
Dynamic Fuzzy Load Balancing on LAM/MPI Clusters with
Applications in Parallel Master-Slave Implementations of an

Evolutionary Neuro-Fuzzy Learning System

Lotika Singh, Apurva Narayan, Satish Kumar

Abstract— In the context of parallel master-slave implemen-
tations of evolutionary learning in fuzzy-neural network models,
a major issue that arises during runtime is how to balance the
load—the number of strings assigned to a slave for evaluation
during a generation—in order to achieve maximum speed up.
Slave evaluation times can fluctuate drastically dependingupon
the local computational load on the slave (given fixed node
specifications). Communication delays compound the problem
of proper load assignment. In this paper we propose the design
of a novel dynamic fuzzy load estimator for application to
load balancing on heterogeneous LAM/MPI clusters. Using
average evaluation time and communication delay feedback
estimates from slaves, strings assignments for evaluationto
slaves are dynamically changed during runtime. Extensive tests
on heterogenous clusters shows that considerable speedupscan
be achieved.

I. M OTIVATION AND REVIEW

Evolutionary algorithms (EAs) are being increasingly em-
ployed for learning applications in computational intelligence
model development due to their powerful search capabilities.
They can be used to identify optimal network architectures,
estimate network parameters, and also eliminate redundant
features through global search. However, EAs don’t come
for free: they require problem specific and careful tuning
of parameters, and require vast computational resources.
Fortunately, the intrinsically parallel nature of EAs permits
them to be implemented on computing clusters which are
becoming increasingly common in academic and commercial
environments [1]. Research on parallel implementations of
EAs in the context of neuro-fuzzy systems (or even other-
wise) is therefore of significant importance if any realistic
simulations are to be performed.

The basic approach to applying EAs to CI model learning
is to encode the phenotypic representation into a genotypic
representation (encoding it as a string of mixed integer-
floating point numbers) and then allowing a population of
such strings to evolve in time. Evolution of the population
involves various operations such as crossover, mutation, and
selection of strings for the new generation based on an

The authors are with the Dayalbagh Educational Institute, Dayalbagh,
Agra 282005 India.

Lotika Singh, Student Member, IEEE, is a Junior Technical Assis-
tant in the Department of Physics and Computer Science–email: lotikas-
ingh@ieee.org.

Apurva Narayan,Student Member, IEEE, is a student of B.Sc. (Engg.)
Electrical Engg. Final Year in the Faculty of Engineering–email: apurva-
narayan@gmail.com.

Satish Kumar,Senior Member, IEEE, is a Professor in the Department of
Physics and Computer Science–email: skumardb@ieee.org.

individuals’ fitness by evaluation of a fitness function. It
turns out that the fitness function evaluation is the most
costly in terms of CPU resource (and therefore time). Parallel
implementations of evolutionary learning algorithms thus
typically distribute strings for evaluation across multiple
processors in order to bring down program run times. Parallel
implementations are possible on several available platforms:
parallel virtual machine (PVM) [2], message passing inter-
face (MPI) [3, 4], and Globus [5]. Of these, MPI has emerged
as thede factostandard for parallel implementations [1].

A major issue that arises in implementing a parallel
algorithm on a cluster is that of load balancing. If we consider
a standard master-slave kind of implementation, then in each
cycle, the master is responsible for assigning work units
to slaves, collecting the intermediate results back from the
slaves, and then assigning the next unit of work to slaves,
and so on. Good load balancing leads to a situation where
once the master has assigned work units to slaves in round-
robin fashion, slaves are ready to begin sending back results
to the master for collation, and thus the master (and slave)
idle times are minimized. When we say ”idle” we mean idle
from the point of view of the work assignments from the
master, and not the true processor loads. If the load on the
individual slaves is not properly balanced, then the master
wastes time waiting for jobs to finish on slow slaves, and fast
slave resources go waste since they remain idle—waiting for
the master to assign them the next batch of work. Further,
one usually employs clusters whose processor specifications
are not known, and even if they were known, the load on
each processor is random in the sense that it is not known
in advance as to how many users or which programs will
be running on a specific processor at any point of time.
Load balancing on heterogenous clusters is thus an important
research problem.

The issue of load balancing in various contexts has been
studied in the literature by several researchers. In [6] a Java-
based distributed evolutionary computing software is used
to enhance the concurrent processing and performance of
evolutionary algorithms by allowing inter-communications
of sub-populations among various computers over the In-
ternet. Reference [7] introduces dynamic mapping and load
balancing of parallel programs in MIMD multicomputers,
based on coordinated migration of processes of a parallel
program. Load balancing has also been introduced for grid
computing applications based on the modification of the
data distributions used in scatter operations [8]. A parallel



load balanced implementation of genetic programming (GP)
based on the cellular model has been presented in [9].
In [10] an adaptive memory allocation technique has been
introduced for clusters to handle large data-intensive jobs.
In [11], an on-line dynamic scheduling policy that manages
multiple job streams across both single and multiple cluster
computing systems improving the mean response time and
system utilization. The idea of dynamic scheduling system
and a load balancing system for clusters based on PVM was
introduced in [12]. Distributed load-balancing algorithms for
dynamic networks have been investigated in [13], and in [14],
sender-receiver pair negotiation takes into consideration the
processing speeds of the sender and receiver, and relative
workloads to decide allocations of work units. The design
and implementation of a dynamic fuzzy load balancing ser-
vice running in a distributed object computing environment
is described in [15, 16]. From the above review, clearly, the
application of fuzzy logic estimation for load distribution in
the context of LAM/MPI clusters is a new area of research,
and the present work represents one step in furthering these
ideas.

The paper is organized as follows: Section II briefly pro-
vides an overview of the mater-slave model for evolutionary
learning in the ASuPFuNIS model; Section III describes
the fuzzy logic estimation model; Section IV describes the
load estimation algorithm; Section V presents experimental
results; and Section VI concludes the paper.

II. M ASTER-SLAVE MODEL FORPARALLEL

EVOLUTIONARY LEARNING

Due to the dynamic nature of both network traffic (which
can affect the efficiency of message transfer) as well as the
fluctuating and unpredictable nature of CPU loads on nodes
in the cluster, the problem of load balancing becomes an
immediate candidate for fuzzy logic based load dispatch.
Towards facilitating the presentation of our strategy for fuzzy
load balancing we will consider the problem of evolution-
ary learning as applied to a fuzzy-neural network model:
asymmetric subsethood product fuzzy-neural inference system
(ASuPFuNIS) developed in our laboratory [17].

Evolutionary learning in ASuPFuNIS is implemented by
assuming a population of strings that encode different net-
work instances and by allowing a population of such strings
to evolve usingdifferential evolution(DE) [18, 19] to iden-
tify network architecture, estimate parameters and eliminate
redundant features. In the present example, to achieve a
speedup, the evaluation operation is parallelized using a
Master-Slave implementation in which the population is
divided into S segments assumingS slave processors, and
each segment is sent to a slave for evaluation, this being
the most costly operation in the cycle [20]. In this model,
the master is responsible for basic DE operations such as
crossover and mutation, which are not very time intensive.
Evaluations are performed on slaves. Using this master-slave
approach, we have the task distributions for parallelization
of DE as given in Table I.

TABLE I

MASTER-SLAVE PARALLELIZATION STRATEGY EMPLOYED FOR LOAD

BALANCING EXPERIMENTS

Master
1) Initialize population.
2) Evaluate population for the first time.
3) Identify the best string in the population:bestinpop.
4) For each member of the population, select a pair of random but

unique indicesR1 andR2 used to select mutation-driving members
from the population.

5) Select correspondingXr1,g, Xr2,g vectors to drive mutations.
6) Select the best member in populationbestinpop.
7) Drive mutationsTi,g+1 = Xbest,g + F (Xr1,g − Xr2,g).
8) Divide the total population equally between each slave (Cluster 1 is a

uniform cluster) and send share of population members (trial vectors)
to each slave.

9) Receive the new updated population segment from each slave and
perform selection.

10) Repeat Steps 3-9 until the maximum number of generationshas not
elapsed.

Slaves
1) Receive share of population members from Master.
2) Evaluate fitnesses of trial vectors.
3) Send updated population back to master.
4) Repeat Steps 1-4 until the maximum number of generations has not

elapsed.

Our motivation for the present work is to balance the string
evaluation load on a slave such that the master does not
stall—waiting for slaves to complete their task. This load
dispatch will depend on various factors:

❚ Population size
❚ String length (which depends on the phenotype archi-
tecture and the problem input-output dimension)

❚ The number of patterns in the training set (since this
would affect the evaluation time)

❚ Load on the slave processor
❚ Network congestion and buffering delays (which can
become more pronounced when cluster nodes are phys-
ically distributed, and if for example, some slave nodes
are connected via WiFi.)

On an unloaded and uniform cluster, assignment of string
populations is trivial; on heterogeneous clusters this presents
a challenge.

III. FUZZY LOGIC LOAD DISPATCH MODEL

A. Fuzzy Variables: Relative Slave Evaluation Time and
Relative Slave Transfer Delay

Given a specific problem (which determines the number
of inputs and outputs), and fixing the number of rule nodes
in the network, sets the string length. If we assume that
the population comprises only genotypes corresponding to
a single network architecture i.e., all the strings have the
same length, the population is uniform.1 We assume that the
number of strings to be allocated to a slave for evaluation
depends on two factors: therelative slave evaluation time
and therelative slave communication delay.

1Some variants of evolutionary algorithms admit variable string lengths.



Towards defining these variables, we introduce the fol-
lowing notation. For slavei, let the total time elapsed at the
master between a send and a receive at generationg be τT

i,g;
the time for evaluation of an allocated segment of population
on a slave at generationg beτE

i,g; and the population segment
size allocated at generationg be ni. Then, the total time
lost in network send-receive transfers excluding the slave
evaluation time will be

τN
i,g = τT

i,g − τE
i,g. (1)

In order to remove dependence on exact values of delay,
and since the allocation to a slave essentially depends on its
relative performance in the cluster (since all strings must be
allocated to some evaluating entity), we normalize the values
by introducing the following definitions. Therelative slave
evaluation timeis defined as,

τ̄E
i,g =

τE
i,g

∑S

j=1
τE
j,g

(2)

and therelative slave communication delayis

τ̄N
i,g =

τN
i,g

∑S

j=1
τN
j,g

(3)

In this paper, we propose a fuzzy logic load dispatch model
based on these two input variables.

B. Definition of Fuzzy Sets on Input and Output Universes
of Discourse

The two input universes of discourse considered are:
τ̄E
i,g and τ̄N

i,g, and the output universe of discourse is the
estimated slave load absorption capacityci. For convenience
of definition, we assume each universe of discourse to range
in the interval [0,10], and values generated from Eqns. 2 and
3 will be scaled appropriately.

On each universe of discourse we introduce nine lin-
guistic variables: Extremely low (EL), Very low (VL), Low
(L), Low-medium (LM), Medium (M), Medium-high (MH),
High (H), Very high (VH), and Extremely high (EH). For
simplicity, these are kept common for both the input as
well as output universes of discourse. As we mention in
the discussion at the end of the paper, these sets can have
adaptive parameters dependent on the dynamics of the clus-
ter. The input-output fuzzy sets are modelled by triangular
membership functions shown in Fig. 1.

C. Definition of Fuzzy Rule Base

Load balancing is achieved by introducing fuzzy rules that
specify a mapping from the two-dimensional input space to
the output space. Considering input variables for slavei, one
can formulate MA type fuzzy rules of the following form:

If τ̄E
i,g is EL∧ τ̄N

i,g is EL thenciis EH (4)

reflecting the heuristic that if the slave communication delay
and the slave evaluation time are both Extremely Low (EL),
then the estimated load absorption capacity for that slave is
Extremely High (EH). Table II portrays a fuzzy rule base of

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

Relative slave evaluation delay

M
em

be
rs

hi
p

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

Relative slave communication delay

M
em

be
rs

hi
p

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

Estimated slave load absorbing capacity

M
em

be
rs

hi
p

Fig. 1. Fuzzy sets defined on input and output universes of discourse

TABLE II

RULE BASE I: SYMMETRIC FUZZY RULE BASE OF81 FUZZY RULES

τ̄E
i,g

EL EH EH VH VH H MH M ML L
VL EH VH VH H MH M ML L L
L VH VH H MH M ML L L L

LM VH H MH M ML L L L VL
M H MH M ML L L L VL VL

MH MH M ML L L L VL VL VL
H M ML L L L VL VL VL EL

VH ML L L L VL VL VL EL EL
EH L L L VL VL VL EL EL EL

τ̄N
i,g EL VL L LM M MH H VH EH

81 rules formulated along these lines, in which the fuzzy
estimator is equally sensitive to both̄τE

i,g and τ̄N
i,g. The

estimation surface generated by this rule base is shown in
Fig. 2.

Table III portrays a fuzzy rule base of 81 rules which
reflects an estimation strategy that is more sensitive toτ̄E

i,g

than to τ̄N
i,g. By way of comparison, the estimation surface

generated by this rule base is shown in Fig. 3.

IV. L OAD ESTIMATION ALGORITHM

The vanilla version of the fuzzy load balancing algorithm
is as follows.

❚ Phase I: Initial cluster sensing phase

TABLE III

RULE BASE II: A SYMMETRIC FUZZY RULE BASE OF81 FUZZY RULES

τ̄E
i,g

EL EH EL VH VH H H H MH MH
VL VH VH H H MH MH MH MH MH
L H H MH MH M M M M ML

LM MH MH M M ML ML ML ML ML
M M M ML ML ML ML L L L

MH ML ML L L L L L L L
H L L VL VL VL VL VL VL VL

VH VL VL VL VL VL EL EL EL EL
EH VL EL EL EL EL EL EL EL EL

τ̄N
i,g EL VL L LM M MH H VH EH



0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Relative slave
communication delay

Relative slave evaluation delay

E
st

im
at

ed
 s

la
ve

 lo
ad

 a
bs

or
bi

ng
 c

ap
ac

ity

Fig. 2. Fuzzy estimation surface portraying outputci as a function of̄τE
i,g

and τ̄N
i,g in accordance with Rule Base I.

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Relative slave
communication delay

Relative slave evaluation delay

E
st

im
at

ed
 s

la
ve

 lo
ad

 a
bs

or
bi

ng
 c

ap
ac

ity

Fig. 3. Fuzzy estimation surface portraying outputci as a function of̄τE
i,g

and τ̄N
i,g in accordance with Rule Base II.

1) Divide the populationN into S segments (forS
slaves). If r = N mod S then assign⌈N/S⌉
strings tor slaves;⌊N/S⌋ strings to the remaining
N − r slaves.

2) Time stamp each slave and send population for
evaluation only

3) Receive local slave evaluation time, and compute
communication delays for each slave

4) Repeat the Steps 1–3 for two send-receive rounds,
and average out statistics for estimate of commu-
nication delay and evaluation time for each slave.

❚ Phase II: Regular run phase

1) Re-assign segments using fuzzy estimator
2) Perform DE for two generations using the string

assignments from Phase II Step 1, collecting statis-
tics at both generations

3) Calculate averages:̄τE
i,g and τ̄N

i,g

4) Repeat Steps 1–3 until maximum number of gen-
erations elapsed.

TABLE IV

SUMMARY OF EXPERIMENTAL RESULTS

Exp. ID Cluster Balancer Load Type/Node Runtime

A I None None 2m 47s
B I Symmetric None 2m 20s
C I Asymmetric None 2m 12s
D I None Program/Slow Node 11m 28s
E I Symmetric Program/Slow Node 2m 32s
F I Asymmetric Program/Slow Node 2m 13s
G I None Network Download 3m 06s
H I Symmetric Network Download 2m 26s
I I Asymmetric Network Download 2m 11s

J II None Unpredictable 37s
K II Symmetric Unpredictable 30s
L II Asymmetric Unpredictable 34s

V. CLUSTER SPECIFICATIONS

Experiments with the fuzzy load balancer were performed
on two heterogenous clusters. Cluster I (Linux Laboratory,
Dayalbagh Educational Institute) is a 15 node cluster com-
prising 10 IBM X206 servers (Pentium IV 3.2 GHz 512
MB RAM), 2 IBM ThinkCentres (Pentium IV 2.8 GHz 1GB
RAM), 2 IBM NeVista Pentium III 1 GHz PCs (256 MB
RAM), 1 Pentium PC (166 MHz 64MB RAM). All nodes run
Red Hat Fedora Core 4/7 except for the slow Pentium node
which runs Red Hat 8 Linux operating systems. LAM/MPI
7.1.1 was used on all nodes. Cluster II (UMIACS, University
of Maryland, College Park, USA) comprises sixteen red
nodes (Dual Pentium II 450MHz 1 GB RAM), twelve blue
nodes (Dual Pentium III 550MHz 1GB RAM), and a single
8-way node called deathstar (Pentium III 550MHz 4GB
RAM). Loading and network traffic on Cluster I are con-
trollable; these parameters on Cluster II are not controllable
due to administrative issues, and therefore experiments on
Cluster II are blind in this sense.

VI. EXPERIMENTAL RESULTS

A total of twelve experiments were performed using the
two versions of the controller, two clusters, and various
loading patterns. Table IV summarizes the essential results
of these experiments. All experiments involve running the
master-slave DE learning on ASuPFuNIS as specified in
Table I, for 100 generations. Each experiment reported below
was repeated for a minimum of four times. As given in the
fuzzy load balancer algorithm outline, the string distribution
to slaves was reviewed every two generations. This means
that evaluation and communication delay statistics were
collected for two generations, averaged, and then input to
the fuzzy estimator to revise the string distribution to slaves
for the next two generations.

A. No Load Balancer, No Load

For experiments A through F eight nodes (one master,
seven slaves from Cluster I were employed (6 X206, 1
NetVista, 1 P-166). Experiment A ran master-slave DE
learning on ASuPFuNIS for 100 generations assuming a
total population size of 1400 strings distributed equally on to



Fig. 4. JumpShot capture for program run with no load balancer, single
node loaded.

seven nodes—each taking 200 string for evaluation. No load
was applied to any of the nodes, which means that none of
the slaves was running any other program. A run time of 2
minutes 47 seconds was observed.

B. Symmetric Load Balancer, No Load

All specifications were the same as in Experiment A, the
fuzzy load balancer with the symmetric rule base (Table II)
was employed. The program run time came down to 2
minutes and 20 seconds. The total speed up observed was
19.2%.

C. Asymmetric Load Balancer, No Load

All specifications were the same as in Experiment A, the
fuzzy load balancer with the asymmetric rule base (Table III)
was employed. The program run time came down to 2
minutes and 12 seconds. The total speed up observed was
26.5%.

D. No Load Balancer, Single Slow Node Loaded

All specifications were the same as in Experiment A, no
fuzzy load balancer was employed, and the slow P-166 node
was loaded by running the same parallel program with 5
threads on the same node. Much insight can be gained by ob-
serving the relative delays in communication and evaluation
as portrayed in Fig. 4. The JumpShot capture shows the slow
node at the bottom of the graph, with evaluation time shown
in black. Evaluation times for other nodes are hardly visible
given their much higher speeds. Figure 5 show the manner
in which the slow node was loaded, and the variation of the
corresponding evaluation time for 200 strings. The master
continues to assign 200 strings to the slave even in the event
of extra load on the slave. Fig. 4 shows the master has to
wait for the slave to return the results, leading to long idle
times on both the master as well as other faster slaves. The
total run time for this simulation was 11 minutes 28 seconds.

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Generations

S
la

ve
 e

va
lu

at
io

n 
tim

e

Fig. 5. Loading pattern for single slow node (P-166).

Fig. 6. JumpShot capture for symmetric load balancer with the load pattern
of Fig. 5

E. Symmetric Load Balancer, Single Slow Node Loaded

The loading pattern was kept the same as in Experiment D,
but with the symmetric load balancer running. Fig. 6 shows
the JumpShot statistics for the first few generations. During
the first two generations no load balancing takes place since
the estimator is collecting statistics. Thereafter, differential
assignment of strings starts taking place. It is clear, thatthe
master and fast slave idle times have reduced considerably,
leading to a drastic speed up bringing the total run time of
the program down to 2 minutes 32 seconds. This represents
a speed up of 352%. This reinforces the intuition that in
heterogenous clusters with a mix of very fast and very slow
nodes, load balancing is critical to obtain the best (smallest)
run times of programs. The dynamic allocation of string to
slaves is shown in Fig 7. The fuzzy estimator assigns about a
100 strings from the start of the simulation to the slow node,
bringing this down to 67 strings when the loads are applied
(see Table V).



0 10 20 30 40 50 60 70 80 90 100
60

80

100

120

140

160

180

200

220

240

Generations

S
tr

in
g 

po
pu

la
tio

n 
al

lo
ca

te
d

Fig. 7. Dynamic allocation of strings for symmetric load balancer.

TABLE V

STRING ALLOCATION SNAPSHOT FOREXPERIMENTE

Gen↓ Slave ID→ 1 2 3 4 5 6 7

12 214 214 214 214 214 214 116
14 214 214 214 214 214 213 117
16 223 222 222 222 222 222 67
18 223 222 222 222 222 222 67
20 223 222 222 222 222 222 67
22 219 219 219 219 218 218 88
24 214 214 214 214 214 214 116
26 216 216 215 215 215 215 108
28 214 214 214 214 214 214 116
30 214 214 214 214 214 214 116

F. Asymmetric Load Balancer, Single Slow Node Loaded

Conditions for this experiments were the same as in
Experiment E, with the asymmetric load balancer being used
in place of its symmetric counterpart. The total run time came
down to 2 minutes 13 seconds, leading to similar speedups
as in Experiment E. Fig. 8 shows how the dynamic estimator
allocates strings to slaves. The allocations to the slow node
are low from the beginning since this estimator is more
sensitive to evaluation times than the symmetric version.

G. No Load Balancer, Network Load on Single Node

In this experiment, no load balancer was applied and two
downloads were initiated on the IBM NetVista, each with an
average download speed of 100 kBytes/s. The first download
was started at Generation 15, and the second at Generation
30. The first ended at Generation 60, and the second at
Generation 80. The total run time of the program was 3
minutes 6 seconds.

H. Symmetric Load Balancer, Network Load on Single Node

Experiment G was repeated with the symmetric load
balancer. The run time of the program reduced to 2 minutes
26 seconds representing a speed up of 27%.

0 10 20 30 40 50 60 70 80 90 100
40

60

80

100

120

140

160

180

200

220

240

Generations

S
tr

in
g 

po
pu

la
tio

n 
al

lo
ca

te
d

Fig. 8. Dynamic allocation of strings for asymmetric load balancer.

I. Asymmetric Load Balancer, Network Load on Single Node

Experiment G was repeated with the asymmetric load
balancer. The run time of the program reduced to 2 minutes
11 seconds representing a speed up of 42%.

J. No Load Balancer, Unpredictable Load on Cluster Nodes

This experiment was run on Cluster II (UMIACS), using
15 nodes: 14 were red nodes, and 1 was blue (see cluster
specifications given above). The total run time of the program
was 37 seconds.

K. Symmetric Load Balancer, Unpredictable Load on Clus-
ter Nodes

The program was run on Cluster II (UMIACS) with the
same number of nodes. The total run time of the program
was 30 seconds, representing a speed up of 23%.

L. Asymmetric Load Balancer, Unpredictable Load on Clus-
ter Nodes

The program was run on Cluster II (UMIACS) with the
same number of nodes. The total run time of the program was
34 seconds, representing a speed up of 8%. It is clear that the
symmetric load balancer worked much better than the asym-
metric version, which was governed by a biased rule base.
The symmetric load balancer makes no such assumptions and
assigns an equal priority to the slave communication delay
and the slave evaluation time. In the event of a blind cluster,
this is the best option to follow.

VII. CONCLUSIONS ANDDISCUSSION

This paper introduces the idea of employing a simple
fuzzy estimation system to predict the allocation of strings to
slave nodes in a master-slave implementation of differential
evolution learning as applied to a fuzzy-neural network:
ASuPFuNIS. The experimental results presented in the pre-
vious section clearly demonstrate the effectiveness of the
fuzzy logic load estimator in the presence of both CPU
and network loads. Its effectiveness on the UMIACS cluster
over which we have no administrative control also shows



that the estimation mechanism is very effective. It is worth
emphasizing that the ideas presented herein are very general,
and can be applied to load balancing in evolutionary learning
systems in general.

One important fact is that the rule base of the controller
can be made adaptive so that the fuzzy set parameters are
learnt by the system over time. This will have the advantage
that one can start out with a raw estimator, which fine tunes
its internal parameters in accordance with the nature of the
cluster—both in terms of the node performances, and the
communication delays experienced. This is important, for
as we have observed, in Cluster I the asymmetric rule base
gave better performance, whereas in Cluster II the symmetric
rule base performed better. Both these rule bases were
based on heuristics, rather than hard numeric information.
We believe that adaptive principles should be incorporated
into the estimator in order to make it even more effective.
Use moving averages instead of simple averages is another
matter for consideration. These issues are presently under
investigation.

ACKNOWLEDGMENT

This work was supported by the Department of Science
and Technology, Government of India, under Research Grant
No. DST SR/S3/EECE/65/2004-ET. The authors gratefully
acknowledge the assistance of Prof. Ashok K. Agrawala,
Director MIND Lab., University of Maryland, College Park,
USA, in providing access to the UMIACS Cluster Facility,
under the MoU with Dayalbagh Educational Institute.

REFERENCES

[1] E. Alba and M. Tomassini, “Parallelism and evolutionaryalgorithms,”
IEEE Transactions on Evolutionary Computation, vol. 6, pp. 443–462,
October 2002.

[2] V. S. Sunderam, “PVM: A framework for parallel distributed comput-
ing,” Jnl. of Concurr. Practice and Experience, vol. 2, no. 4, pp. 315–
339, 1990.

[3] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra,
MPI—The Complete Reference. Cambridge, MA: MPI Press, 1998.

[4] W. Gropp, E. Lusk, and A. Skjellum,Using MPI: Portable Parallel
Programming with the Message Passing Interface. Cambridge, MA:
MIT Press, 2nd ed., 1999.

[5] I. Foster and C. Kesselmann, “Globus: A metacomputing infrastructure
toolkit,” Jnl. Supercomput. Applic., vol. 11, no. 2, pp. 115–128, 1997.

[6] K. C. Tan, A. Tay, and J. Cai, “Design and implementation of a
distributed evolutionary computing software,”IEEE Trans. on Systems,
Man and Cybernetics—Part C: Applications and Reviews, vol. 33,
pp. 325–338, August 2003.

[7] F. Seredynski, “Dynamic mapping and load balancing withparallel
genetic algorithms,” inIEEE World Congress on Computational Intel-
ligence, pp. 834–839, 1994.

[8] S. Genaud, A. Giersch, and F. Vivien, “Load-alancing scatter opera-
tions for grid computing,”Parallel Computing, vol. 30, pp. 923–946,
July 2004.

[9] G. Folino, C. Pizzuti, and G. Spezzano, “A scalable cellular implemen-
tation of parallel genetic programming,”IEEE Trans. on Evolutionary
Computation, vol. 7, pp. 37–53, February 2003.

[10] L. Xiao, S. Chen, and X. Zhang, “Adaptive memory allocations in
clusters to handle unexpectedly large data intesive jobs,”IEEE Trans.
on Parallel and Distributed Systems, vol. 15, pp. 577–592, July 2004.

[11] J. H. Abawajy and S. P. Dandamundi, “Parallel job scheduling on
multicluster computing systems,” inProceedings of the IEEE In-
ternational Conference on Cluster Computing(CLUSTER’03), IEEE
Computer Society, 2003.

[12] H. Liang, M. Faner, and H. Ming, “A dynamic load balancing system
based on data migration,” inThe 8th International Conference on
Computer Supported Cooperative Work in Design, pp. 493–499, IEEE,
2003.

[13] J. Bahi, R. Couturier, and F. Vernier, “Synchronous distributed load
balancing on dynamic networks,”Journal of Parallel and Distributed
Computing, vol. 65, pp. 1397–1405, 2005.

[14] S. M. Lau, Q. Lu, and K. S. Leung, “Adaptive load distribution for
heterogeneous distributed systems with multiple task classes,”Journal
of Parallel and Distributed Computing, vol. 66, pp. 163–180, 2006.

[15] L. S. Cheung, “A fuzzy approach to load balancing in distributed object
computing network,” inProceedings First IEEE/ACM International
Symposium on Cluster Computing and the Grid, pp. 694–699, IEEE,
2001.

[16] Y. K. Kwok and L. S. Cheung, “A new fuzzy-decision based load
balancing system for distributed object computing,”Journal of Parallel
and Distributed Computing, vol. 64, pp. 238–253, 2004.

[17] C. S. Velayutham, S. Paul, and S. Kumar, “Asymmetric subsethood
product fuzzy neural network (ASuPFuNIS),”IEEE Transactions on
Neural Networks, vol. 16, pp. 160–174, January 2005.

[18] R. Storn and K. Price, “Differential evolution – a simple and efficient
adaptive scheme for global optimization over continuous spaces,”
Journal of Global Optimization, vol. 11, pp. 341–359, 1997.

[19] K. Price,New Ideas in Optimization, ch. An Introduction to Differen-
tial Evolution, pp. 79–108. Cambridge, U.K.: McGraw Hill, 1999.

[20] L. Singh and S. Kumar, “Parallel evolutionary asymetric subsethood
product fuzzy-neural inference system with applications,” in 2006
IEEE International Conference on Fuzzy Systems, pp. 8517–8524, July
2006.


