
 Page 1 of 2

SY DE 121 – Digital Computation - Lab #2

Hint: Organize your labs into subdirectories ie. create a folder “Lab02” to contain
all the work in this lab. Within this directory, you can create “Lab02 Ex1”, and so
forth. Once you have submitted the lab, you can delete all the project files (all you
generally need to keep is your *.cpp and *.h files as well as any data files). This will
help to reduce your disk space usage.

Note: you will be required to prepare a design plan prior to the start of the lab for
Exercise 2 (marks are assigned to performing this task properly).

Exercise 1: Experimenting with Inappropriate Input
Learning Objective: To get a general idea of what can happen when a C++ program
receives invalid input.

Read This First
When you are just beginning to write programs, getting programs to work with
correct input is a challenge, so it is reasonable to pretend for now that users will
never type in incorrect input. However, programs that do not have code designed to
detect and deal with invalid input may generate nonsense output.

Invalid input usually does not cause a C++ program to crash. (A crash occurs when a
program unexpectedly stops running; a crash is often accompanied by error messages
in hard-to-understand computer jargon.) Instead, the program keeps running after it
gets invalid input, but some of the program’s variables will not have sensible values.

What To Do
Download the program "EnterData.cpp" from the course website
(http://www.eng.uwaterloo.ca/~sd121/index.html). Build the executable and run it a
few times, typing in appropriate input when the program prompts you.

Now run the program several more times with various types of inappropriate input,
as listed below. Sometimes you are not told what to enter in response to the prompt
for the_double; that’s because sometimes you won’t get a chance to respond to that
prompt. After each experiment, write down the final values for the variables the_int
and the_double

1. Enter

.

-42 in response to the prompt for the_int, then enter !@#$ in response to
the prompt for the_double

2. Enter

.

35 degrees in response to the prompt for the_int

3. Enter

.

100,000 (including the comma) in response to the prompt for the_int

4. Enter

.

876 543 (both numbers on the same line) in response to the prompt for
the_int

5. Enter

.

x 123.4 in response to the prompt for the_int

6. Enter

.

12.3456 in response to the prompt for the_int

7. Enter

.

.995 in response to the prompt for the_int

8. Enter 987654321987654321 in response to the prompt for

.

the_int, and then
12345 in response to the prompt for the_double

Question

.

The experiments you have performed will not let you draw very precise conclusions
about how characters in the input stream are processed. However, there are a couple
of somewhat imprecise observations you should have made with regards to how the
inputs interact/interfere with each other. Indicate two separate observations.

What to Submit

Hand in the following:
1) A list of observations for the eight experiments (please list the information in a

readable format).

2) A short description of the two observations.

Exercise 2: Office Stationery Supplies
Learning objectives: To gain experience with input, computation with assignment
statements and arithmetic expressions, and output.

Hints:

• Each time the user enters some input, you should get into the habit of displaying
back what they typed. This is called “echoing the inputs”. If you ask the user
for a number (eg. Please enter a number:) and the user enters 6, you should
redisplay what they entered along with a short message (eg. You entered 6).
This allows the user to check to see if what they entered was correct, and will
help you detect errors in your program.

• Be sure to try and use variable names that convey some sort of meaning about
their use. This makes the program easier to read and understand.

 Page 2 of 2

• You should have already read the section on "Naming Constants" in your
Savitch textbook. You are expected to use constants in this exercise.

Read This First
An industrious friend of yours has recently started up a small office stationery supply
company, The Write Stuff, to service engineering companies. Since he is just starting
out, he decides to only sell pencils, pens, and correction fluid. When placing an
order, customers are required to tell him how many employees there are, what
percentage of those employees are junior engineers and what percentage are senior
engineers. There are also employees that are neither junior nor senior engineers;
these employees are assumed to be administrative staff.

Your friend does some market research, and decides that each type of employee uses
(on average) the following quantities of supplies in a typical month:

Type of employee Pencils Pens Correction fluid
Junior engineer 8 7 60 ml
Administrative 2 6 40 ml
Senior engineer 5 3 12 ml

He supplies pencils packaged in boxes of 25, pens packaged in boxes of 10, and
correction fluid in bottles of 200 ml.

What to do
Suppose your friend wins a major contract, and needs to supply stationery to a
company of 480 employees, of which 55 per cent are junior engineers, and 20 per
cent are senior engineers. He wants to be able to quickly determine the total number
of boxes of pencils and pens as well as the number of correction fluid bottles
required. Your friend asks you to provide a program that he can use on an ongoing
basis, not just as a solution for this particular case. Your friend feels quite confident
that the table data above will remain constant for some time.

1) Prepare a problem analysis (include the problem statement and define the inputs
and outputs).

2) Design your system using a top-down decomposition. Use the example data
above for the hand calculation portion.

3) The TA must sign your completed first two steps before proceeding. The
TA will record that you did complete these steps.

4) Code and debug your solution.

5) Test your code by ensuring the computer solution matches your hand calculated
solution. You should also test using additional data sets to ensure the program is
working properly.

6) What happens when you enter illogical data? For example, what happens if you
enter negative values for the number of employees? What happens is the sum of
the junior and senior engineer percentages exceeds 100%?? We will soon learn
how to take care of such problems (do not be concerned about fixing them just
yet).

Use type double

What To Submit

 for all numbers. Do not worry about the fact that your program will
print answers including fractions of boxes and bottles. You will learn how to take
care of this later in the course.

You might have to use the statement to hold your window on the screen. If the
return is reached, your DOS window is typically terminated. To do this, just use one
or two getchar() functions placed just before the return command in the main
function.

Email your program (only the *.cpp file) to the TAs (as you did in Lab #01)
(sd121@engmail).

Submit a hardcopy of the program to the SD121 submission box in the Systems
Design hallway.

Submit your signed steps 1 and 2. Also submit the answers to the questions posed in
step 6.

*** Due Date ***
All material is due Friday, September 23 by 5:00pm, except for the problem
statement and design from Exercise 2 – this is expected to be completed and signed
by the TA at the start of the lab time.

	SY DE 121 – Digital Computation - Lab #2
	Exercise 1: Experimenting with Inappropriate Input
	Read This First
	What To Do
	Question

	What to Submit
	Hand in the following:

	Exercise 2: Office Stationery Supplies
	Read This First
	What to do
	What To Submit
	*** Due Date ***

