UNIVERSITY OF

WATERLOO

&

David R. Cheriton School of Computer Science

CS 115: Introduction to
Computer Science
Presented By Ahmed Ibrahim

Fall 2015

Module 10 - Agenda

* We will cover material on functional abstraction in a
somewhat different order than the text.

e CS 115 will cover built-in functions that consume
functions as inputs.

* We move to the Intermediate teaching language
with the introduction of local definitions and
abstract list functions.

CS 115 Fall 2015 10: Local and functional abstraction

15-11-25

What is abstraction?

Abstraction consists of | l ! I

— finding similarities or common aspects, and H ﬁ n
— forgetting unimportant differences. m ."—'T

* For a single function, differences in parameter values are
forgotten, and the similarity is captured in the function body.

* For multiple functions, similarity is captured in templates.

* For multiple functions, further abstraction is possible (using
abstract functions).

CS 115 Fall 2015 10: Local and functional abstraction
Examples
(define (eat-apples alist) (define (select-even alist)
(cond (cond
[(empty? alist) empty] [(empty? alist) empty]
[(cons? alist) [(cons? alist)
(cond (cond
[(not (symbol=? (first alist) [(even? (first alist))
"apple))
(cons (first alist) (eat-apples (cons (first alist) (select-even

(rest alist)))]

(rest alist)))]
[else (eat-apples (rest

[else (select-even (rest

alist)))1) alist))))

CS 115 Fall 2015 10: Local and functional abstraction

15-11-25

Abstracting from these examples

* Functional abstraction is the process of creating abstract
functions.

* Similarity: general structure (removing certain items)
» Difference: predicate used to decide what to remove

— (define (..... alist)
(cond
[(empty? alist) empty]

5 Al
[((Concsl. Ey Difference: predicate? |
con

[(...... ? (first alist))

(cons (first alist) (.... (rest alist)))]
— [else (..... (rest alist))])]))

Similarity: general structure

CS 115 Fall 2015 10: Local and functional abstraction 5

Abstract List Function

e Goal: form an abstract list function that consumes
the predicate (function).

* Functions (such as predicates) are first-class values in
the Intermediate Student Language. N

A first class function is the one which
could be passed as an argument

* Example: (filter even? alist)
e Filteris a built-in function in Racket.

CS 115 Fall 2015 10: Local and functional abstraction 6

15-11-25

The abstract list function filter

(define (eat-apples alist)

Abstract function
(cond

[(empty? alist) empty]

(define (filter pred alist)

[(cons? alist)
(Cond (c[(()nd bol=? (fi list)
= [(not (symbol=? (first alist
[(empty? alist) empty] "applé))

(cons (first alist) (eat-apples

[(cons? alist) (rescole]
Ise (eat-appl
(cond anslfjﬁﬁ)()eat apples (rest

[(pred (first alist))
(cons (first alist) (filter pred (rest alist)))]
[else (filter pred (rest alist))])]))

CS 115 Fall 2015 10: Local and functional abstraction

Built-in function filter

(filter even? (list 6 7 8))

= (cons 6 (filter even? (list 7 8)))

= (cons 6 (filter even? (list 8)))

= (cons 6 (cons 8 (filter even? empty)))
= (cons 6 (cons 8 empty))

* The abstract list function filter performs the general
operation of selecting items from lists.

* Racket provides such functions to apply common
patterns.

CS 115 Fall 2015 10: Local and functional abstraction

15-11-25

Using filter

(define (select-even alist)|(filter even? alist))

(define (symbol-not-apple? item) (not (symbol=? Item ‘apple)))

(define (eat-apples alist) |(filter symbol-not-apple? alist))

* The built-in function filter consumes a predicate specifying
which elements of the list are to be kept.

* The predicate must be a one-parameter function producing a
boolean, where the type of the parameter is same as the type

of the elements of the list.

CS 115 Fall 2015 10: Local and functional abstraction 9

Advantages of functional abstraction

It reduces code size.
It avoids cut-and-paste.
Bugs can be fixed in one place instead of many.

P wnNPe

Improving one functional abstraction improves
many applications.

CS 115 Fall 2015 10: Local and functional abstraction 10

15-11-25

Abstracting from examples

(define (negate-list numlist) (define (compute-grades rlist)
(cond (cond

[(empty? numlist) empty] [(empty? rlist) empty]

[else (cons [else (cons

(= (first numlist)) (final-grade (first rlist))
(negate-list (rest numlist))] (compute-grades (rest rlist)))]))

) " 4

(define (f alist)
(cond
[(empty? alist) empty]
[else (cons (??? (first alist)) (f (rest alist)))]))

CS 115 Fall 2015 10: Local and functional abstraction 11

The abstract list function map

We are going to take what is
(define (.... alist) applied to the first item of a list
(cond and make that a parameter

[(empty? alist) empty
[else (cons (??? (first alist))
(... (restalist)))]))

* Goal: form an abstract list function that applies a
function to the elements of the list from the first
element to the last.

Example: (map sqr alist)

* map is a built-in function in Racket.

CS 115 Fall 2015 10: Local and functional abstraction 12

15-11-25

The abstract list function map (cont.)

The abstract list function map performs the operation of transforming
a list element-by-element into another list of the same length.

(map f (list x; %, ... x,) equivalent to (list (f x;) (f x,) ... (fx,))
Short definitions using map: ﬁ

(define (negate-list numlist) (map = numlist))
(define (compute-grades rlist) (map final-grade rlist))

The function consumed by map must be a one-parameter function
where the type of the parameter is the same as the type of the

elements of the list.

CS 115 Fall 2015 10: Local and functional abstraction 13

The abstract list function map

(define (map f alist)
(cond
[(empty? alist) empty]
[else (cons (f (first alist)) (map f (rest alist)))]))

For this and other built-in abstract list functions, see the table
on page 313 of the text (Figure 57 in Section 21.2).

CS 115 Fall 2015 10: Local and functional abstraction 14

15-11-25

Tracing map

(map sqgr (list 365))

= (cons (sqr 3) (map sqr (list 6 5))

= (cons 9 (map sqr (list 6 5)))

= (cons 9 (cons (sgr 6) (map sqr (list 5))))

= (cons 9 (cons 36 (map sqr (list 5))))

= (cons 9 (cons 36 (cons (sqr 5) (map sqr empty))))
= (cons 9 (cons 36 (cons 25 (map sqr empty))))

= (cons 9 (cons 36 (cons 25 empty)))

CS 115 Fall 2015 10: Local and functional abstraction 15

Additional Exercise

Write a function double that produces a list which is a
copy of a given list alist except that all elements of alist
have been doubled.

CS 115 Fall 2015 10: Local and functional abstraction 16

15-11-25

