
 Page 1 of 2

Section 6 – Structures

- structures are a method to create a new data type

- after we learn about structures (a C programming concept) there will be a
natural extension to learn about classes (a C++ programming concept)

6.1 What are structures?

We would often like to associate several values with a single item. For example,
how can we represent the real and imaginary parts of a complex number?

This can be achieved using a structure:

 // struct is a keyword that declares a structure
// type definition

 // ‘ComplexNum’ is the identifier of the structure type
 struct ComplexNum
 {
 double real; // real and imag are ‘member names’
 double imag;
 }; //use semi-colon to end struct

- structure definitions normally occur outside any functions making them globally

available.
- members of a structure do not

• passed into functions (by reference, by value)

 have to be of the same type

For example, store the Student ID#, course percent, and letter grade in a single
structure:

 struct StudentInfo
 {
 int id;
 double percent;
 char grade;
 };

Structure variables can be declared in the usual fashion for declaring other variables:

 StudentInfo student;

Structure values are collections of smaller values called member values that can
be accessed using a “dot” operator:

 student.id (int type)
 student.percent (double type)
 student.letter (char type)

Values can be assigned to member variables by assignment

 student.id = 123456;
 student.percent = 74.6;
 student.grade = 'B';

or, a method to create and initialize at the same time:

 StudentInfo student = {123456, 74.6, 'B'};
 // order is important!!

6.2 Passing and Returning Structs

- member variables can be used in the same manner other variables (of the same

type) can be used.

• used as the return type for a function

Example:

 void set_default_data(StudentInfo &student);
 StudentInfo enter_data();
 void display_data(const StudentInfo &student);

 int main()
 {
 StudentInfo student;
 set_default_data(student);
 student = enter_data();
 display_data(student);
 ...
 }

 Page 2 of 2

 void set_default_data(StudentInfo &stdt)
 {
 stdt.id = 100000;
 stdt.percent = 0.0;
 stdt.grade = ‘F’;
 }

Pass a struct that will be modified

Return a struct (another method to modify the struct contents)

 StudentInfo enter_data()
 {
 StudentInfo stdt;
 cin >> stdt.id;
 cin >> stdt.percent;
 cin >> stdt.grade;
 return stdt;
 }

Pass a struct that will NOT be modified

 void display_data(const StudentInfo &stdt)
 {
 cout << “Student id: ” << stdt.id << endl;
 cout << “Student percent: ” << stdt.percent
 << endl;
 cout << “Student grade: ” << stdt.grade << endl;
 }

Why 'const' and '&' as a modifier for the formal parameter? ie. why not just use call-
by-value?
&: sends the address of the struct variable (as we learned before the midterm)
const: tells the function that the variable can not be modified ie. cannot

Assign one struct to another (just like variables); contents of the member
names are assigned as well

 insert the
following into 'display_data':

stdt.id = 555555;
Why not just send as call-by-value?
- creates a copy of the argument; this can be quite large for struct variables and
(later) objects

6.3 Use of Member Names in Different Structures
The same member names can be repeated in different structures:

 struct Cube
 {
 double dimension;
 double volume;
 };
 struct Sphere
 {
 double radius;
 double volume;
 };
 Cube Box1, Box2;
 Sphere Ball1, Ball2;
 Box1.volume = 2.3;
 Ball1.volume = 3.5;

 Box1 = Box2;

6.4 Hierarchial Structures "structure within a structure"

 struct Date
 {
 int day;
 int month;
 int year;
 };

 struct StudentInfo
 {
 int id;
 double percent;
 char letter;
 Date birthday;
 };

Example:
 StudentInfo student;
 student.birthday.year = 1980;

Note how two dot operators are used to access the year from the StudentInfo
structure.

	UPass a struct that will be modified
	Assign one struct to another (just like variables); contents of the member names are assigned as well
	6.4 Hierarchial Structures "structure within a structure"

