
Page 1 of 6

SYDE 121
Lab Number 7

This lab contains three exercises. Only two exercises are to be
submitted for grading. The first exercise is mandatory. Only one of the
second and third exercises needs to be submitted.

The second exercise is more computer science oriented and has “bonus”
marks associated with it, but these will require additional effort and
ability. The third exercise is engineering-based (and is a bit easier), but
does not have any bonus marks associated with it. Hint: The exercise that
you do not submit would act as good practice in preparation for the final
exam.

Separating the interface and implementation
Up to now, your programs have used only a single source file, which has
contained all of your function prototypes, definitions, and declarations, as
well as your main program. This lab introduces modular programming,
which is the approach usually used in C++ programming.

The term module can be used to describe the combination of a .hpp (or .h
or header) file, which contains the function interface, and its associated
.cpp file, which contains the function definition or implementation. C++
programmers follow this convention by placing all structure (and class)
declarations, together with all function prototypes, into a .h file. This file
contains the function interface: everything a third-party user needs to see
in order to use your code. The implementation (or definition) of each
function is placed in a .cpp file. A third-party user would not need to see
the details of your implementation in order to use the code effectively
(assuming, of course, that your code is correct).

Placing all of the declarations in a .h file requires that you use an
#include statement in each .cpp file that references those declarations.
The statement will have almost the same form as when including files of
the C++ standard library, except that quotation marks are used instead
of angle-brackets. For example,

Use:
#include "myfile.h" // my own header file

as opposed to:
#include <cmath> // a standard library header file

Since this file must be included in each source file that references the
declarations, this introduces the danger of "multiple declarations"; that
is, when processing the source files, the compiler encounters a declaration
for the same type more than once, and does not know how to handle this
potential ambiguity.

For this reason, it is common practice to "wrap" header files in compiler
directives, as follows:
//
// usual header comments

#ifndef MYFILE_H
#define MYFILE_H

 // place your structure declarations and function prototypes here

#endif

Note the MYFILE_H is really just a variable name, and can be anything.
However, it is usually selected to correspond to the filename. That is, just
convert the entire filename to uppercase and then add ‘_H’. This is a
standard technique in C++ programming.

Creating a Project In BloodShed

Note that starting in this lab, we will not be using the naming convention
used for the earlier labs. Normally, you will be given the filenames that
should be used for a given problem. Please use these filenames.

A project will contain all the necessary modules that you created to
compile the code. As you learned before, the source files (*.cpp) are
transformed to object code, and then the linker will group these into an
executable (*.exe). You need to learn how to include the necessary files in
the compile sequence.

1) Create a new project by selecting File->New->Project. Select an
Empty Project and assign an appropriate project name. Save into a
folder dedicated to this project.

2) Open a new file (File->New Source File) that will store the main
function (*.cpp).

3) You can create new header files (*.h) and source files (*.cpp) as
required. When doing so, make sure that you add the file to the
project (you should be prompted for this). If this was not done or you

Page 2 of 6

want to include an existing file, you can add a file by selecting
Project->Add to Project.

4) You can view all files included in the project by looking under
“Project” on the left hand side.

5) Under the compiler options, you can either compile the full project or
individual files.

Exercise 1: 3D Coordinate Computations
Learning Objectives: Practice declaring and using structs in a program;
practice passing structs to and from functions, using the const keyword,
where appropriate; learn to deal with separate .h files and .cpp files for
the interface and implementation, respectively; practice building your
program incrementally.

Read this first
The Global Positioning System (GPS), a satellite positioning system
developed by the US Department of Defense, has revolutionized
positioning and navigation. In standalone mode, the system is able to
provide real-time positions anywhere on earth, at any time of the day or
night. GPS has found many uses amongst civilians and the private sector,
too. In conjunction with a second GPS receiver, points can be positioned
to millimetre level accuracy for geomatics- and surveying- related
applications. Industry experts predict that positional information will
become as commonplace as the time of day.

In this exercise, you are required to define a struct to represent 3D points
positioned on the earth's surface by GPS, or some other positioning
technique. You will then be required to perform a number of operations
on these points.

What to do
1. Create a header file called coord.h.

2. In coord.h, write the declaration for a structure called Point3D, which
contains the following members:

• ID record of type int
• X coordinate value of type double
• Y coordinate value of type double
• Z coordinate value of type double,

• Classification record of type char, called order, representing
the accuracy of the point (A = high accuracy, B = medium
accuracy and C = low accuracy).

"Wrap" the contents of the header file in the preprocessor directives
described above, to prevent multiple declarations.

3. You have now declared the data type; you now need to check whether
your declaration is correct. Create a file called gps.cpp. In main,
declare two variables of type Point3D, called point1 and point2. These
are now instances of the Point3D data type. (You will need at least two
points to perform the computations required later in the lab.) Make
sure that you have an #include statement which specifies "coord.h"

Compile and run your program (it will not do anything at this point,
but should be free of errors).

 —
the compiler needs access to your structure type declaration in order
to declare a variable of that type.

4. Write a function which prompts the user for values of the members of
a Point3D variable. This function can be called from main to get user
input for Point3D variables. The prototype for this function will look
as follows:

void get_point (Point3D &point);

and should be placed in the coord.h file.

Note that the variable called point passed to the function is of type
Point3D, which you have defined, and it is passed by reference to the
function, to allow its elements to be changed once the values have
been input.

Important note: For efficiency reasons, it is common practice in C++
programming to pass aggregate (user-defined) data types to and from
functions by reference. If the variable should not be modified by the
function, the const modifier should be included to permit read-only access
to the data members. This feature of C++ allows a very useful
combination of efficiency and access.

5. Now create a file called coord.cpp, which will contain the
implementation of each of the functions you will write. Once again,
remember to #include your coord.h file. In the get_point() function,
implement the code to prompt the user for the values of each member
of a Point3D variable, store the values, and echo the input. Add the
code in main to call this function for each of the variables you have
declared. Test and debug this function.

Page 3 of 6

6. Create a function to print a Point3D variable. Place the prototype in
the coord.h file, add the implementation to coord.cpp, and add a call
in main to test your new function. The prototype for the new function
should look like:

void print_point(const Point3D &point);

Note the use of const in the function definition — a print function
should not modify the variable that it is printing.

7. In a similar way, add functions to perform the tasks listed below, by
adding the prototypes to the .h file, and each function implementation
to the .cpp file. You will need to add function calls in your main
program to test these functions. You are strongly urged to write the
code for one function at a time, and to test each function carefully
before moving on to the next one.

• Add a function called spatial_dist() to compute the spatial distance
between 2 points, based on the formula:

2
12

2
12

2
12)()()(ZZYYXXds −+−+−=

• Add a function called plani_dist() to compute the planimetric
distance between 2 points, based on the formula:

2
12

2
12)()(YYXXd p −+−=

• Add a function called ht_diff() to compute the height difference
between 2 points (i.e., the difference in the Z coordinate values):

12 ZZdh −=

• Add a function called azimuth() to compute the azimuth (heading),
which is measured clockwise from north, between 2 points, based on
the formula:









−
−

= −

12

121tan
XX
YY

θ

Use the atan2 function in the cmath library, as it automatically
computes the angle in the correct quadrant.

8. Complete the modifications to main so that:

• the user is prompted to enter the values for two points using the
get_point() function,

• the parameters of each point are displayed on the screen using
the print_point() function,

• each of the above quantities are computed and displayed to the
user, using your new functions.

Apart from the print_point function, all computed results should be
output in main, not in the functions themselves.

What to submit

Hand in and email your three source files, coord.h, coord.cpp and gps.cpp.

Exercise 2: Summing two numbers stored in arrays
Learning Objectives: Practice working with 1-d arrays and single
character entry of data. Further practice using modular programming.

Read this first
This problem is taken from your Savitch textbook. An array can be used
to store large integers one digit at a time. For example, the integer 1234
could be stored in the array 'a' by setting a[0] to 1, a[1] to 2, a[2] to 3, and
a[3] to 4. However, here you might find it more useful to store the digits
backward, that is, place 4 in a[0], 3 in a[1], 2 in a [2], and 1 in a[3].

In this exercise, you will write a program that reads in two positive
integers that are 20 or fewer digits in length and then outputs the sum of
the two numbers. Your program will read the digits as values of type char
so that the number 1234 is read as the four characters '1', '2', '3', and '4'.
After they are read into the program, the characters are changed to
values of type int. The digits will be read into a partially filled array,
and you might find it useful to reverse the order of the elements in the
array after the array is filled with data from the keyboard. (Whether or

Page 4 of 6

not you reverse the order of the elements in the array is up to you. It can
be done either way, and each way has its advantages and disadvantages.)

Your program will perform addition by implementing the usual paper-
and-pencil addition algorithm. The result of the addition is stored in an
array of size 20, and the result is then written to the screen. If the result
of the addition is an integer with more than the maximum number of
digits (that is, more than 20 digits), then your program should issue a
message saying that it has encountered "integer overflow". You should be
able to change the maximum length of the integers by changing only one
globally defined constant. Include a loop that allows the user to continue
to do more additions until the user says the program should end.

What to do
As in Exercise 1, create three different source files for your program
named sum.cpp, sumtwonums.cpp, and sumtwonums.h.

In this case, since you are entering single chars. Use the get cin member
function to do this i.e., cin.get(). To represent a longer integer
number, it is not necessary to output the single char each time one is
entered. Once the full number is entered and stored in a numerical array,
then the entire number should be echoed to the user.

This problem is more challenging than Exercise 1. You are expected to
complete all of the directions provided to you in the problem, and a few
more listed below. About two-thirds of the marks allocated to this
problem can be obtained by solving the minimum requirements. The
remaining one-third can be obtained by implementing the advanced
features and represent bonus marks for the assignment.

Minimum Requirements (two-thirds of the marks)

- create 3 separate source files (as in Exercise #1)
- code is neat, concise, and readable
- use of proper commenting
- read in two numbers one character at a time into numerical arrays
- echo both numbers to the user
- determine and display proper sum of the two numbers

Advanced Features (one-third of the marks)

- overflow check following the summation (do not exit program if
overflow encountered)

- display numbers using commas e.g., 12,345,567

- only numerical chars are entered into the arrays i.e., for all data
entered, only allow 0, 1, 2, … 9 to be entered into the arrays

- treat user-entered multiple zeros as zero i.e., '000' is displayed as '0'
- disregard leading zeros e.g., 00123 is displayed as 123
- allow user to loop through process as many times as desired
- allow user to quit at any time (even midway through data entry)
- act appropriately if user enters too many digits for a single number

(exit is ok)

At the end of your header file, indicate which requirements/features work
for your program and which features do not. Just list the above
requirements/features at the end of your header file in a fully commented
section and indicate which ones you were able to complete. This
information will assist the TA when grading your submission.

Just meeting the minimum requirements will save time compared to
implementing the advanced features. Note that there are different ways
to implement the given problem. Ensure that your code is properly
documented so that the TA is aware of how you solved the problem.

Hint: Design your code prior to going to the computer. Then, once you
make a certain amount of progress on the computer, you will probably
find that your original design is not working as planned. It is advisable
to leave the computer and redesign your plan. This is not easy to do since
the tendency is to stay at the computer. In terms of minimizing time
spent solving the problem, knowing when to redesign the algorithm away
from the computer is an asset.

What to submit

Hand in and email your three source files.

Page 5 of 6

Exercise 3: Determining deflection and moment of a
beam under loading
Learning Objectives: Practice working with 1-d arrays. Further
practice using modular programming.

Read this first
Later in your SD curriculum, you will take a course in deformable solids.
You will be asked to determine equations that describe the behaviour of
various bodies under load. Unlike your first year statics course where
rigid bodies are assumed, deformable solids better approximate the real
world by recognizing that bodies under load will deflect. Beams are an
important part of the engineering world and determining their deflection
under certain loading conditions is a necessity. Here’s an example:

For this beam, both ends are allowed to rotate (indicated by the
triangles), however, the left end is fixed whereas the right end can move
freely in the horizontal direction. The arrows pointing downwards
describe the direction of load on the beam and the length of the arrow
described the magnitude of that load at that point. In this case, the load
continuously and linearly increases from left to right along the beam.
This is helpful to understand, but what you really need to implement
follows next.

The equation for the deflection (y) along the length of the beam (x) is
(note that positive y deflection is defined as downwards):

y(x) = 














 −







 ∑
∞

=

+

L
xn

nEI
QL

n

n π
π

sin)1(2
1

5

1

5

4

Although this seems like a messy equation, most of the terms are
constants, where E is the “modulus of elasticity” (i.e. the material
stiffness), I is the moment of inertia of the cross-section (i.e. the
resistance to bending due to the cross-sectional shape), Q is the loading
(as a function of length; in this case, the loading is triangular), and L is
the length of the beam. ‘y’ represents the deflection as a function of ‘x’
(position along the length of the beam) and you will require an array to
store this information. You can use the following constants in your
header file:

const double ELASTICITY = 200e6; // kiloNewtons / m2
const double INERTIA = 8.3e-6; // m4

const double LOAD = 100.0; // kN / m
const double LENGTH = 1.0; // m
const double PI = 4.0*atan(1.0);
const double EPSILON = 1e-30; // tolerance
const int STEPS = 10;

where “STEPS” is the number of discrete steps along the length of the
beam where the deflection (y) and bending moment (M) are to be
calculated. We calculate the displacement at discrete locations because
we are not calculating a formula to calculate the deflection at any real
number along the axis. If we select enough discrete points, then we have
enough information to interpolate between these points.

You will have to use a tolerance (const EPSILON) to terminate the series
summation.

The bending moment is given by:

2

2)()(
dx

xydEIxM =

What to do
As in Exercise 1, create three different source files for your program:
beambend.cpp, beam.cpp, and beam.h. The main program will create the
necessary arrays (initialize them) and pass them down into separate
functions to determine the deflection (y) and the bending moment (M)
along the beam at intervals of L/10.

You will need to calculate the second derivative. This is not difficult. In
calculus, you learn about the continuous definition for a derivative. Here,
since the computer works in a discrete environment, you need a discrete

y

x

Page 6 of 6

approximation for a derivative. Here, we will use the forward discrete
approximation:

y'[i] = (y[i+1] – y[i]) / d

where ‘d’ is the spatial displacement (namely the spacing along the length
of the beam). Note that this just measures the slope of the deflection
along the beam. The second derivative is determined by taking the
derivative of the first derivative – you just have to create one function
that determines the derivative and then apply it twice!

Don’t worry about the physics and mathematics – these are concepts that
are eventually covered in the SD curriculum.

You will probably want to create a generic function to display an array to
the screen. This function would accept the size of the array as well as the
array itself.

You should allow the size of the arrays to be a global constant; however,
you should pass the size of the arrays into the functions as arguments
along with the array itself.

Note that you will see some odd behaviour at the end of the beam due to
the calculation of the derivatives at the end of the beam. Don't worry
about this.

Optional
If you want to view the deflections (this is not part of the lab submission
requirements), you can download the “output_to_file.cpp” program on the
course website and integrate it into your program. This function accepts
three parameters, the name of the array (just a string), the array itself,
and the size of the array. The array will be sent to a file “out.txt” in the
directory where the beam program is stored. You can take this output,
cut and paste it to an Excel spreadsheet, and use Excel’s plotting
functions to plot the result. You can plot the deflection, its first and
second derivative, as well as the bending moment. Note that there will
be a numerical error near the end of the beam, but do not be concerned
about this. Enjoy!

Note: you will soon learn how to send data to and from files.

What to submit

Hand in and email your three source files.

Due Date

All parts of this lab are due by Friday, November 4 at 6:00pm.

Reminders

Make sure that all your function prototypes are documented properly.
See the Style Guide for an indication of how to do this.

Ensure that you are using const modifiers when necessary.

	SYDE 121
	Lab Number 7
	This lab contains three exercises. Only two exercises are to be submitted for grading. The first exercise is mandatory. Only one of the second and third exercises needs to be submitted.
	The second exercise is more computer science oriented and has “bonus” marks associated with it, but these will require additional effort and ability. The third exercise is engineering-based (and is a bit easier), but does not have any bonus marks ass...
	Separating the interface and implementation
	Creating a Project In BloodShed

	Exercise 1: 3D Coordinate Computations
	Read this first
	What to do
	What to submit

	Exercise 2: Summing two numbers stored in arrays
	Read this first
	What to do
	What to submit

	Exercise 3: Determining deflection and moment of a beam under loading
	Read this first
	Although this seems like a messy equation, most of the terms are constants, where E is the “modulus of elasticity” (i.e. the material stiffness), I is the moment of inertia of the cross-section (i.e. the resistance to bending due to the cross-sectiona...
	What to do
	What to submit

