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Abstract—This paper presents an approach to time series
prediction based on Asymmetric Subsethood-Product Fuzzy Neu-
ral Inference System (ASuPFuNIS). The standard time series
techniques have standard averaging where a fixed weight is added
to the past values. In this paper we present a novel neuro-
fuzzy inference system based on asymmetric subsethood with
intervention based transfer function based time series model for
accurate prediction of time series. The design of the model is
described, and the scheme is evaluated by application to real-
world problem of cost of electricity prices over a period of seven
year in Ontario, Canada. We also study the various statistical
properties of the data.

I. INTRODUCTION

Time series is a very popular method for the analysis of
sequentially organized observations so that the governing
characteristics of the process are uncovered. Time series is the
data which is observed at regular intervals, and it is generated
in various fields concerned with our daily life such as weather,
stock market, and electric power, etc. The essential objective
of time series analysis is to forecast the future behaviour of
a system based on the historical information. This analysis
results in the description of the process through a number of
equations that in principle combine the current values of the
series, yt, with past observations, yt−k, exogenous variables,
xt−j , and previous error terms, et−k. The generalized form
of this process becomes as explained in [1]

yt = f(yt−k, xt−j , et−k) (1)

As clearly mentioned in [1], a variety of statistical models
such as exponential smoothing, generalized regression and
ARMA have been used previously to describe the unknown
function f . Another approach of fitting non-linear models that
are widely available such as artificial intelligence models and
chaotic processes is used. Despite the availability of strong
forecasting methods already available there is a thrust towards
the development of better forecasting schemes. One major
drawback in current techniques is the amount of information
needed to explain the variation of the series.

Analysis of time series is needed before the prediction can
be done. Time series analysis is to find out the various proba-
bilistic and statistical characteristics in them. Linear regression
models (such as Auto Regressive (AR), Moving Average (MA)
and Auto Regressive Moving Average (ARMA)) and Box-
Jenkins Model have been most widely used for time series
analysis[2][3]. Recently, during the past few years researchers
have been exploring the soft computing techniques such as
fuzzy theory, neural networks and genetic algorithms [4].

A novel technique based on the least squares support vector
machines (LS-SVM) [5] was proposed to make one-step or
multi-step prediction of chaotic time series. Also various
filtering methods have been employed in the prediction of
chaotic time series such as neural Volterra filter [6] and
Kalman filter [7].

Numerous examples of synergistic fuzzy neural models that
combine the merits of connectionist and fuzzy approaches have
been proposed in the literature [8], [9], [10]. These include the
fuzzy multilayer perceptron [11]; neural fuzzy systems [12];
and evolvable neuro-fuzzy systems [13]. By virtue of their
ability to refine initial domain knowledge, operate and adapt in
both numeric as well as linguistic environments, these models
are extensively used in a wide range of application domains
such as approximate reasoning and inferencing [14]; classi-
fication [15]; control [16]; rule extraction and simplification
[17].

Most hybrid models embed data-driven or expert derived
knowledge, in the form of fuzzy if-then rules, into a network
architecture to facilitate fast learning [18]. This embedding
of knowledge is often done by assuming that antecedent
and consequent labels of standard fuzzy if-then rules are
represented as connection weights of the network as in [19].
The composition of the incoming numeric information with
this embedded knowledge is usually done by computing mem-
bership values from fuzzy membership functions that represent
network weights [15] or by fuzzifying the numeric inputs by
modeling them as fuzzy numbers using triangular or Gaussian
membership functions and then using the well defined sup-star
or mutual subsethood composition mechanisms [18], [20]. In



case of symbolic information, a given universe of discourse
is generally quantized into pre-specified fuzzy sets. A fuzzy
input is then simply one of these pre-specified fuzzy sets [11],
[21]. Subsequently a learning algorithm fine tunes these rules
based on the available training data that describes the problem.
Commonly used learning algorithms employ either supervised
gradient descent and their variants [11], unsupervised learning,
reinforcement learning, or genetic algorithm based search [22],
[16].

Asymmetric Subsethood-Product Fuzzy Neural Inference
System (ASuPFuNIS) directly extends SuPFuNIS [18] by
permitting the signal and weight fuzzy sets to be asymmetric
in the sense that the left and right spreads of the signal and
weight fuzzy sets can differ. Both signal and weight fuzzy sets
are thus defined by three parameters: a center, a left spread
and a right spread. This extension is motivated by the fact
that asymmetric fuzzy sets lend flexibility and thereby may
be fruitful in capturing the non-uniformity of data in complex
problems.

The rest of the paper is organized as Section II talks about
Methodology , Section III gives the background information
of the data and its statistical properties, Section IV shows
the implementation strategy, Section V shows some results,
Section VI concludes the paper and expresses ideas on future
development.

II. METHODOLOGY

The ASuPFuNIS network is trained by supervised learning,
once again in a way similar to that of SuPFuNIS [18]. This
involves repeated presentation of input patterns drawn from
the training set and comparing the output of the network with
the desired value to obtain the error. Network weights are
changed on the basis of an error minimizing criterion. Once
the network is trained to the desired level of error, it is tested
by presenting unseen test set patterns.

Learning is incorporated into ASuPFuNIS using the stan-
dard iterative pattern based gradient descent method. The
instantaneous squared error e(t) at iteration t is used as
a training performance parameter and is computed in the
standard way:

e(t) =
1
2

p∑
k=1

(dk(t)− S(yk(t)))2 (2)

where dk(t) is the desired value at output node k, and e(t)
is evaluated over all p outputs for a specific input pattern
X(t). Notice that for an n-q-p architecture of ASuPFuNIS,
the number of connections is (nq+qp). Since in the proposed
model, the representation of a fuzzy weight requires three
parameters (center, left and right spreads) and an input feature
requires two parameters (left and right spreads), the total
number of free parameters to be trained will be 3(nq+qp)+2n.
If the trainable parameters of ASuPFuNIS be represented as a
vector P = (xσ
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, then the
iterative gradient descent update equation can be written as

P (t+ 1) = P (t)− η∇e(t) + α∆P (t− 1) (3)

where η is the learning rate, ∇e(t) =(
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the gradient vector, α is the momentum parameter and
∆P (t− 1) = P (t)− P (t− 1).

III. BACKGROUND INFORMATION

The basic time series which we are going to model repre-
sents electric prices in Ontario, Canada. The electric prices
tend to vary hourly at various times of the day. They are
usually low during the off peak hours and are comparatively
high at peak hours of the day since the electricity consumption
is high during this time. These price fluctuations are dependant
on various factors as cost of generation, transmission cost,
regulatory costs etc.

Fluctuations in these electric prices are regulated not only
by electric companies but also consumer and government
agencies. In the new evolving power systems where smart grid
is playing an important role in the electricity prices where
consumer comes into the scenario in regulating electricity
prices by providing electricity to the grid.

First step in time series modelling is exploratory data
analysis where we are going to look at various plots of the
data and predict a model which may most appropriately fit our
time series.

A. Exploratory and Confirmatory Data Analysis

The figure 1 below indicates the general statistical be-
haviour of the the raw data of the time series having monthly
data for seven year of average electricity prices. From the
figure 1 we can infer that the electric prices have generally
been stationary when averaged daily over a month. Although
we can see in the year 2004 there seems to be a shoot up of
prices which may be due to various reasons. Such as the cost
of resources (raw material increasing) which was controlled by
government by may be subsidizing the rates which eventually
brought down the rates.

Now we can also see a very interesting variation in the
electricity prices in around 74th month where we can see a
dip in the electric prices. From the background information
about the scenario in the electric market in that year it seems
that some new renewable sources of power and concepts of
smart grids or some government regulation for subsidizing the
electric prices could have been incorporated which led the
power manufacturer to regulate the prices of electricity.

The figure 2 and 3 show the Autocorrelation and Partial
Autocorrelation Functions of the data series which are helpful
in deciding the MA and AR parameters to be fit to the model.

B. Interventions

This is an important feature for our data, some times there
are unknown and known interventions which impact the time
series. In our data in figure 1 we can see that there are most
probably 2 interventions where we can see a change in the
mean level which again comes back to normal. As the first
intervention in figure 1 can be seen in around lag 24 and the
second intervention can be seen around lag 74.



Fig. 1. This plot is of raw data

Fig. 2. Autocorrelation Function

In our case we use the Maximum Likelihood Estimator to
estimate our model parameters. A detailed explanation of the
MLE is given in [23] and also in [24].

The variance of the MLE of a model parameter has min-
imum asymptotic variance and is asymptotically normally
distributed when consistency and other conditions are satisfied.
There are various kinds of MLE avaible, Approximate MLEs
and Exact MLEs and then we also have algorithms which are
used for the optmization of the likelihood function. They have
been described in detail in [24].

C. Intervention Analysis

As per the exploratory data analysis we came to a con-
clusion that our data underwent 2 major interventions one at
around lag 24 and the other one at lag 76. On figuring out the
reason behind such interventions, interesting results revealed.

Although a lot of seasonality of the data was loss due to
averaging out the hourly data to monthly data over seven
years. Hence from the above analysis and following the three
stages of model construction from identification, parameter
estimation and diagnostic checking, we find that ARMA(2,1)
fitted to a 2 intervention based TFN(Transfer Function Noise)
model with 1 parameter in the numerator and 1 parameter in
the denominator for both the interventions is used.

The general form of 2 intervention model would be like

Fig. 3. Partial Autocorrelation Function

Model AIC Model Characteristics
Intervention TFN Model 387.7 ARIMA(2,0,1), Intervention 1 : u=2,v=2 at lag 24

Intervention 2 : u=2,v=2 at lag 74
Intervention TFN Model 392.78 ARIMA(2,0,1), Intervention 1 : u=2,v=1 at lag 24

Intervention 2 : u=2,v=1 at lag 74
Intervention TFN Model 388.23 ARIMA(2,0,2), Intervention 1 : u=2,v=2 at lag 24

Intervention 2 : u=2,v=2 at lag 74
Intervention TFN Model 386.236 ARIMA(2,0,1), Intervention 1 : u=1,v=1 at lag 24

Intervention 2 : u=1,v=1 at lag 74
Intervention TFN Model 387.23 ARIMA(3,0,1), Intervention 1 : u=1,v=1 at lag 24

Intervention 2 : u=1,v=1 at lag 74

TABLE I
VARIOUS MODELS FITTED TO THE DATA AND THEIR AICS

this :

(yt − µy) =
∑2
t=1 Vi(B) +Nt

where Nt is the Noise term with a ARMA model
Vi(B) = ω(B)

δ(B) = ω0i−ω1i
(1−δ1iB)

The parameters for the above mentioned model have been
identified using the McLeod Hipel Time Series Decision Sup-
port System [24].

Now once we have estimated the parameters of our model
using MLEs we need to discriminate between the models
to choose a most accurate fit. We used various criterion to
discriminate between the models . Most commonly used is
Akaike Information Criteria (AIC)

AIC = −2lnML+ 2k
where the ML = Maximum Likelihood, lnML = value of the

maximized log likelihood function for a fitted model, k =
number of parameters.

AIC reflects two major components :

• Model Parsimony due to 2k terms
• Good Statistical fit due to -2lnML term

We selected the model with the least AIC and this is referred
to as Minimum AIC or MAIC.

Once a time series model is fit to the data we integrate the
model outputs to ASuPFuNIS, a neuro-fuzzy inference system
as mentioned in [25] for accurate predictions.



IV. IMPLEMENTATION

An indepth explanation of the algorithm is given in [25]. In
[25] we can see that the ASuPFuNIS model has been used to
make forecasts l time lags ahead. Here in this paper we will
compare the result of the forecasting of a time series model fit
using a statistical model and make MMSE ( Minimum Mean
Square Error) forecasts and compare it with the one step ahead
forecast made by the neuro-fuzzy model ASuPFuNIS.

The electric price monthly data for a period of seven year
had 84 values in the time series. From the point of view of
the neuro-fuzzy model the data was divided into two halves of
42 values each. Each of them was referred to as training and
test data sets. Now initially the training data was presented to
the network for 10000 epochs. Once the training phase was
completed the the test data was presented to the network and
based on the test data the network was made to forecast the
one step ahead forecast.

An interesting thing about using the one step ahead forecast
is that they conserve the most information. One step ahead
forecast are the one which have least amount of uncertainty
and posses most information. If we can make the one step
ahead forecast accurately then further forecasts can be made
in the same way.

As mentioned in the table II we ran initially two sets of
experiments with the above mentioned set of parameters for
10000 epochs. It was observed that the performance of the
network was better when the learning rate was high with a
high momentum. This is a particular case, one can iteratively
run using various combinations and variations of these learning
rates and momentums to get more results for analysis.

One more variation which one could experiment with such
a set up is by changing the number of rules to operate. For
this problem we consider a set of 5 rules to operate, for a
higher precision one can always increase the number of rules
and perform experiment with variations in learning rate and
momentum. Various combinations of these parameter and how
they can be implemented can be easily seen in in [25].

Particulary for this prediction problem, ASuPFuNIS em-
ployed a 4-q-1 network architecture : the input layer comprises
of four numeric nodes; the output layer comprises a single
output node and there are q rule nodes in the hidden layer.
Thus, the number of trainable parameter will be 15q + 8.

V. ARCHITECTURE AND OPERATIONAL DETAILS
As shown in Fig. V, ASuPFuNIS directly embeds fuzzy

rules of the form
If x1 is Am1 and x2 is Am2 · · · and xn is Amn then yj is Bmj m = 1 · · · q ; j = 1 · · · p (4)

where n, q, p respectively denote the number of inputs,
rules and outputs. Ami , Bmj respectively represent asymmetric
Gaussian fuzzy sets defined on input and output universes
of discourse (UODs) for the mth rule. Each input node in
the model represents a domain variable or a feature. Each
hidden node represents a fuzzy rule, and input-hidden node
connections represent fuzzy rule antecedents. Each output
node represents a target variable or a class and hidden-output

node connections represent fuzzy rule consequents. A fuzzy
weight from an input node i to a rule node j is modeled by a
center wcij , left spread wσ

l

ij and right spread wσ
r

ij of an asym-
metric Gaussian fuzzy set. Thus, an antecedent connection in
ASuPFuNIS is identified by a 3-tuple wij = (wcij , w

σl

ij , w
σr

ij ).
In a similar fashion, a consequent fuzzy connection from a
rule node j to an output node k is identified by a 3-tuple
vjk = (vcjk, v

σl

jk, v
σr

jk ). Operationally, ASuPFuNIS is similar
to SuPFuNIS [18]. In the sections that follow we present
computational expressions of the model that are different. For
details, the reader is referred to [18].

A. Signal Transmission at Input Nodes

Since the input feature vector X = (x1, . . . , xn) can
comprise either numeric or linguistic values, there are two
kinds of nodes in the input layer as shown in Fig. V. Linguistic
nodes accept linguistic inputs represented by pre-specified
asymmetric Gaussian fuzzy sets and are modeled by a center
xci , left spread xσ

l

i and right spread xσ
r

i : xi = (xci , x
σl

i , x
σr

i ).
Often since a human expert’s understanding of fuzzy linguistic
terms is too vague to decide appropriate values of xσ

l

i , x
σr

i ,
ASuPFuNIS tunes these membership function parameters dur-
ing learning. The signal S(xi) = xi is transmitted out of
linguistic node i without transformation in the input layer.

Numeric nodes are tunable feature-specific fuzzifiers. A
numeric input is fuzzified at a numeric node by treating it as
the center xci of an asymmetric Gaussian membership function
(this is similar to the idea employed in [26], [20] where the
incoming numeric inputs are fuzzified using either symmetric
Gaussian or triangular fuzzy sets) with tunable left and right
spreads xσ

l

i and xσ
r

i . Therefore, the signal transmitted from
a numeric node of the input layer is also represented by
S(xi) = xi = (xci , x

σl

i , x
σr

i ). These fuzzy signals from
the input layer are transmitted to hidden rule nodes through
fuzzy weights wij = (wcij , w

σl

ij , w
σr

ij ) that correspond to rule
antecedents.

B. Mutual Subsethood

As was done in SuPFuNIS [18] the net value of the signal
transmitted along the antecedent weight is computed using a
mutual subsethood measure. Consider two fuzzy sets A and



B described by asymmetric Gaussian membership functions
with centers c1, c2, left spreads σl1, σl2 and right spreads σr1 ,
σr2 respectively:

a(x) =

{
e−((x−c1)/σl1)

2

−∞ < x ≤ c1
e−((x−c1)/σr1)2 c1 ≤ x <∞

(5)

b(x) =

{
e−((x−c2)/σl2)

2

−∞ < x ≤ c2
e−((x−c2)/σr2)2 c2 ≤ x <∞.

(6)

The mutual subsethood E(A,B) [27], measures the degree
to which fuzzy set A equals fuzzy set B, and is quantified as

E(A,B) =
C(A ∩B)

C(A) + C(B)− C(A ∩B)
∈ [0, 1], (7)

where C(·) denotes the cardinality of a fuzzy set which is
defined for fuzzy set A by

C(A) =
∫ c1

−∞
e−((x−c1)/σl1)

2

dx+
∫ ∞
c1

e−((x−c1)/σr1)2dx. (8)

Depending upon the relative values of centers and spreads of
fuzzy sets A and B, six different cases of overlap can arise.

• Case 1A: c1 = c2, σ
l
1 ≤ σl2, σ

r
1 ≤ σr2; Case 1B: c1 =

c2, σ
l
1 ≥ σl2, σr1 ≥ σr2 .

• Case 2A: c1 = c2, σ
l
1 < σl2, σ

r
1 > σr2; Case 2B: c1 =

c2, σ
l
1 > σl2, σ

r
1 < σr2 .

• Case 3A: c1 < c2, σ
l
1 ≥ σl2, σ

r
1 ≤ σr2; Case 3B: c1 >

c2, σ
l
1 ≤ σl2, σr1 ≥ σr2 .

• Case 4A: c1 < c2, σ
l
1 ≥ σl2, σ

r
1 > σr2; Case 4B: c1 >

c2, σ
l
1 ≤ σl2, σr1 < σr2 .

• Case 5A: c1 < c2, σ
l
1 < σl2, σ

r
1 ≤ σr2; Case 5B: c1 >

c2, σ
l
1 > σl2, σ

r
1 ≥ σr2 .

• Case 6A: c1 < c2, σ
l
1 < σl2, σ

r
1 > σr2; Case 6B: c1 >

c2, σ
l
1 > σl2, σ

r
1 < σr2 .

VI. FORECASTING AND RESULTS

The ASuPFuNIS was implemented with two sets of pa-
rameters. One with high learning rate and the other with a
low learning rate. This gave us an idea of how fast a neural
network based architecture is able to learn the pattern and
make accurate forecasts.

Before training the network, the centers of the antecedents
and the consequents fuzzy sets were initialized in the range
(0,1.5). Both the feature and fuzzy weight spreads were intital-
ized in the range (0.2, 0.9). The learning rate and momentum
values used in the experiment were the extremes, 0.2 and 0.02,
0.1 and 0.7 respectively. After the completion of the training
phase, the test set was presented to the trained network. The
performance criteria of ASuPFuNIS is the normalized root
mean square error (NRMSE). NRMSE is defined as the ratio
of the RMSE divided by the total number of patterns presented
to the network.

The table III show the one step ahead forecast for the
experiment.

Learning Rate 0.2 0.02
Momentum 0.1 0.1
Initial Min Min normalized value of the data Min normalized value of the data
Initial Max Max normalized value of the data Max normalized value of the data
No. of Rules 5 5

TABLE II
EXPERIMENT SET

(Learning Rate, Momentum) (0.2,0.1) (0.2,0.7) (0.02,0.1) (0.02,0.7)
One step ahead Forecast 38 44 49 47

TABLE III
EXPERIMENTAL DETAILS
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