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Abstract — The purpose of this tutorial is to provide an overview of photoconductivity from basic principles to 
some advanced concepts. Photoconductivity definitions are introduced and the importance of electrical contacts 
are highlighted. The continuity equation platform is emphasized as a means of describing the photoinjected carrier 
dynamics in semiconductors with some simple solutions as examples.  Photoconductivity experiments have been 
extensively used by numerous researchers to characterize semiconductor materials. The tutorial will address 
some typical photoconductivity experiments such as ac photoconductivity and time-of-flight (TOF) transient 
photoconductivity techniques.  Selected examples of photoconductive materials are also considered for use in 
detectors for infrared to high energy radiation (x-rays). 
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In many textbooks, the photoconductivity  is defined as the change in the conductivity of a semiconductor 

sample upon illumination, and is typically quoted through the well-known equation 

    = een + ehp        (1)  

where n and p are the photogenerated (or excess) concentrations of electrons and holes, and e and h are the 

electron and hole drift mobilities, which are assumed to be unaffected by illumination (or by n and p). The 

photoconductivity problem therefore boils down to finding n and p.  Equation (1) appears to be a straightforward 
and simple equation but it has several major tacit assumptions that need to be highlighted and examined.   

The fist step in understanding the results of photoconductivity experiments is to realize the importance of 
electrical contacts to the semiconductor. Electrical contacts are of central importance in the response of the 
semiconductor to illumination. The tutorial will show that ohmic or injecting contacts lead to photoconductive gain 
but noninjecting contacts allow space charges to develop within the semiconductor, and there is no photoconductive 
gain. The Ramo-Shockley theorem is introduced to relate the photocurrent to the drift of the photogenerated 
carriers; and also to relate the collected charge to the number of electron and hole pairs that are photogenerated.  

The photogeneration, denoted by gph(x,y,z,t), in general, has both time (t) and spatial (x,y,z) dependence.  The 
time-dependence of photoconductivity experiments can be divided into three categories. 

(a) DC photoconductivity 
(b) Steady state photoconductivity 
(c) Transient photoconductivity  

In addition, we need to consider the spatial dependence of gph(x,y,z,t), which leads to what are known as 
photoconductivity configurations.  Two typical photoconductivity configurations are: 

(A) Coplanar electrodes; the electrodes are on the same side of the semiconductor as the photoexcitation. 
Put differently, the photogeneration is perpendicular to the applied field 

(B) Transverse electrodes; the electrodes are on the opposite sides of the semiconductor and the 
illumination is normally trough one of the electrodes, or such that photogeneration is between the 
electrodes. As distinct from A, the photogeneration is along the applied field. 

There are other possible configurations as well, though the above two tend to be among the most common. In 

all cases, the problem of predicting the observed photocurrent density jph(t), and hence the photoconductivity (t), 
can be tackled by solving the continuity equation.  The continuity equation platform involves solving the following 
set of equations solved simultaneously 

(1) The continuity equation for photoinjected carriers under a defined photogeneration rate 
gph(x,y,z,t) 



(2) Rate equations for trapping and release for each set of localized states in the bandgap (or 
mobility gap) 

(3) Rate equations for recombination for each type of recombination process 
(4) The Poisson equation, that is, Gauss's equation in point form 

The above equations in (1) to (4) have to solved subject to initial and boundary conditions, given gph(x,y,z,t) 
Analytical solutions are only available for simple cases, and these will be described during the tutorial.  Most 

practical solutions rely on numerical solutions of the continuity equation.  One can also use Monte Carlo simulations 
but such simulations are inherently slow because a large number of carriers have to be tagged and tracked through 
their transit across the sample to avoid large fluctuations (noise) in the results.   

While most photoconductivity experiments involve monitoring the photocurrent in the external circuit, it is also 
possible to carry out photoconductivity experiments under open circuit conditions. Thus, in addition to the 
categories above, we need to introduce two more classifications: 

(C) Short circuit photoconductivity configuration where the photocurrent flowing in the external "short 
circuit" is monitored (the bias voltage supply is treated as short for transient signals).  An alternative 
statement of this condition is that the integration of the electric field E across the sample at any instant 
is constant and equal to the applied bias Vo.  

(D) Open circuit photoconductivity configuration where the photocurrent flowing in the external "open 
circuit" is zero; the open circuit voltage V(t) and its rate of change are monitored. An alternative 
statement of this condition is simply Jph(t) = 0 

C and D above must be incorporated into the continuity equation platform. Most experiments fall into the 
category (C) above. However, open circuit experiments have one distinct advantage that Jph(t) = 0, and this condition 
introduces a useful simplification in the continuity equation platform in (1) to (4) above.  

One particularly important case is the time-of-flight (TOF) transient photoconductivity experiments in which the 
sample is sandwiched between two electrodes, one of which is semitransparent. The photoexcitation is a highly 
absorbed very short light pulse that generates electrons and holes near the semitransparent electrode. The 
photocarriers that have the same polarity as the semitransparent electrode drift through the sample and generate 
a photocurrent jph(t) in the external circuit. The measured signal is jph(t). As the photocarriers drift, they interact with 
traps (localized states) in the sample. They become captured into localized states and later released back into the 
transport band. Further, some photocarriers can be lost into deep traps and cannot contribute to the photocurrent. 
The time dependence of jph(t) can provide useful information on the photocarrier transport dynamics. As soon as 
the drifting carriers reach the collecting electrode, there is a sharp drop in the photocurrent jph(t), which defines a 
transit time,  from which one can determine the effective drift mobility of the photoinjected carriers.  The shape of 
the photocurrent jph(t) in TOF measurements can be used to extract valuable information on the density of localized 
states in a semiconductor sample. Some typical case studies for selected materials are shown and discussed.  

The tutorial will also look at some popular photoconductors such as amorphous selenium alloys, HgI2, HgCdTe 
diamond films, and use these as examples during the development of the principles above.  

The tutorial will concentrate mainly on nondispersive transport and small signal excitation. Nondispersive 
transport refers to the transport of photoinjected carriers through the semiconductor in which the carriers reach a 
steady state, or quasiequilibrium, with respect to localized states before they reach the collection electrode. Put 
differently, there is a clear delineation (demarcation) between shallow and deep traps and this demarkation does 
not change during the time scale of the experiment. In dispersive transport, however, the distribution of localized 
states is such that the photoinjected carriers interact with deeper and deeper localized states as they drift so that 
they never actually reach a steady state behavior. The photoinjected carrier concentration is time dependent and 
photocurrent exhibits a monotonic decrease with time. The rate of decrease in the photocurrent sharply accelerates 
when the carriers begin to reach the collecting electrode. The transit time and the drift mobility determined from 
such measurements depend on the time scale of the experiment; that is, the drift mobility depends on the sample 
thickness. 

The majority of the work in the past has been done under small signal conditions, that is, the photoinjected 
charges do not perturb the applied field. The field is assumed to be constant. There are many practical applications 
in which this is not the case, and the photoinjected carriers perturb the field. Some selected examples will be shown 
to highlight how the TOF photocurrent waveform depends on the photoinjection ratio r, that is, the ratio of 
photoinjected charge density to the charge density on the electrode.  (Charge density here is a surface density). The 
importance of r is highlighted.  Various experimental artifacts that can affect TOF measurements are also discussed.  




