SY DE 121
Lab Number 8

You are expected to complete both of these exercises. However, submit only one
(i.e., your "best™) of the two exercises for grading purposes.

Exercise 1:

Learning Objectives: Opening and closing files. Using strings. Using arrays of
structs. Sorting. Passing filestream objects. Reading from and writing to files.

Read This First

In this problem, you will be asked to count the number of occurrences of each
lowercase letter found in a sentence. Just focus on determining the number of
occurrences of each lowercase letter (ignore uppercase letters and all other
alphanumerics — this makes writing the program a bit easier!).

Also, you are required to output the data in a sorted fashion. So, the letter with the
most counts should appear first, then the next letter, etc. You are welcome to use the
sort algorithm of your own choosing. For example, for the input string “I need some
sleep!!!”, the output should appear in the following manner:

Letter Occurrence

TOSS=an
RPRRRRERNO

What to do

Set up your program to read in the line of characters from a file (you can create test
*.txt files using Notepad). Choose a suitable input file name (e.g., input.txt). The
output filename can be hardcoded i.e., force the output file to be “output.txt”.

As in Lab #7, set up your project using an interface file (lettercount.h), an
implementation file (lettercount.cpp), and the main file (main_lettercount.cpp) (the
naming is helpful when the TAs have to grade your submissions, so please use the
indicated names). Your main program should perform the following tasks in this
order: allow the user to enter the input filename, set the output file name, open the

input and output file streams (with error checking), then call a function to perform
the counting (pass both file streams to this function), and then close the file streams.

Make proper use of the ‘const’ parameter modifier when creating functions.

Note: You need to modularize your code. As an example, Prof. Clausi’s solution
code has 8 functions defined in lettercount.h (other than the main function). You
may not create exactly the same type or number of functions, but this gives you an
idea of the extent of the modularization.

Hints

= The small letters in the alphabet (a to z) are listed sequentially in the ASCII
character set (see Appendix of your text). The compiler will treat 'b' as being
larger than 'a’, 'c' as being larger than 'b', etc. You can use int(char) asa
means of determining the ASCII numerical equivalent for a given char.
Similarly, you can use char(int) as a means of determining the ASCII
character for a given integer. The integer equivalent for ASCII letter ‘a’ is 97,
which might be a helpful const in your program.

= The getline function can be used with a sentinel character other than the newline
character. For example, to use a period "' as a sentinel character for a getline
call, do the following:

instream.getline(line, 1000, ".");

where Iine will store a maximum of 1000 characters from the Instream
ifstream up to (but not including) the terminating ".".

= |f you are using the string class, note that the getl ine function is called in
the following manner:

string line;
getline(instream, line, ".");

= If you are using the string class, you sometimes have to convert string
objects into cstrings. To do this, use the "c_str()' member function. For
example, the "open® member function is not overloaded to handle string
objects (such as infi lename), so do the following:

instream.open(infilename.c_str());
= Instead of just sending your output to a file, you should also send it to the

screen. This should assist code debugging. To create a separate function to
send the output to the screen is appropriate.

Page 1 of 2

What To Hand In

Email your program to the course account and submit a hard copy to the submission
box.

Exercise 2:

Learning Objectives: Opening and closing files. Using strings. Using
multidimensional arrays. Reading from and writing to files.

Read This First

Basically, this exercise asks you to multiply two matrices and write the result to a
file.

What To Do
Setup your program in the same manner as Exercise #1 ie. use the three different
files (in this case, named ‘matrixmath.h’, ‘matrixmath.cpp’, and

‘main_matrixmath.cpp’) and allow the main program to perform the actions in the
same manner (cutting and pasting should save some time here!).

Read the two matrices from the same file. Here is an example of such a file
(asterisks are not included in the file). Read the first two numbers as the row/column
of the first matrix and then read in the first matrix. Then, do the same thing for the
second matrix. Assume that there are no blank lines in the data file. Assume that
only integer arrays will be used.

*k*k *k*k * %

34
1111
2222
1111
45
11111
11111
11111
11111

*hkhkhkhkhkhkhkhkhkhkhkhkkhkkhkiikk

Since you have not been taught dynamic memory allocation, just set up your
matrices in your program to some fixed large size eg. 100. Make sure that you only
perform operations on and display the "true™ parts of the array ie. only output the
resulting 3x5 matrix, not the 100x100 matrix. Set error conditions if the array bound
is incorrect. Output the product matrix into an output file (and to the screen as well).
Echoing the input data to the screen is quite helpful, to make sure that you read the
data file properly into the matrices (write a separate function to display a single
generic matrix given its rows and columns).

Do not forget to check that the matrix dimensions are appropriate for multiplication.
Exit if they are incorrect.

Note that your TAs will probably use input files different than the one above, so you
should write your code to handle any matrices (up to size 100x100, of course).

Make sure that you properly use ‘const” modifiers wherever appropriate.

What To Hand In

Email your programs to the course account and submit a hard copy to the submission
box.

Due Date

Due date for all materials is Friday, November 11 at 6:00pm.

Page 2 of 2

	SY DE 121
	Lab Number 8
	Exercise 1:
	Read This First
	What to do
	Hints
	If you are using the string class, you sometimes have to convert string objects into cstrings. To do this, use the 'c_str()' member function. For example, the 'open' member function is not overloaded to handle string objects (such as infilename), so...
	instream.open(infilename.c_str());
	Instead of just sending your output to a file, you should also send it to the screen. This should assist code debugging. To create a separate function to send the output to the screen is appropriate.
	What To Hand In

	Exercise 2:
	Read This First
	What To Do
	What To Hand In
	Due Date

