Dynamic Fuzzy Load Balancing on LAM/MPI Clusters with
Applications in Parallel Master-Slave Implementations of an
Evolutionary Neuro-Fuzzy Learning System

Lotika Singh, Apurva Narayan, Satish Kumar

Abstract— In the context of parallel master-slave implemen- individuals’ fitness by evaluation of a fitness function. It
tations of evolutionary learning in fuzzy-neural network models, tyrns out that the fithess function evaluation is the most
a major issue that arises during runtime is how to balance the costly in terms of CPU resource (and therefore time). Palrall

load—the number of strings assigned to a slave for evaluatio . | tati f luti | . lqorith th
during a generation—in order to achieve maximum speed up. Implementations ot evoiutionary learning algorthms thus

Slave evaluation times can fluctuate drastically dependingpon typically distribute strings for evaluation across mukip
the local computational load on the slave (given fixed node processors in order to bring down program run times. Pdralle

specifications). Communication delays compound the probie jmplementations are possible on several available plaisor
of proper load assignment. In this paper we propose the desig 5 a|le| virtual machine (PVM) [2], message passing inter-

of a novel dynamic fuzzy load estimator for application to
load balancing on heterogeneous LAM/MPI clusters. Using face (MPI) [3, 4], and Globus [3]. Of these, MPI has emerged

average evaluation time and communication delay feedback as thede factostandard for parallel implementations [1].
estimates from slaves, strings assignments for evaluatioto A major issue that arises in implementing a parallel
slaves are dynamically changed during runtime. Extensiveests algorithm on a cluster is that of load balancing. If we coesid
82 2%?{9(\)/%?0% clusters shows that considerable speedu@ 5 standard master-slave kind of implementation, then ih eac
' cycle, the master is responsible for assigning work units
|. MOTIVATION AND REVIEW to slaves, collecting the intermediate results back from th

. . L . slaves, and then assigning the next unit of work to slaves,
Evolutionary algorithms (EAs) are being increasingly em- gning

. N) ; . g and so on. Good load balancing leads to a situation where
ployed for learning apphcaﬂong in computational m@nc_g_ once the master has assigned work units to slaves in round-
model development dge to .the'r powerful search Ca.pam“t'erobin fashion, slaves are ready to begin sending back gesult
Thgy can be used to identify optimal netwc_)rk_ archltecture% the master for collation, and thus the master (and slave)
estimate network parameters, and also eliminate redund:.laglte times are minimized. When we say "idle” we mean idle
features through global search. However, EAs don’t co :

for free: they require problem specific and careful tunin om the point of view of the work assignments from the
' y Teq prot P . %aster, and not the true processor loads. If the load on the
of parameters, and require vast computational resourc

eTﬁdividual slaves is not properly balanced, then the master
Fortunately, the intrinsically parallel nature of EAs péisn properly ’

. . . wastes time waiting for jobs to finish on slow slaves, and fast
them to be implemented on computing clusters which a

o . . . 'Save resources go waste since they remain idle—waiting for
becoming increasingly common in academic and commermﬁ_le master to assign them the next batch of work. Further

enqunments [1]. Research on parallel implementations cEane usually employs clusters whose processor specification
EAs in the context of neuro-fuzzy systems (or even other-

wi is therefore of significant importance if anv readisti are not known, and even if they were known, the load on
_se) S theretore ot significa portance It any reatisti o, 0 processor is random in the sense that it is not known
simulations are to be performed.

in advance as to how many users or which programs will
e running on a specific processor at any point of time.

) A : .) H'%ad balancing on heterogenous clusters is thus an imgortan
representation (encoding it as a string of mixed 'megeﬁ'esearch problem

floating point numbers) and then allowing a population o The issue of load balancing in various contexts has been

.SUCT stnngs_ to evolvet_ln time. rI]EvquUon of the p?pfig'o'%tudied in the literature by several researchers. In [6]va-Ja
|nv|o v;as varflouts_ oper? 'O?ﬁ such as crossgver,bmu % ' 3hased distributed evolutionary computing software is used
selection ot strings for the new generation based on 4§ ennance the concurrent processing and performance of

The authors are with the Dayalbagh Educational Institutayélbagh, EVOIUt'Onary al_gomhms by allqwmg Inter-communicatson
Agra 282005 India. of sub-populations among various computers over the In-
Lotika Slngh, Student Member, IEEEis a Junior Technical Assis- ternet. Reference [7] |ntroduces dynamlc mapplng and |Oad
tant in the Department of Physics and Computer Science+etotkas- . . .
ingh@ieee.org. balancing of parallel programs in MIMD multicomputers,
Apurva Narayan Student Member, IEEEs a student of B.Sc. (Engg.) based on coordinated migration of processes of a parallel
Electrical Engg. Final Year in the Faculty of Engineeringradl: apurva- program. Load balancing has also been introduced for grid

narayan@gmail.com. . .. e .
Satish KumarSenior Member, IEEHSs a Professor in the Department of computing applications based on the modification of the

Physics and Computer Science—email: skudtz®ieee.org. data distributions used in scatter operations [8]. A palall

. . . . TABLE |
load balanced implementation of genetic programming (GP)
MASTER-SLAVE PARALLELIZATION STRATEGY EMPLOYED FOR LOAD

based on the cellular model has been presented in [9].
. . . BALANCING EXPERIMENTS

In [10] an adaptive memory allocation technique has been
introduced for clusters to handle large data-intensives.job Master
In [11], an on-line dynamic scheduling policy that manages 1) initialize population.
multiple job streams across both single and multiple cluste 2) Evaluate population for the first time. _
compuiing systems improving the mean response time and3) (11 e estaing b e popultotest i oop,
system utilization. The idea of dynamic scheduling system ~ unique indicesR1l andR2 used to select mutation-driving members
and a load balancing system for clusters based on PVM was_ from the population. _ _
introduced in [12]. Distributed load-balancing algoritrior %) gg:zgi tcr?e”ﬁzz?’;gg;ng;’;r’%)gg%gla‘l’fgggfitﬁ pdorg’? mutations.
dynamic networks have been investigated in [13], and in,[14] 7) Drive mutationsT; 11 = Xpest.q + F(Xr1,9 — Xr2,q)-
sender-receiver pair negotiation takes into considematt@ 8) Divide the total population equally between each slaved@r 1 is a
processing speeds of the sender and receiver, and relative ;’O”'LC;LT\ ‘;'Iif/f_r) and send share of population memberd dieitors)
W0rk|0adS to deCide a||Ocati0nS Of WOI’k Units. The design 9) Receive the new updated popu|ation Segment from eacle slag
and implementation of a dynamic fuzzy load balancing ser- perform selection. _ _
vice running in a distributed object computing environment % 5;552; Steps 3-9 until the maximum number of generatiassnot
is described in [15, 16]. From the above review, clearly, the ' Slaves
application of fuzzy logic estimation for load distribution 1) Receive share of population members from Master.
the context of LAM/MPI clusters is a new area of research, 2) Evaluate fitnesses of trial vectors.
and the present work represents one step in furthering thesezg gggga‘:pggsg f_fipﬂmotﬂebfﬁ:xitfnS"nfsrfsﬁhber of generatiassbt
ideas. elapsed.

The paper is organized as follows: Section Il briefly pro-

vides an overview of the mater-slave model for evolutionary

learning in the ASuUPFUNIS model; Section Il describes oy motivation for the present work is to balance the string
the fuzzy logic estimation model; Section IV describes thgyajyation load on a slave such that the master does not
load estimation algorithm; Section V presents experimentaia||—waiting for slaves to complete their task. This load
results; and Section VI concludes the paper. dispatch will depend on various factors:

O Population size
O String length (which depends on the phenotype archi-
tecture and the problem input-output dimension)

Due to the dynamic nature of both network traffic (which O The number of patterns in the training set (since this
can affect the efficiency of message transfer) as well as the would affect the evaluation time)
fluctuating and unpredictable nature of CPU loads on nodes [Load on the slave processor
in the cluster, the problem of load balancing becomes an O Network congestion and buffering delays (which can
immediate candidate for fuzzy logic based load dispatch. become more pronounced when cluster nodes are phys-
Towards facilitating the presentation of our strategy a4y ically distributed, and if for example, some slave nodes
load balancing we will consider the problem of evolution- are connected via WiFi.)

ary learning as applied to a fuzzy-neural network modefn an unloaded and uniform cluster, assignment of string
asymmetric subsethood product fuzzy-neural inferendersys populations is trivial; on heterogeneous clusters thisemés

Il. MASTER-SLAVE MODEL FORPARALLEL
EVOLUTIONARY LEARNING

(ASuUPFuNIS) developed in our laboratory [17]. a challenge.
Evolutionary learning in ASUPFuNIS is implemented by
assuming a population of strings that encode different net- [1l. Fuzzy LoGic LoAD DISPATCHMODEL

work instances and by allowing a population of such strings))))

to evolve usingdifferential evolution(DE) [18,19] to iden- A. ngzy Variables: Relative Slave Evaluation Time and
tify network architecture, estimate parameters and etatein Relative Slave Transfer Delay

redundant features. In the present example, to achieve aGiven a specific problem (which determines the number
speedup, the evaluation operation is parallelized using df inputs and outputs), and fixing the number of rule nodes
Master-Slave implementation in which the population i$n the network, sets the string length. If we assume that
divided into S segments assuming§ slave processors, and the population comprises only genotypes corresponding to
each segment is sent to a slave for evaluation, this beirgsingle network architecture i.e., all the strings have the
the most costly operation in the cycle [20]. In this modelsame length, the population is unifofme assume that the
the master is responsible for basic DE operations such aamber of strings to be allocated to a slave for evaluation
crossover and mutation, which are not very time intensivelepends on two factors: thelative slave evaluation time
Evaluations are performed on slaves. Using this masteeslaand therelative slave communication delay

approach, we have the task distributions for parallelrati

of DE as given in Table I. 1Some variants of evolutionary algorithms admit variabiéngtlengths.

Towards defining these variables, we introduce the fo
lowing notation. For slave, let the total time elapsed at the
master between a send and a receive at genergﬁmrrrgg;
the time for evaluation of an allocated segment of popufatic
on a slave at generatityﬂbeng; and the population segment
size allocated at generation be n;. Then, the total time
lost in network send-receive transfers excluding the slav

evaluation time will be

N __.T _E
Ti,g = Tig — Ti,g:

1)

In order to remove dependence on exact values of dele
and since the allocation to a slave essentially dependsson
relative performance in the cluster (since all strings must b
allocated to some evaluating entity), we normalize theeslu

by introducing the following definitions. Theelative slave

1

o
o
T

w

4 5 6
Relative slave evaluation delay

Membership
o
@
T

4 5 6
Relative slave communication delay

o
o

4 5 6
Estimated slave load absorbing capacity

evaluation times defined as, Fig. 1. Fuzzy sets defined on input and output universes ebdise
E
B _ Tig @ TABLE I
9 ZS E RULE BASE|: SYMMETRIC FUZZY RULE BASE OF81FUZZY RULES
i=1"Tj.9
. L. . E2)
and therelative slave communication delay ig
EL | EH | EH | VH | VH | H | MH | M | ML | L
N N VL [EH | VH [VH | H |[MH | M | ML | L L
Tig = 37791\, 3) L VH [VH | H [MH | M | ML | L L L
2 i=1Tig IM || VH | H | MH | M | ML | L L L | VL
, , . M H [MH| M | ML | L L C [VL | VL
In this paper, we propose a fuzzy logic load dispatch modeive TT™MH T ™M | ML | L L L T VL | VL [VL
based on these two input variables. H M ML | L L C [VL [VL [VL [EL
VH [ML | L L L [VL | VL | VL | EL | EL
B. Definition of Fuzzy Sets on Input and Output UniversgsEH L L L [VL[VL VL |ELJELTJEL
of Discourse |7 JTEL]JVL [L [IM][M [MH] H | VH]EH]

The two input universes of discourse considered are:

7E and 7V, and the output universe of discourse is the . . .
81 rules formulated along these lines, in which the fuzzy

1,9 4,97
estimated slave load absorption capacity For convenience) X . N
gtimator is equally sensitive to boﬁfg and 7;,. The
r%Ftimation surface generated by this rule base is shown in

of definition, we assume each universe of discourse to ran
in the interval [0,10], and values generated from Eqns. 2 ang

3 will be scaled appropriately.

On each universe of discourse we introduce nine lin-

guistic variables: Extremely low (EL), Very low (VL), Low
(L), Low-medium (LM), Medium (M), Medium-high (MH),

Fig. 2.

Table 1l portrays a fuzzy rule base of 81 rules which

reflects an estimation strategy that is more sensitiveﬁp

than to%{}@. By way of comparison, the estimation surface

High (H), Very high (VH), and Extremely high (EH). For generated by this rule base is shown in Fig. 3.
simplicity, these are kept common for both the input as

well as output universes of discourse. As we mention in
the discussion at the end of the paper, these sets can hasv

adaptive parameters dependent on the dynamics of the clus-

ter. The input-output fuzzy sets are modelled by triangular

membership functions shown in Fig. 1.

C. Definition of Fuzzy Rule Base

TABLE Il

IV. LOAD ESTIMATION ALGORITHM

The vanilla version of the fuzzy load balancing algorithm
A8s follows.

O Phase I: Initial cluster sensing phase

RULE BASEIl: ASYMMETRIC FUZZY RULE BASE OF81FUZZY RULES

Load balancing is achieved by introducing fuzzy rules that _

specify a mapping from the two-dimensional input space oTEz'Lq il e lwn lwn - w - R T[T vt

the output space. Considering input variables for slaane VL Ve Tve T & W Ve T Ve T VME T VA

can formulate MA type fuzzy rules of the following form: L H H [MH T MH | M M M M | ML

B N _ LM || MH | MH | M | M | ML | ML | ML | ML | ML

If Tig ISELAT IS EL thenc;is EH 4) M ™M M T ML T ML T ML T ML L L L

) o . o MH | ML | ML | L L L L L L L

reflecting the heuristic that if the slave communicatioraglel [H C L | VL | VL | VL | VL | VL | VL | VL

and the slave evaluation time are both Extremely Low (EL),VH || VL | VL | VL | VL | VL | EL | EL | EL | EL

then the estimated load absorption capacity for that slaveli _E]:' VL | EL | BL | BL | BL | EL | EL | EL | EL
Extremely High (EH). Table Il portrays a fuzzy rule base of 7aa | E- [VL [L [LM [M [MH][H | VH | EH |

Estimated slave load absorbing capacity

@
]

~
L

>
L

@
1

N
1

w

OA =
ANV LY AR RN
AR D

NN O PRI,
G N VB W

6 Relative slave
communication delay

Fig. 2. Fuzzy estimation surface portraying outpy@as a function ofv’-fg
and 7)Y in accordance with Rule Base I.

Estimated slave load absorbing capacity

N\
N
L ~~§\\\\\\\

Fig. 3. Fuzzy estimation surface portraying outpyias a function offfg
and 7’-1.]\; in accordance with Rule Base II.

1) Divide the populationV into S segments (forS
slaves). Ifr = N mod S then assign[N/S]
strings tor slaves;| N/.S| strings to the remaining
N —r slaves.

2) Time stamp each slave and send population f

evaluation only

3) Receive local slave evaluation time, and comput

communication delays for each slave

4) Repeat the Steps 1-3 for two send-receive roun
and average out statistics for estimate of commu-
nication delay and evaluation time for each slav

O Phase Il: Regular run phase

1) Re-assign segments using fuzzy estimator

d

(S

TABLE IV
SUMMARY OF EXPERIMENTAL RESULTS

[Exp. ID [Cluster | Balancer | Load Type/Node [Runtime |

A I None None 2m 47s
B I Symmetric | None 2m 20s
¢} | Asymmetric | None 2m 12s
D] None Program/Slow Node| 11m 28s
E | Symmetric | Program/Slow Node| 2m 32s
F I Asymmetric | Program/Slow Node| 2m 13s
G | None Network Download | 3m 06s
H I Symmetric | Network Download | 2m 26s
| | Asymmetric | Network Download | 2m 11s
J I None Unpredictable 37s

K I Symmetric | Unpredictable 30s

L I Asymmetric | Unpredictable 34s

V. CLUSTER SPECIFICATIONS

Experiments with the fuzzy load balancer were performed
on two heterogenous clusters. Cluster | (Linux Laboratory,
Dayalbagh Educational Institute) is a 15 node cluster com-
prising 10 IBM X206 servers (Pentium IV 3.2 GHz 512
MB RAM), 2 IBM ThinkCentres (Pentium IV 2.8 GHz 1GB
RAM), 2 IBM NeVista Pentium Ill 1 GHz PCs (256 MB
RAM), 1 Pentium PC (166 MHz 64MB RAM). All nodes run
Red Hat Fedora Core 4/7 except for the slow Pentium node
which runs Red Hat 8 Linux operating systems. LAM/MPI
7.1.1 was used on all nodes. Cluster Il (UMIACS, University
of Maryland, College Park, USA) comprises sixteen red
nodes (Dual Pentium Il 450MHz 1 GB RAM), twelve blue
nodes (Dual Pentium Ill 550MHz 1GB RAM), and a single
8-way node called deathstar (Pentium Il 550MHz 4GB
RAM). Loading and network traffic on Cluster | are con-
trollable; these parameters on Cluster Il are not contotdla
due to administrative issues, and therefore experiments on
Cluster Il are blind in this sense.

VI. EXPERIMENTAL RESULTS

A total of twelve experiments were performed using the
two versions of the controller, two clusters, and various
loading patterns. Table IV summarizes the essential sult
of these experiments. All experiments involve running the
master-slave DE learning on ASUPFuNIS as specified in
0l[able I, for 100 generations. Each experiment reportedvibelo
was repeated for a minimum of four times. As given in the
reuzzy load balancer algorithm outline, the string disttibn
to slaves was reviewed every two generations. This means
fat evaluation and communication delay statistics were
collected for two generations, averaged, and then input to
the fuzzy estimator to revise the string distribution toveka
for the next two generations.

2) Perform DE for two generations using the stringA- No Load Balancer, No Load
assignments from Phase Il Step 1, collecting statis- For experiments A through F eight nodes (one master,

tics at both generations
3) Calculate averages;”, and 7},

4) Repeat Steps 1-3 until maximum number of ge

erations elapsed.

seven slaves from Cluster | were employed (6 X206, 1
NetVista, 1 P-166). Experiment A ran master-slave DE
Nearning on ASuPFuNIS for 100 generations assuming a
total population size of 1400 strings distributed equaltyto

@ ThuDec 13, 752PM

Slave evaluation time

< D D 0 10 20 30 40 50 60 70 80 90 100
e wnﬂu_rsnkf it Generations

Kl

Fig. 5. Loading pattern for single slow node (P-166).

Fig. 4. JumpShot capture for program run with no load balarsiegle
node loaded.

@ Applications Places Desktop @e@@@@ @ Thu Dec 13, 7:48PM
e

(s> [Dlszlal elwjal slale

“View Init Time. Voo d
sssssssssssssssssssssssss

seven nodes—each taking 200 string for evaluation. No loa
was applied to any of the nodes, which means that none
the slaves was running any other program. A run time of
minutes 47 seconds was observed.

B. Symmetric Load Balancer, No Load

All specifications were the same as in Experiment A, th
fuzzy load balancer with the symmetric rule base (Table Il
was employed. The program run time came down to
minutes and 20 seconds. The total speed up observed Vv
19.2%. I m—rE

@ world.

<

C. Asymmetl’lc Load Balancel’, NO Load | (D Fi:Managtl ® | famuser@hbeat... | 4 flamuser@node2... | (] [Jumpshot4] | [[Legend : asupfu... |] Tlmll.jm:asu;im Jmﬁ%

All specifications were the same as in Experiment A, the
fuzzy load balancer with the asymmet.nc rule base (Tabje Il ig. 6. JumpShot capture for symmetric load balancer wighidlad pattern
was employed. The program run time came down to & Fig. 5
minutes and 12 seconds. The total speed up observed was
26.5%.

D. No Load Balancer, Single Slow Node Loaded E. Symmetric Load Balancer, Single Slow Node Loaded

All specifications were the same as in Experiment A, no The loading pattern was kept the same as in Experiment D,
fuzzy load balancer was employed, and the slow P-166 notdat with the symmetric load balancer running. Fig. 6 shows
was loaded by running the same parallel program with he JumpShot statistics for the first few generations. Qurin
threads on the same node. Much insight can be gained by dbe first two generations no load balancing takes place since
serving the relative delays in communication and evalmaticthe estimator is collecting statistics. Thereafter, défdial
as portrayed in Fig. 4. The JumpShot capture shows the sl@ssignment of strings starts taking place. It is clear, that
node at the bottom of the graph, with evaluation time showmaster and fast slave idle times have reduced considerably,
in black. Evaluation times for other nodes are hardly visiblleading to a drastic speed up bringing the total run time of
given their much higher speeds. Figure 5 show the manngite program down to 2 minutes 32 seconds. This represents
in which the slow node was loaded, and the variation of tha speed up of 352%. This reinforces the intuition that in
corresponding evaluation time for 200 strings. The mastdreterogenous clusters with a mix of very fast and very slow
continues to assign 200 strings to the slave even in the evartddes, load balancing is critical to obtain the best (sraglle
of extra load on the slave. Fig. 4 shows the master has tan times of programs. The dynamic allocation of string to
wait for the slave to return the results, leading to long idleslaves is shown in Fig 7. The fuzzy estimator assigns about a
times on both the master as well as other faster slaves. The0 strings from the start of the simulation to the slow node,
total run time for this simulation was 11 minutes 28 second&ringing this down to 67 strings when the loads are applied

(see Table V).

N}
i
=}
1
N}
N
o

N
IN]
=]

%

N

N

=}
T
I

N

=]

=]
T

-

©

=)
T

160

1401

String population allocated
String population allocated
=
B
o
T
|

-
N}
=]

100

80 60l ™ : : : . 1
600 10 20 30 40 50 60 70 80 90 100 40O 10 20 30 40 50 60 70 80 90 100
Generations Generations
Fig. 7. Dynamic allocation of strings for symmetric load dater. Fig. 8. Dynamic allocation of strings for asymmetric loadaeer.
TABLE V
STRING ALLOCATION SNAPSHOT FOREXPERIMENTE I. Asymmetric Load Balancer, Network Load on Single Node
[Gen]Slaed—] T [2 [3 [4[5 [6 7] Experiment G was repeated with the asymmetric load

T ST 214 | 214 | 214 | 214 | 214 | 116 balancer. The run time of the program reduced to 2 minutes
14 214 | 214 | 214 | 214 | 214 | 213 | 117 11 seconds representing a speed up of 42%.
16 223 | 222 | 222 | 222 | 222 | 2227| 67)
18 223 | 222 | 222 | 222 | 222 | 2227| 67 J. No Load Balancer, Unpredictable Load on Cluster Nodes
20 223 | 222 | 222 | 222 | 222 | 2227| 67 . . .
> 519 T 219 | 219 | 219 | 218 | 218 | 88 This experiment was run on Cluster Il (UMIACS), using
24 214 | 214 | 214 | 214 | 214 | 214 | 116 15 nodes: 14 were red nodes, and 1 was blue (see cluster
26 216 | 216 | 215 | 215 | 215 | 215 | 108 specifications given above). The total run time of the progra
28 214 | 214 | 214 | 214 | 214 | 214 | 116
30 214 | 214 | 214 | 214 | 214 | 214 | 116 was 37 seconds.

K. Symmetric Load Balancer, Unpredictable Load on Clus-
ter Nodes

F. Asymmetric Load Balancer, Single Slow Node Loaded The program was run on Cluster Il (UMIACS) with the

same number of nodes. The total run time of the program

Conditions for this experiments were the same as iMas 30 seconds representing a speed up of 23%.
Experiment E, with the asymmetric load balancer being used ’

in place of its symmetric counterpart. The total run time eamL. Asymmetric Load Balancer, Unpredictable Load on Clus-
down to 2 minutes 13 seconds, leading to similar speedufgr Nodes

as in Experiment E. Fig. 8 shows how the dynamic estimator The program was run on Cluster 1l (UMIACS) with the
allocates strings to slaves. The allocations to the slonenodame number of nodes. The total run time of the program was
are low from the beginning since this estimator is morg4 seconds, representing a speed up of 8%. It is clear that the
sensitive to evaluation times than the SymmetriC version. Symmetric load balancer worked much better than the asym-
metric version, which was governed by a biased rule base.
G. No Load Balancer, Network Load on Single Node The symmetric load balancer makes no such assumptions and
assigns an equal priority to the slave communication delay

In this experiment, no load balancer was applied and twand the slave evaluation time. In the event of a blind clyster
downloads were initiated on the IBM NetVista, each with afhjs is the best option to follow.

average download speed of 100 kBytes/s. The first download

was started at Generation 15, and the second at Generation VII. CONCLUSIONS ANDDISCUSSION

30. The first ended at Generation 60, and the second atThis paper introduces the idea of employing a simple

Generation 80. The total run time of the program was 8uzzy estimation system to predict the allocation of stsithg

minutes 6 seconds. slave nodes in a master-slave implementation of diffeagnti
evolution learning as applied to a fuzzy-neural network:

H. Symmetric Load Balancer, Network Load on Single Nod%,S“PFUNI,S' The experimental results presented in the pre-
vious section clearly demonstrate the effectiveness of the

Experiment G was repeated with the symmetric loaduzzy logic load estimator in the presence of both CPU
balancer. The run time of the program reduced to 2 minutesd network loads. Its effectiveness on the UMIACS cluster
26 seconds representing a speed up of 27%. over which we have no administrative control also shows

that the estimation mechanism is very effective. It is wortlu2] H. Liang, M. Faner, and H. Ming, “A dynamic load balangisystem

emphas|z|ng that the |deas presented hereln are Very genera based on data migration," iThe 8th International Conference on
. Computer Supported Cooperative Work in Desigpp. 493—-499, |IEEE,
and can be applied to load balancing in evolutionary legnin 5553

systems in general. [13] J. Bahi, R. Couturier, and F. Vernier, “Synchronoustritisited load

One important fact is that the rule base of the controller balancing on dynamic networksJournal of Parallel and Distributed
. Computing vol. 65, pp. 1397-1405, 2005.
can be made adaptive so that the fuzzy set parameters A% s. M. Lau, Q. Lu, and K. S. Leung, “Adaptive load distriion for

learnt by the system over time. This will have the advantage heterogeneous distributed systems with multiple tasksem&Journal

that one can start out with a raw estimator, which fine tuneg_ ©°f Parallel and Distributed Computing/ol. 66, pp. 163-180, 2006
5] L.S. Cheung, “A fuzzy approach to load balancing inrlistted object

its internal par.ameters in accordance with the nature of the computing network,” inProceedings First IEEE/ACM International
cluster—both in terms of the node performances, and the Symposium on Cluster Computing and the Ggg. 694-699, IEEE,

communication delays experienced. This is important, for 2001 iy
y . P p £l6] Y. K. Kwok and L. S. Cheung, “A new fuzzy-decision basehd
as we have observed, in Cluster | the asymmetric rule base” pajancing system for distributed object computintptirnal of Parallel

gave better performance, whereas in Cluster Il the symmetri and Distributed Computingvol. 64, pp. 238-253, 2004.

rule base performed better. Both these rule bases wdfdl C. S Velayutham, S. Paul, and S. Kumar, "Asymmetricsatibood
P product fuzzy neural network (ASUPFuUNIS)EEE Transactions on

based on heuristics, rgther _thap hard numeric_information. Neural Networksvol. 16, pp. 160-174, January 2005.
We believe that adaptive principles should be incorporat€as] R. Storn and K. Price, “Differential evolution — a sirepand efficient

into the estimator in order to make it even more effective. ~ adaptive scheme for global optimization over confinuouscep,’
Journal of Global Optimizationvol. 11, pp. 341-359, 1997.

Use moving averages instead of S|mple averages IS ano”ﬂﬁﬁ K. Price,New Ideas in Optimizatigrch. An Introduction to Differen-

matter for consideration. These issues are presently under tial Evolution, pp. 79-108. Cambridge, U.K.: McGraw Hill999.

investigation. [20] L. Singh and S. Kumar, “Parallel evolutionary asymetsubsethood
product fuzzy-neural inference system with applicatibria, 2006

IEEE International Conference on Fuzzy Systepps 8517-8524, July
ACKNOWLEDGMENT 2006.

This work was supported by the Department of Science
and Technology, Government of India, under Research Grant
No. DST SR/S3/EECE/65/2004-ET. The authors gratefully
acknowledge the assistance of Prof. Ashok K. Agrawala,
Director MIND Lab., University of Maryland, College Park,
USA, in providing access to the UMIACS Cluster Facility,
under the MoU with Dayalbagh Educational Institute.

REFERENCES

[1] E. Alba and M. Tomassini, “Parallelism and evolutionadgorithms,”
IEEE Transactions on Evolutionary Computatiaml. 6, pp. 443-462,
October 2002.

[2] V. S. Sunderam, “PVM: A framework for parallel distrited comput-
ing,” Jnl. of Concurr. Practice and Experienceol. 2, no. 4, pp. 315-
339, 1990.

[3] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Coorgy
MPI1—The Complete Referenc€ambridge, MA: MPI Press, 1998.

[4] W. Gropp, E. Lusk, and A. SkjellumUsing MPI: Portable Parallel
Programming with the Message Passing Interfacambridge, MA:
MIT Press, 2nd ed., 1999.

[5] I. Foster and C. Kesselmann, “Globus: A metacomputifgastructure
toolkit,” Jnl. Supercomput. Applicvol. 11, no. 2, pp. 115-128, 1997.

[6] K. C. Tan, A. Tay, and J. Cai, “Design and implementatioh ao
distributed evolutionary computing softwaréZEE Trans. on Systems,
Man and Cybernetics—Part C: Applications and Reviews. 33,
pp. 325-338, August 2003.

[7] F. Seredynski, “Dynamic mapping and load balancing wptrallel
genetic algorithms,” iHEEE World Congress on Computational Intel-
ligence pp. 834-839, 1994.

[8] S. Genaud, A. Giersch, and F. Vivien, “Load-alancingtsraopera-
tions for grid computing,”Parallel Computing vol. 30, pp. 923-946,
July 2004.

[9] G. Folino, C. Pizzuti, and G. Spezzano, “A scalable datlimplemen-
tation of parallel genetic programmingEEE Trans. on Evolutionary
Computation vol. 7, pp. 37-53, February 2003.

[10] L. Xiao, S. Chen, and X. Zhang, “Adaptive memory alldeas in
clusters to handle unexpectedly large data intesive jdBEEE Trans.
on Parallel and Distributed Systemeol. 15, pp. 577-592, July 2004.

[11] J. H. Abawajy and S. P. Dandamundi, “Parallel job sclieduon
multicluster computing systems,” ifProceedings of the IEEE In-
ternational Conference on Cluster Computing(CLUSTER'QBEE
Computer Society, 2003.

