Abstract list functions: Filter, Map

Using filter: (filter even? alist) Using map: (map sqr alist)

* filter consumes a predicate * map performs the operation
of transforming a list
element-by-element into
another list of the same
length.

specifying which elements of
the list are to be kept.

* The predicate must be a one-
parameter function

* The function consumed by
producing a boolean, where

map must be a one-

the type of the parameter is parameter function where
same as the type of the the type of the parameter is
elements of the list the same as the type of the

elements of the list.

CS 115 Fall 2015 10: Local and functional abstraction

The abstract list function foldr

e foldr (built-in) is short for “fold right”.

* It can be viewed as “folding” a list using the provided
combine function, starting from the right-hand end
of the list.

o If alist is (list x; x, . . . x,), then by our intuitive
explanation of foldr, the expression

(foldr f 0 alist) equivalent to (f x, (f x, (f ... (f x,, 0)))) <i
_////;7 base

base

combine function

CS 115 Fall 2015 10: Local and functional abstraction 3

The abstract list function foldr (cont.)

The combine function provided to foldr consumes two
parameters:

— an item in the list that foldr consumes and
— the result of applying foldr to the rest of the list.

Example:
(define (f xr) Starting point

(+xr)) i
(foldrf O (list1234D5)) (f1(f2(f3(f4(f50)))))

Equivalent to base

CS 115 Fall 2015 10: Local and functional abstraction

The abstract list function foldr (cont.)

(define
(product-of-numbers alist)
(cond

[(empty? alist) 1]

[else

(* (first alist) (product-of-
numbers (rest alist)))]))

® Similarities
&€ Differences

(define
(concat-firsts alist)
(cond

[(empty? alist) ""]
[else

(cond
[(string=?"" (first alist))
(concat-firsts (rest alist))]

[else (string-append (substring
(first alist) 0 1)

(concat-firsts (rest alist)))])]))

CS 115 Fall 2015 10: Local and functional abstraction

The abstract list function foldr (cont.)

(define (foldr combine base alist)

(cond ? ? ?

[(empty? alist) base]
[else (combine (first alist)
(foldr combine base (rest alist)))]))

CS 115 Fall 2015 10: Local and functional abstraction

Tracing foldr

(foldr £ O (list 36 5))

= (f 3 (foldr f O (list 6 5)))

= (f3 (f 6 (foldr f O (list 5)))

= (f3(f6(f5 (foldr f 0 empty)))
= (f3(f6(f50))=...

Intuitively, the effect of the application

(foldr f b (list x; %, . . . %)) is to compute the value of
the expression (f x; (f x, (... (fx, b) ...))).

CS 115 Fall 2015 10: Local and functional abstraction 7

Practical Exercise

Write a function get-total that produces the total value in
a list of numbers.

;; write a function total that produces the sum of the
> numbers in lon
;; total: (listof Num) -> Num
(define (get-total alist)
(foldr + O alist)

CS 115 Fall 2015 10: Local and functional abstraction 8

Additional Practical Exercise

Write a function m-positiwe that produces the

multiplication of all positive elements of a list of
numbers.

(define lon (list 1 -2 4 -5 9))
(define (m-positive lon)
(foldr * 1
(filter positive? lon)

)

CS 115 Fall 2015 10: Local and functional abstraction

Another Practical Exercise

(define (f item)

(or (string? item) (boolean? item)))
(define (g n)

(cond [(even? n) (sgr n)] [else (* n 2)]))

(define (h n s)
(string-append (substring (number->string n) 0 1) s))

a) (filter f (list 4 "taco" #\r true "salad" 17 false #\c 8))

(list "taco” true "salad” false)
b) (map g (list48713)) (list 16 64 14 2 6)
¢) (foldr h " (list 16 205 36 5)) "1235"

CS 115 Fall 2015 10: Local and functional abstraction

10

Using foldr to produce lists

Remember:
(foldr * 1 alist)) equivalent to (* x; (* x, (* ... (*x, 1)...)))

 The functions we provide to foldr can also produce cons

expressions, since these are also values.

e How? (cons element-from-list rest-of-list)
 Example: using foldr for negate-list.

* neg-combine takes the element, negates it, and conses it
onto the result of the recursive call.

CS 115 Fall 2015 10: Local and functional abstraction 11

Function neg-combine

;; neg-combine: Num (listof Num) = (listof Num)
(define (neg-combine item result-on-rest)
(cons (- item) result-on-rest))

;; negate-list: (listof Num) = (listof Num)
(define (negate-list alist)
(foldr neg-combine empty alist))

foldr can be used to implement map, filter, and other abstract
list functions.

CS 115 Fall 2015 10: Local and functional abstraction 12

Boolean functions and foldr

(list 1 2-34)=>(list true true false true)
e (map positive? (list 1 2 -3 4))

 To check whether a predicate function produces true for
every element in a list alist, we might be tempted to try:

(foldr and true (map positive? alist))

 Problem: and is not a function, but a special form, and this
produces an error.

e Solution: Racket provides andmap, which can be used like
this: (andmap positive? alist)
* For the same reason, ormap is provided.

CS 115 Fall 2015 10: Local and functional abstraction 13

Foldr vs. Template

Anything that can be done with the list template can
be done using foldr, without explicit recursion.

Does that mean that the list template is obsolete?
No.
Experienced Racket programmers still use the list

template, for reasons of readability and
maintainability.

Additional Exercise

a. (define (Z7? x)
(and (> x 3) (< x 8)))
(map sqr (filter Z? (list560-4129-7))) => (list 25 36)
b. (define (f x)
(cond [(> x 8) (* x 2)] [else (* x 3)]))
(foldr-1 (map f(list561-4129-7))) => -4
c. (define (w x)
(number->string (foldr + 0 x)))
(map w (list (list 21 23 30) (list 40 50 60))) => (list "74" "150“)

CS 115 Fall 2015 10: Local and functional abstraction 15

Another Additional Exercise

Write a function even-length that consumes a list of
strings, |os, and produces a list of boolean values where
the i-th member is true if the i-th string in los is of even
length, and false otherwise.

For example:
(even-length (list "yes" "No" "what" "maybe"))
=> (list false true true false)

For this question you must use only abstract list
functions. You may not use explicit recursion.

CS 115 Fall 2015 10: Local and functional abstraction 16

Another Additional Exercise (cont.)

2. (define (f item)
3. (even?
(string-length item)))
1. (map f (list "yes" "No" "what" "maybe"))

CS 115 Fall 2015 10: Local and functional abstraction 17

More

We have a the following list of grades:
(define grades

(list (make-grade 'D 62) (make-grade 'C 79) (make-grade 'A 93) (make-
grade 'B 84) (make-grade 'F 57) (make-grade 'F 38) (make-grade 'A 90)
(make-grade 'A 95) (make-grade 'C 76) (make-grade 'A 90) (make-grade 'F
55) (make-grade 'C 74) (make-grade 'A 92) (make-grade 'B 86) (make-
grade 'F43) (make-grade 'C 73)))
With the following structure defination:

;; A Grade is: (make-grade Symbol Number)

(define-struct grade (letter num)

Trying to find the biggest number in this list of grades by using
abstract list functions.

CS 115 Fall 2015 10: Local and functional abstraction 18

