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Abstract. Difficult knapsack problems are problems that are expressly designed 
to be difficult. In this paper, enhanced Quantum Evolutionary Algorithms are 
designed and their application is presented for the solution of the DKPs. The 
algorithms are general enough and can be used with advantage in other subset 
selection problems. 
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1   Introduction 

The classical knapsack problem is defined as follows: Given a set of n items, each 
item j having an integer profit  pj and an integer weight wj, the problem is to choose a 
subset of the items such that their overall profit is maximized, while the overall 
weight does not exceed a given capacity c. The problem may be formulated as the 
following integer programming model 

  

where the binary decision variables xj are used to indicate whether item j is included 
in the knapsack or not. Without loss of generality it may be assumed that all profits 
and weights are positive, that all weights are smaller than the capacity c, and that the 
overall weight of the items exceeds c. 

The standard knapsack problem (SKP) is NP-hard in the weak sense, meaning that 
it can be solved in pseudo-polynomial time through dynamic programming. The SKPs 
are quite easy to solve for the most recent algorithms [1-5]. Various branch-and-
bound algorithms for SKPs have been presented. The more recent of these solve a 
core problem, i.e. an SKP defined on a subset of the items where there is a large 
probability of finding an optimal solution. The MT2 algorithm [1] is one of the most 
advanced of these algorithms. Realizing that the core size is difficult to estimate in 
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advance, Pisinger [5] proposed to use an expanding core algorithm. Martello and Toth 
[3] proposed a special variant of the MT2 algorithm which was developed to deal 
with hard knapsack problems. One of the most successful algorithms for SKP was 
presented by Martello, Pisinger and Toth [7]. The algorithm can be seen as a 
combination of many different concepts and is hence called Combo.  

The instances do not need to be changed much before the algorithms experience a 
significant difficulty. These instances of SKP are called the Difficult Knapsack 
Problems (DKP) [6]. These are specially constructed problems that are hard to solve 
using the standard methods that are employed for the SKPs. Pisinger [6] has provided 
explicit methods for constructing instances of such problems.  

Heuristics which employ history of better solutions obtained in the search process, viz. 
GA, EA, have been proven to have better convergence and quality of solution for some 
“difficult” optimization problems. But, still, problems of slow/premature convergence 
remain and have to be tackled with suitable implementation for the particular problem at 
hand. Quantum Evolutionary Algorithms (QEA) is a recent branch of EAs. QEAs have 
proven to be effective for optimization of functions with binary parameters [8, 9].  

Although the QEAs have been shown to be effective for SKPs in [8], their 
performance on the more difficult DKPs has not been investigated. Exact branch and 
bound based methods are not fast for DKPs. This provides the motivation for 
attempting to design newer Enhanced QEAs (EQEAs) with better search capability 
for the solution of the DKPs. In this paper, such EQEAs are presented. The QEAs are 
different from those in [8] as they include a variety of quantum operators for 
executing the search process. The computational performance of the EQEAs is tested 
on large instances of nine different varieties of the DKPs i.e. for problems up to the 
size of 10,000. The results obtained are compared with those obtained by the greedy 
heuristic. It is seen that the EQEAs are able to provide much improved results.   

The rest of the paper is organized as follows. In section 2 we describe the various 
types of DKPs reported in the literature. A brief introduction to the QEAs and some 
preliminaries regarding the QEAs are provided in section 3. The EQEA is given in the 
form of pseudo-code in section 4. The computational results are provided section 5. 
Some conclusions are derived in section 6.   

2   Difficult Knapsack Problems (DKPs) 

Several groups of randomly generated instances of DKPs have been constructed to 
reflect special properties that may influence the solution process in [6]. In all 
instances the weights are uniformly distributed in a given interval with data range 
with R =1000. The profits are expressed as a function of the weights, yielding the 
specific properties of each group. Nine such groups are described below as instances 
of DKPs. The first six are instances with large coefficients for profit and the last three 
are instances of small coefficients for profits.  

(i) Uncorrelated data instances: pj and wj are chosen randomly in [1,R]. In these 
instances there is no correlation between the profit and weight of an item.  

(ii) Weakly correlated instances: weights wj are chosen randomly in [1,R] and the 
profits pj in [wj- R/10 , wj + R/10] such that pj >= 1. Despite their name, weakly 
correlated instances have a very high correlation between the profit and weight of an 



254 C. Patvardhan, A. Narayan, and A. Srivastav 

item. Typically the profit differs from the weight by only a few percent.  
 

(iii) Strongly correlated instances: weights wj are distributed in [1,R] and pj = 
wj+R/10. Such instances correspond to a real-life situation where the return is 
proportional to the investment plus some fixed charge for each project.  

(iv) Inverse strongly correlated instances: profits pj are distributed in [1,R] and 
wj=pj+R/10. These instances are like strongly correlated instances, but the fixed 
charge is negative. 

(v) Almost strongly correlated instances: weights wj are distributed in [1,R] and the 
profits pj in [wj + R/10 – R/500, wj + R/10 + R/500]. These are a kind of fixed-charge 
problems with some noise added. Thus they reflect the properties of both strongly and 
weakly correlated instances. 

(vi) Uncorrelated instances with similar weights: weights wj are distributed in 
[100000 , 100100] and the profits pj in [1, 1000]. 

(vii) Spanner instances (v,m): These instances are constructed such that all items are 
multiples of a quite small set of items — the so-called spanner set. The spanner 
instances span(v,m) are characterized by the following three parameters: v is the size of 
the spanner set, m is the multiplier limit, and any distribution (uncorrelated, weakly 
correlated, strongly correlated, etc.) of the items in the spanner set may be taken. More 
formally, the instances are generated as follows: A set of v items is generated with 
weights in the interval [1,R], and profits according to the distribution. The items (pk,wk) 
in the spanner set are normalized by dividing the profits and weights with m+1. The n 
items are then constructed, by repeatedly choosing an item [pk,wk] from the spanner set, 
and a multiplier a randomly generated in the interval [1,m]. The constructed item has 
profit and weight (a . pk , a.wk).The multiplier limit was chosen as  m = 10. 

(viii) Multiple strongly correlated instances mstr(k1,k2,d): These instances are 
constructed as a combination of two sets of strongly correlated instances.Both 
instances have profits pj := wj + ki where ki= 1 , 2 is different for the two instances. 
The multiple strongly correlated instances mstr(k1,k2,d) are generated as follows:  

The weights of the n items are randomly distributed in [1,R]. If the weight wj is 
divisible by d, then we set the profit pj :=wj + k1 otherwise set it to pj := wj + k2 . The 
weights wj in the first group (i.e. where pj = wj + k1) will all be multiples of d, so that 
using only these weights at most d [c/d] of the capacity can be used. To obtain a 
completely filled knapsack some of the items from the second distribution need to be 
included. 

(ix) Profit ceiling instances pceil(d): These instances have the property that all profits 
are multiples of a given parameter d. The weights of the n items are randomly distributed 
in [1,R], and the profits are set to pj = d[wj/d]. The parameter d was chosen as d=3. 

3   QEA Preliminaries  

QEA is a population-based probabilistic Evolutionary Algorithm that integrates 
concepts from quantum computing for higher representation power and robust search.  

Qubit 
QEA uses qubits as the smallest unit of information for representing individuals. Each 
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qubit is represented as  qi= 
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αi and βi are complex numbers representing probabilistic state of qubit, i.e. |αi|2 is 
probability of the state being 0 and |βi|

2 is the probability of the state being 1, such that 
|αi|2+|βι|2=1.  For purposes of QEA, nothing is lost by regarding αi and βi to be real 
numbers. Thus, a qubit string with n bits represents a superposition of 2n binary states 
and provides an extremely compact representation of the entire search space.  

Observation 
The process of generating binary strings from the qubit string, Q, is called 
Observation. To observe the qubit string (Q), a string consisting of same number of 
random numbers between 0 and 1 (R) is generated. The element Pi is set to 0 if Ri is 
less than square of Qi and 1 otherwise. Table1 represents the observation process. 

Table 1. Observation of qubit string 

i 1 2 3 4 5 ........ Ng 
Q 0.17 0.78 0.72 0.41 0.89 ......... 0.36 
R 0.24 0.07 0.68 0.92 0.15 ......... 0.79 
P 1 0 0 1 0 ......... 1 

 
Updating qubit string 
In each of the iterations, several solution strings are generated from Q by observation 
as given above and their fitness values are computed. The solution with best fitness is 
identified. The updating process moves the elements of Q towards the best solution 
slightly such that there is a higher probability of generation of solution strings, which 
are similar to best solution, in subsequent iterations. A Quantum gate is utilized for 
this purpose so that qubits retain their properties [8]. One such gate is rotation gate, 
which updates the qubits as   
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where, αι
t+1and  βι

t+1 denote probabilities for ith qubit in (t+1)th iteration and Δθi is 
equivalent to the step size in typical iterative algorithms in the sense that it defines the 
rate of movement towards the currently perceived optimum. 

The above description outlines the basic elements of QEA. The qubit string, Q, 
represents probabilistically the search space. Observing a qubit string ‘n’ times yields 
‘n’ different solutions because of the probabilities involved. Fitness of these is 
computed and the qubit string, Q, is updated towards higher probability of producing 
strings similar to the one with highest fitness. The sequence of steps continues. The 
above ideas can be easily generalized to work with multiple qubit strings. Genetic 
operators like crossover and mutation can then be invoked to enhance the search 
power further. 
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4   Enhanced Quantum Evolutionary Algorithm  

The algorithm is explained succinctly in the form of a pseudo-code below.  
 
Notation 

• Max = number of items in DKP, Cap = Capacity of knapsack 
• Profit = Array of profit by selecting each item  
• Weight = Array of weight by selecting each item 
• Gsol = DKP Solution by Greedy heuristic, GProfit = Profit of items in Gsol 
• P, ep ,rp : Strings of Quantum bits used in search 
• NO1 = Operator used to evolve ep towards best solution found so far 
• NO2 = Operator used to evove rp randomly 
• NO3 = Rotation operator used to evolve p 
• bestcep = String produced by operator NO1 giving best result on observation 
• bestcrp = Quantum string produced by NO2 giving best result on observation 
• Best = Best profit found by EQEA of solution maxsol 

 

Algorithm EQEA 
1 Initialize iteration number t=0, cap, profit, weight , max 
2 Sort items in descending order of profit/weight 
3 Find greedy solution G with profit Gcost. 
4 Best  = Gcost , Maxsol = G 
5 Initialize for every ‘k’ 

If G[k] ==1 p[k] =ep[k]=rp[k]=0.8 else p[k] =ep[k]=rp[k]=0.2 
6 Best Cap = ep , Best Cap = rp /*Initialization*/ 
7 Observe p[k] to get solution with cost tcost ;  

if(tcost > Best){Best = tcost;  Maxsol = tsol;} 
8 while (termination_criterion != TRUE) Do Steps 9-15 
9 Apply NO1 to p to generate  the current rp i.e crp; 

  for(i=0;i<num1;i++) 
{   Observe crp to obtain solution rsol with cost rcost; 
if(rcost > Best) 
{Crossover rsol with Maxsol to obtain tsol with cost tcost; 
If(tcost>rcost) {rsol = tsol;rcost = tcost} 
bestcrp = crp;} 
If(rcost >Best) {Best = rcost ; maxsol  = rsol;} 

10 Repeat step 9 with NO2 on p to obtain bestcep, ecost and esol; 
11 Apply NO3 on p 
12 For(i = 0 ; i < max; i++) 

{qmax[i] = findmax(bestcep[i], bestcrp[i],p[i]); 
qmin[i] = findmix(bestcep[i], bestcrp[i],p[i]); 
if(p[i]  >  0.5) 
{{if((maxsol[i]==1)and (bestcep[i]==1)and (bestcrp[i]==1)) 

p[i]=qmax[i];} 
else {if((maxsol[i]==0)and (bestcep[i]==0)and (bestcrp[i]==0)) 

p[i]=qmin[i];}} 
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13 Settled = number of p[i]’s with  αi > 0.98 or αi < 0.02 
14 t =t +1 
15 If(( t > iter _count) or (settled > 0.98 * max)) termination _ criterion 

= TRUE 
Algorithm EQEA starts with the greedy solution and initializes the qubit strings in 

accordance with the greedy solution as in step 4. Observe operation in step 5 is a 
modified form of observation described in section 3. In this, the solution string 
resulting from the observation is checked for violation of capacity constraint and 
repaired, if necessary, using a greedy approach i.e. selected items are deselected in 
increasing order of profit/weight till capacity constraint is satisfied. The crossover 
operator is a simple two-point crossover with greedy repair of constraint violations.  
 

Evolving Qubits 
In EQEA, the qubit is evolved state of the qubit, which is a superposition of state 0 
and 1, is shifted to a new superposition state. This change in probability magnitudes 
|α|2 and |β|2 with change in state is transformed into real valued parameters in the 
problem space by two neighborhood operators.  
 

Neighborhood Operator 1 (NO1) generates a new qubit array crp from the rp. An 
array R is created with max elements generated at random such that every element in 
R is either +1 or -1. Let ρk be the kth element in R. Then θk

t is given by    

                                                 θk
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where, δ  is alteration in angle and θk
t is the rotated angle given by arctan(βk

t /αk
t).  

δ is randomly chosen in the range [0, θk
t-1] if ρk = -1 and in the range [θk

t-1, π/2] if 
ρk = +1.  

The new probability amplitudes, αk
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Neighborhood Operator 2 (NO2) NO2 works just as NO1 except that it generates a 
point between ep and BEST. It is primarily utilized for exploitation of search space.  

The rationale for two neighborhood operators is as follows. NO1 has a greater 
tendency for exploration. NO2 has a greater tendency towards exploitation because, 
as the algorithm progresses, the values of ep converge towards BEST. Table 2 shows 
the frequency of use of NO1 and NO2. 

Table 2. Frequency of use of NO1 and NO2 

Stage of search Proportion of NO1 (%) Proportion of NO2 (%) 
First one-fifth iterations 90 10 
Second one-fifth iterations 70 30 
Third one-fifth iterations 50 50 
Forth one-fifth iterations 30 70 
Last one-fifth iterations 10 90 
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The neighborhood operators thus evolve new quantum strings from the existing 
strings. This approach removes all disadvantages of binary representation of real 
numbers while, at the same time, balances exploration and exploitation in the sense 
that it adopts the “step-size” from large initially to progressively smaller size. 
Updating Qubit String(NO3) 
In the updating process, the individual states of all the qubits in p are modified so that 
probability of generating a solution string which is similar to the current best solution 
is increased in each of the subsequent iterations. Amount of change in these 
probabilities is decided by Learning Rate, Δθ, and is taken as 0.001π. Updating 
process is done as explained in section 2. Table 3 presents the choice of Δθ for 
various conditions of objective function values and ith element of p and BEST in tth 
iteration. F(p) is the profit of the current solution observed from p. F(BEST) is the 
profit of maxsol.  

Table 3. Calculation of Δθ for tth iteration 

Fitness Elemental Values Δθ 
X pi = BEST i 0 

pi >BESTi  0.001π 
F(BEST)>F(p) 

pi < BESTi − 0.001π 
pi  > BESTi − 0.001π 

F(BEST)<F(p) 
pi < BESTi 0.001π 
pi > BESTi 0 

F(p)=F(BEST) 
pi < BESTi 0 

 
The updating process is illustrated in figure 2 for kth element for tth iteration i.e. 

changes in state of kth qubit and corresponding change in probability amplitudes. 
Findmax finds the maximum of the three arguments whereas findmin finds the 
minimum of the three arguments. 

 

θk
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1αk
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βk
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0

Δθ

αk
t
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Fig. 2. Updating kth element of qubit string Q 

5   Results of Computational Experiments 

The computational experiments have been performed on the above mentioned nine 
types of DKPs for the data range R = 1000 and the number of items ranging from 500 

to 10000. For each instance type a series of H = 9 ,  ,  h = 1,., . . .H 
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instances is performed. The EQEA performed better in most of the cases where the 
problem did not get settled up with a definite structure. The table 4 shows 
computational results. AGP is the average profit in solutions obtained by the greedy 
algorithm whereas AQP is the average profit of solutions by the EQEA algorithm. 
 

Table 4. Shows the relative values of solutions by Greedy and Quantum Evolutionary methods 
 

Problem size = 500 Problem size = 5000 Problem size = 10,000 DKP 
 
Grp. 

 
 
AGP 

 
 
AQP 

# 
EQEA 
better 

 
 

AGP 

 
 
AQP 

# 
EQEA 
better 

 
 

AGP 

 
 

AQP 

# 
EQEA 
better 

1 48438 61018 7 483294 563412 8 984889 1158681 5 

2 67582 69037 5 672893 688997 4 136338
1 

1395080 5 

3 50076 61948 6 506102 620607 6 101501
6 

1246752 5 

4 44036 44919 6 445676 451673 1 896304 906715 1 

5 50792 62752 5 507447 621695 6 102185
9 

1251110 7 

6 55633 57705 3 553570 584196 4 112743
2 

1177977 4 

7 25255 31255 7 253710 310182 7 508955 622955 5 

8 37893 43051 7 382858 430121 4 757420 856606 4 

9 142162 15330
0 

4 1437554 154130
9 

3 289758
5 

3106700 1 

The Third column in each shows the number of problems (out of 9 tried for various 
capacities of the knapsack) in which EQEA gives better solution than Greedy method 
for that group. It is seen that the EQEA provides a considerable improvement in 
several instances. 

6   Conclusions 

An enhanced QEA is presented for Difficult knapsack problems. EQEA shows good 
performance even for large instances of the problems. EQEA can be used with 
advantage in any subset slection problems apart from the DKPs. 
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