Local definitions

* The functions and special forms we’ve seen so far can be
arbitrarily nested — except define and check-expect.

* So far, definitions have to be made “at the top level”, outside
any expression.

* The Intermediate language provides the special form local,
which contains a series of local definitions plus an expression
using them, of the form

(local What use is this?
(def; ... def)

exp)

* local groups related definitions for use in expression. Each
definition can be either a define or a define-struct.

CS 115 Fall 2015 10: Local and functional abstraction 2

Function multiples-of

Suppose we want to use abstract list functions to solve:

Write a function multiples-of that consumes a positive
integer, n, and a list of integers, ilist, and produces a new list
containing ONLY those values in ilist which are multiples of n.

Our attempt:

(define (is-mult? m) (defineilist (list 123 456)
(zero? (remainder m n))) ;; Example

(define (multiples-of n ilist) (multiples-of 2 ilist) => (list 2 4)

(filter is-mult? ilist)) (multiples-of 3 ilist) => (list 3 6)
fails. Why?

CS 115 Fall 2015 10: Local and functional abstraction 3

15-12-01

Local definitions (cont.)

(define (multiples-of n ilist) (define (is-mult? m)
[(local (zero? (remainder m n)))
(;; (is-mult? m) produces
;; true if mis a multiple of n,
—= ;; and false otherwise.
;; is-mult?: Int = Bool (filter is-mult? ilist))
(define (is-mult? m)
(zero? (remainder m n))))

filter is-mult? ilist n only exists within the
(Q) body of multiples-of

(define (multiples-of n ilist)

¢ The combine function is-mult? needs the value of n but to be
used by filter, it can only accept one parameter - an element
of the list.

CS 115 Fall 2015 10: Local and functional abstraction 4

Function multiples-of (cont.)

* Note: Provide purpose, (define (multiples-of n ilist)
. (local
contract, and requirements [:; (is-mult? m) produces

for local helper functions. ;; true if m is a multiple of n,

;; and false otherwise.
;5 is-mult?: Int = Bool
REMEMBER (define (is-mult? m)
(zero? (remainder m n)))]

(filter is-mult? ilist)))

CS 115 Fall 2015 10: Local and functional abstraction 5

15-12-01

Another Example: function swap-parts

Recall the function swap-parts from Module 2. The
function used three helper functions.

(define (mid num)
(quotient num 2))

“Hi,All”
(define (front-part mystring)
(substring mystring 0 (mid (string-length
mystrlng)))) ”Hi,” HA”H
(define (back-part mystring)
(substring mystring (mid (string-length
mystring)) ”A”Hi,”

(string-length mystring)))

CS 115 Fall 2015 10: Local and functional abstraction 6

Function swap-parts (cont.)

(define (swap-parts mystring)
(string-append (back-part mystring)
(front-part mystring)))

* The helper function mid is a helper function of the helper
functions front-part and back-part.

* Our solution was perfectly acceptable. However,
repeated applications, such as

(mid (string-length mystring)),
make it a bit hard to read.

CS 115 Fall 2015 10: Local and functional abstraction 7

15-12-01

Function swap-parts (cont.)

(define (swap-parts mystring)
(local
((define mid (quotient (string-length mystring) 2))
(define front (substring mystring 0 mid))
(define back (substring mystring mid
(string-length mystring))))
(string-append back front)))

(local

(def,
def,
def,)

exp)

* The special form local allows us to define a constant or a function

within another function.

* |t would be nice to replace repeated applications by a constant.

* Note: mid, front, and back are constants, not functions, so they

have no contracts.

CS 115 Fall 2015 10: Local and functional abstraction

Local double parentheses

* Like cond, local results in double parentheses.

* Optional: use square brackets to improve
readability.

(define (swap-parts mystring)
(local

(define front (substring mystring 0 mid))
(define back (substring mystring mid

Definition Part

(string-append back front)))

CS 115 Fall 2015 10: Local and functional abstraction

[(define mid (quotient (string-length mystring) 2))

(string-length mystring)))]

15-12-01

Re-using names with local

A define within a local expression may rebind a name
that has already been bound to another value or

expression.
(define (my-fun n m)
(local
[(define n 12)
(define (local-fun n) (* n 10))]
(+ m (local-fun n))))

CS 115 Fall 2015 10: Local and functional abstraction 10

Practical Exercise

Using abstract list functions and local, write the function scale-points
which consumes a list of posns and a number k, and produces a list of
posns where each co-ordinate value (i.e., both x and y) are scaled (i.e.,
multiplied by) the value k. Any helper functions must be declared
using local. You must not use recursion to solve this problem.

(define (scale-points alop k)
(local
[(define (scale-posn aposn)
(make-posn (* k (posn-x aposn))
(* k (posn-y aposn))))]
(map scale-posn alop)))

CS 115 Fall 2015 10: Local and functional abstraction 11

15-12-01

Nested local expression

It isn’t always possible to define local at the

beginning of the function definition, because the
definition might make assumptions that are only true

in part of the code.

* Atypical example is that of using a list function, like
first or rest, which must consume a nonempty list.

* When there is one local definition that can be used
throughout and one not, we end up with nested local

expressions.

CS 115 Fall 2015 10: Local and functional abstraction

12

Nested local expression

(define (avg-nums Ist)
(local

[(define only-nums (filter number? Ist))]

(cond

[(empty? only-nums) ‘no-nums]

[else

(local
[(define num-sum (foldr + 0 only-nums))
(define num-nums (length only-nums))]
(/ num-sum num-nums)) |

CS 115 Fall 2015 10: Local and functional abstraction

13

15-12-01

Using local for common sub-
expressions

* A sub-expression used twice within a function body always
yields the same value.

* Using local to give the reused sub-expression a name
improves the readability of the code.

* Inthe following example, the function eat-apples removes all
occurrences of the symbol ‘apple from a list of symbols.

* The sub-expression (eat-apples (rest alist)) occurs twice in the
code.

CS 115 Fall 2015 10: Local and functional abstraction 14

The function eat-apples

(define (eat-apples alist) (define (eat-apples alist)
(cond (cond Using
[(empty? alist) empty [(empty? alist) empty] | Jocal

[(cons? alist) [(cons? alist)

(cond (local [(define ate-rest (eat-
[(not (symbol=? (first alist) apples (rest alist)))]
"apple)) (cond

(cons (first alist)
[eat-apples (rest alist)])]
[else
[eat-apples (rest alist))]))

[(not (symbol=? (first alist)
"apple))

(cons (first alist)ate-rest)]

[else[ate-resi])l))

CS 115 Fall 2015 10: Local and functional abstraction 15

15-12-01

Using local can improve efficiency

Module 2

(define (mid num)
(quotient num 2))

(define (front-part mystring)
(substring mystring 0 (mid (string-
length mystring))))

(define (back-part mystring)

(substring mystring (mid (string-length
mystring))

(string-length mystring)))

(define (swap-parts mystring)
(string-append (back-part mystring)
(front-part mystring)))

Module 10

(define (swap-parts mystring)
(local
((define mid (quotient (string-length
mystring) 2))
(define front (substring mystring 0 mid))
(define back (substring mystring mid
(string-length mystring))))
(string-append back front)))

CS 115 Fall 2015 10: Local and functional abstraction 16

Using local for smaller tasks

Sometimes we choose to use local in order to name
sub-expressions in a way to make the code more
readable, even if they are not reused.

This may make the code longer, but may improve
clarity.

Recall our function to compute the distance between
two points.

(define (distance posn1 posn2)

(sgrt (+ (sgr (- (posn-x posnl) (posn-x posn2)))
(sar (= (posn-y posn1) (posn-y posn2))))))

CS 115 Fall 2015 10: Local and functional abstraction 17

15-12-01

Using local for smaller tasks (cont.)

(define (distance posnl posn2)
(sqrt (+ (sqr (- (posn-x posn1) (posn-x posn2)))

(sar (= (posn-y posn1) (posn-y posn2))))))

(define (distance posn1 posn2)
(local [(define delta-x (- (posn-x posn1) (posn-x posn2)))

(define delta-y (- (posn-y posnl) (posn-y posn2)))
(define sqrsum (+ (sqr delta-x) (sqr delta-y)))]
(sqrt sgrsum)))

CS 115 Fall 2015 10: Local and functional abstraction 18

Using local for encapsulation

* Encapsulation is the process of grouping things
together in a “capsule”.

* We have already seen data encapsulation in the use
of structures.

* Encapsulation can also be used to hide information.
Here the local bindings are not visible outside the
local expression.

CS 115 Fall 2015 10: Local and functional abstraction 19

15-12-01

Full design recipe

* Note that a full design recipe is not needed for local
helper functions on assignment submissions.

* You should still develop examples and tests for
helper functions, and test them outside local
expressions if possible.

* Once you have confidence that they work, you can
move them into a local expression, and delete the
examples and tests.

* A contract and purpose are still required (omitted in
these slides for space reasons).

CS 115 Fall 2015 10: Local and functional abstraction 20

Goals of this module

* You should understand the idea of encapsulation of
local helper functions.

* You should be familiar with map, filter, and foldr,
understand how they abstract common recursive
patterns, and be able to use them to write code.

* You should understand the idea of functions as first-
class values, and how they can be supplied as
arguments.

CS 115 Fall 2015 10: Local and functional abstraction 21

15-12-01

10

15-12-01

Goals of this module (cont.)

* You should be able to use local to avoid repetition of
common sub-expressions, to improve readability of
expressions, and to improve efficiency of code.

* You should be able to match the use of any constant
or function name in a program to the binding to
which it refers.

CS 115 Fall 2015 10: Local and functional abstraction 22

11

