
 Page 1 of 2

SYDE 121 – Digital Computation
Lab Number 9

Exercise 1: Improved Date Class
Learning Objectives: To practice programming with classes and
objects.

Read This First

Dates are a common application for the introduction of objects as
implemented in C++ using classes. In this exercise you will use and add
functionality to a predefined Date class. An important capability of this
Date class is its ability to handle the concepts of “valid” and “invalid”
dates. For example, if a Date object is created with nonsensical input,
then that object should be invalid.

What to Do

Set up a project called UseDate. Copy in the files from the website and
create a project.

Read the Date class declaration in the file Date.h. Read the comments
describing the purpose of each member function. Then read the main
function (in UseDate.cpp), and run the program a few times to see if it
behaves the way you expect.

Now add a new member function to the Date class. The function should be
called backup; its effect should be to step a Date object back one day. (In
other words, it should do the opposite of the advance function.)

Since the following block of code is called many times, replace all
instances with a new member function call called ‘check()’:
 if (! (is_valid()))
 {
 cout << "Not valid. Exitting." << endl;
 exit(1);
 }

Get rid of the original main() function. Write a new main() function that
asks the user for the date of an airline flight and the number of days in
advance that the ticket must be purchased; the user should then be

advised of the last possible day for buying the ticket. A sample dialog
might go like this:

 What is the date of the flight? 1996 9 27
 The date read was 1996.09.27
 How many days earlier must the ticket be bought? 14
 Doing a computation for a 14-day advance purchase...
 You must buy the ticket on or before 1996.09.13
Test the completed program by running it several times. Make sure you
try cases where you must back up to the previous month, and cases where
you must back up to the previous year.

Background: The Modern Calendar

The calendar we use today is called the Gregorian calendar. In this
calendar, a year is a leap year if and only if it falls into one of the two
following categories:

• multiples of four that are not multiples of 100; or

• multiples of 400.

For example, 1996 was a leap year because it is in the first category, and
2000 was a leap year because it is in the second category. On the other
hand, 1900 was not a leap year, and 2100 will not be a leap year either.

The Gregorian calendar was invented in 1582 as a replacement for the
Julian calendar, in which every fourth year was a leap year, without any
exceptions. Different countries adopted the Gregorian calendar in
different years. Switching systems required a country to drop some days
from its calendar in the year of the switch. England and its colonies
changed calendars in 1753, dropping eleven days from the 1752 calendar.

So if for some reason you are writing a program that works with dates far
back in history, you may have quite a messy programming problem.
However, in this exercise, you need only concern yourself with dates from
1753.01.01 onwards, i.e., modern dates.

What To Hand In

Hand in and email the revised Date.h, Date.cpp and main program. Make
sure that you (a) use the proper header information in your email and (b)
submit the hardcopy to the proper box.

 Page 2 of 2

Exercise 2: Create a Rational class
Learning Objectives: To develop a class of your own. To learn about
driver programs.

Read This First

You are expected to create your own class from scratch. The class will be
tested with a driver program that is provided.

What to Do

Download the driver program from the course website. A driver program
is a tool used by a programmer to test the functionality of a set of code.
In this case, you have been provided with a driver program that tests the
Rational class you will be asked to develop.

Create a class called Rational for performing arithmetic with fractions.
Use integer variables to represent the private data of the class – the
numerator and denominator. Provide a constructor function that enables
an object of this class to be initialized when it is declared. The
constructor should contain default values in case no initializers are
provided and should also always store the fraction in reduced form (eg.
2/4 should be stored as 1/2). Keep the reducer member function as
private (why should you do this? This is an important question - if you
don't know the answer, ask for assistance). Provide public member
functions for each of the following (for each of (a) through (d) the result
should be stored in reduced form):

a) Addition of two Rational numbers.

b) Subtraction of two Rational numbers.

c) Multiplication of two Rational numbers.

d) Division of two Rational numbers.

e) Printing Rational numbers in the form a/b.

f) Printing Rational numbers in floating point form.

Hint

Make sure you develop solid code for this problem because you will be
using it in Lab #10. Remember to properly document your code.

What To Hand In

Hand in and email to the course account your class definition and
implementation.

Due Date
Monday, November 21 by 9:00am.

	Exercise 1: Improved Date Class
	Read This First
	What to Do
	Background: The Modern Calendar
	What To Hand In

	Exercise 2: Create a Rational class
	Read This First
	What to Do
	Hint
	What To Hand In
	Due Date

