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A tree consists of: leaves 14 siblings
¢ a set of nodes
¢ a set of edges, each of which connects a pair of N «— subtree
nodes 8 20
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Path, Depth, Level, and Height

<«— level 0
<+— level 1

depth=2 —» <+— level 2

* There is exactly one path (one sequence of edges)
connecting each node to the root.

» depth of a node = # of edges on the path from it to the
root.

* Nodes with the same depth form a level of the tree.

* The height of a node is the number of edges from the node
to the deepest leaf.

* The height of a tree is the maximum depth of its nodes.
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Advantages of trees

Trees are so useful and frequently used, because they
have some very serious advantages:

* Trees reflect structural relationships in the data.
* Trees are used to represent hierarchies.

* Trees provide an efficient insertion and searching.

Variations on trees

* Number of children of internal nodes:
— at most two
— exactly two
— any number
e Labels:
— on all nodes
— just on leaves
¢ Order of children (matters or not)

* Tree structure (from data or for convenience)

* We'll see that tree

A Tree is a Recursive Data Structure

Each node in the tree is the root of a smaller tree!

— refer to such trees as sub-trees to distinguish them from
the tree as a whole

— example: node 2 is the root of the sub-tree circled above

— example: node 3 is the root of a sub-tree with only one
node

algorithms often lend
themselves to recursive |
implementations. '
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Binary Tree (BT)

* In computer science, a binary tree is a tree data

structure in which each node has at _most two

children, which are referred to as the left child and
the right child.

Binary arithmetic expressions

* A binary arithmetic expression is made up of
numbers joined by binary operations *, +, /, and -.

* ((2*6)+(5%*2))/(5 - 3) can be defined in terms of
two smaller binary arithmetic expressions, (2 * 6) +
(5%2)and 5 - 3.

* Each smaller expression can be defined in terms of
even smaller expressions.

* The smallest expressions are numbers.

Representing binary arithmetic
expressions

* Internal nodes each have exactly two children.
* Leaves have number labels.
* Internal nodes have symbol labels.

* For subtraction and division, we care about the order
of children.

¢ The structure of the tree is dictated by the
expression.

* Rules:
— Rulel: Operators can have children but operands can't.
— Rule2: Nodes can only have 2 children.
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Visualizing binary arithmetic
expressions

((2*6) + (5% 2))/(5 - 3) can be represented as a
tree:
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Representing binary arithmetic

expressions (cont.)

* How can we group together information for
an internal node?

* How can we allow different definitions for
leaves and internal nodes?

Node structure

(define-struct binode (op argl arg2))
;; A Binary arithmetic expression Internal Node (BINode)
;; is a (make-binode (anyof "* "+ ’/ ’-) BinExp BinExp)

;; A Binary arithmetic expression (BinExp) is one of:
;; ¥aNum

;; ¥ aBINode

;; Examples

5

(make-binode “ 2 6)

(make-binode ‘+ 2 (make-binode ‘- 5 3))
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A more complex example
(make-binode ‘/
(make-binode ‘+
(make-binode “* 2 6)
(make-binode * 5 2))
(make—binc/)de ‘~53))

((2%6)+(5%2))/(5-3)
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Template for binary arithmetic
expressions

The only new idea in forming the template is the
application of the recursive function to each piece that
satisfies the data definition.

> A Binary arithmetic
expression (BinExp) is one of:
*aNum

;; my-binexp-fun: BinExp - Any
;; (define (my-binexp-fun ex) * aBiNode

;5 (cond
5 [(number? ex)...]
B [else. .. (binode-opex)...

... (my-binexp-fun (binode-argl ex)) . ..
5 . .. (my-binexp-fun (binode-arg2 ex)) ... ]))
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Evaluation of expressions

(define (eval ex)
(cond
[(number? ex) ex]
[else
(cond
[(symbol=? (binode-op ex) "*)
(* (eval (binode-argl ex)) (eval (binode-arg2 ex)))]
[(symbol=? (binode-op ex) '+)
(+ (eval (binode-argl ex)) (eval (binode-arg2 ex)))]
[(symbol=? (binode-op ex) ’/)
(/ (eval (binode-argl ex)) (eval (binode-arg2 ex)))]
[(symbol=? (binode-op ex) ’-)
(- (eval (binode-argl ex)) (eval (binode-arg2 ex)))1)1))
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Traversals

* Atraversal is a process that visits all the nodes in the
tree.
— breadth-first traversal
— depth-first traversal
* There are three different types of depth-first
traversals:
— PreOrder traversal - visit the parent first and then left and
right children;
— InOrder traversal - visit the left child, then the parent and
the right child;
— PostOrder traversal - visit left child, then the right child
and then the parent;

Pre-order Traversal

- - 1. Visit the root node.
2. Traverse the left sub-tree.
3. Traverse the right sub-tree.

Ref.: Data Structures and Algorithms Using Python, by Rance D. Necaise.
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Pre-order Traversal Example

/+23+5%28
(/(+23)(+5(*28))
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In-order Traversal

Similar to the preorder traversal, but we traverse the left sub-
tree before visiting the root.

1. Traverse the left sub-tree.
2. Visit the root node.
3. Traverse the right sub-tree.

Ref.: Data Structures and Algorithms Using Python, by Rance D. Necaise.
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In-order Traversal Example

2+3/5+2*8
(2+3)/(5+(2*8))

Post-order Traversal

1. Traverse the left sub-tree.

| 3. Visit the root node.

Ref.: Data Structures and Algorithms Using Python, by Rance D. Necaise.
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2. Traverse the right sub-tree.

Post-order Traversal Example

23+528*+/
(234)(5(28%*)+/




