A. Clausi

2.3 Expressions

• Recall that the assignment operator is used
to change the value of a variable:
int total;

total = 2;

total = 7;

• Often assign variables when created eg.
int total = 0;

SD 121 – © Prof. D.A. Clausi

2.3 Expressions - Type Compatibility
• Be careful when mixing data types in the same

expression eg.
int some_value = -54; // ok!
int num = 2.7; // do not use

• Integers and doubles can be assigned to a double eg.
int num = 2;
double value = num;
value = 3.9; // all acceptable

• Although admissible, not advisable to assign an
integer to a char or a char to an integer

SD 121 – © Prof. D.A. Clausi

2.3 Expressions - Operations
• +, -, *, /, { } can be used in the usual

manner

Algebraic Computer Code

C
B
A
•

D
CB

A
+

•

D
CB
EA
+

−
•

SD 121 – © Prof. D.A. Clausi

2.3 Expressions - Precedence Rules

• Precedence rules refer to the order of
operations; rules are similar to algebra

• Partial list:
1) ()
2) *, /
3) +, -
Equivalent operations generally performed left to

right.

SD 121 – © Prof. D.A. Clausi

2.3 Expressions -
Determining Expression Type

1) Operations of two ints yields an int
int val = 7/4; // result is ______?
double value = 7/4; // result is ______?
int num = 17%5; // result is 2 (the remainder);

// ‘%’ is modulo operator

2) Operations using a double generates a double
aa = 2 * y + x; // if x or y double, aa

// receives a double
double val = 6.0/4; // val becomes ______?

3) Minus sign does not change type
int num = 6;
int num = -num; // num becomes -6

SD 121 – © Prof. D.A. Clausi

2.3 Expressions - Examples

int num;

num = 6 * 2 / 4 - 3%2 + 1; // num is _____?

num = 6 * (2 / 4) - 3%2 + 1; // num is _____?

5

SD 121 – © Prof. D.A. Clausi

2.3 Expressions - Shorthand Ops

• Shorthand operators are permissible in
C/C++

• These improve readability (once you use
them a couple of times) and improve
compiler completion times (important with
huge programs)

• Use shorthand operators whenever possible

SD 121 – © Prof. D.A. Clausi

2.3 Expressions - Shorthand (cont.)
longhand shorthand
a = a + b a += b
a = a - b a -= b
a = a * b a *= b
a = a / b a /= b
a = a * (b + c) a *= (b + c)
a = a + 2 a += 2

A common operation is to increment (decrement) by 1. This can be
performed using the following format:

j = j + l; or j++;
j = j – 1; or j--;

Called ‘C++’ because it is a version built on ‘C’!!!

SD 121 – © Prof. D.A. Clausi

2.3 Expressions - Constants
• Some variables remain constant in a program, e.g. pi, speed

of light, gravity, etc.

• Use the modifier const to create a variable that cannot
change.

Syntax: const Type_name Variable_name = value;
const double PI = 3.14159;
const double SPEED_OF_LIGHT = 2.99792458e8;

• Convention to use upper case letters

• You may have used compiler direction ‘#define’ (which
performs a direct substitution); convention today is to use
const since it is more versatile ie. place anywhere in code
instead of only at beginning

SD 121 – © Prof. D.A. Clausi

2.4 Input / Output

• Effectively equivalent statements:
cout << “Programming is fun” << endl;
cout << “Programming is fun\n”;

• \n (newline character) must be inserted into the
quotes; called a control character; preferable to use
endl

• Variables can be used in output statements eg.
int num = 12;
cout << “Number is: ” << num << endl;

SD 121 – © Prof. D.A. Clausi

2.4 I/O - Output Formatting

• Formatted output enabled using I/O
manipulation library eg. #include <iomanip>

• Some of the syntax may seem odd, but you
will get used to it

• Use the following steps:

SD 121 – © Prof. D.A. Clausi

2.4 I/O - Output Formatting (cont.)

1) Set output to fixed point or scientific
notation using either:
cout.setf(ios::fixed);

cout.setf(ios::scientific);

– “::” indicates the “scope resolution operator”;
more on this operator later

6

SD 121 – © Prof. D.A. Clausi

2.4 I/O - Output Formatting (cont.)
2) Set the number of decimal places (for fixed)

or significant digits (for scientific)
x = 1.1987654; OUTPUT
cout.precision(2); // default is scientific
cout << "x= " << x << endl; // x = 1.2 (rounded)
cout.precision(5);
cout << "x= " << x << endl; // x = 1.1988 (rounded)
cout.setf(ios::fixed);
cout.precision(2);
cout << "x= " << x << endl; // x = 1.20 (rounded)
cout.precision(5);
cout << "x= " << x << endl; // x = 1.19877 (rounded)

SD 121 – © Prof. D.A. Clausi

2.4 I/O - Output Formatting (cont.)
3) Right justify text to help line up columns

cout.setf(ios::fixed);
cout.precision(3);
x = 1.1;
cout << "x= " << setw(8) << x << " percent"

<< endl;
x = 1.234321;
cout << "x= " << setw(6) << x << " percent"

<< endl;

Produces the following output (‘#’ is a blank):
x = ###1.100 percent
x = #1.234 percent

Q: What happens if precision setting > setw setting?

SD 121 – © Prof. D.A. Clausi

2.4 I/O - Input
• Recall

cin >> var1 >> var2;

which is equivalent to:
cin >> var1;
cin >> var2;

• You should echo keyboard input eg.
cout << “Enter a value: “;
cin >> value;
cout << “Value entered is: “

<< value << endl;

SD 121 – © Prof. D.A. Clausi

2.5 Programming Errors

• Three general types of programming errors
exist:
1) Syntax error
2) Run-time error
3) Logic error

SD 121 – © Prof. D.A. Clausi

2.5 Programming Errors (cont.)
1) Syntax error: mistakes in ‘grammar’

– compiler will detect
– usually easy to remove
– error message may be cryptic

2) Run-time error: error noticed when
program run
– error with input data or performing a

calculation
– message output to user eg. divide by zero

SD 121 – © Prof. D.A. Clausi

2.5 Programming Errors (cont.)

3) Logic error: errors in algorithm or its
implementation
– can be difficult to isolate
– time consuming, especially with large programs
– professional programmers spend most time on

logic errors
– how to avoid? Plan before you code!

7

SD 121 – © Prof. D.A. Clausi

2.6 Programming Style

• Style Guide should be consulted for how to
present your code. Considerations:
– indenting
– blank lines (separate groups of statements)
– use meaningful names
– use comments to document (don’t document the

obvious, be concise and informative)
– place header at start of every file

