15-11-12

UNIVERSITY OF

WATERLOO
N
@

David R. Cheriton School of Computer Science

CS 115: Introduction to
Computer Science
Presented By Ahmed Ibrahim

Company Organization

Fall 2015
What is Trees Tree terminology
root
root i
node —5 internal parent
g node
oo / 1
1 6 child
\/
A tree consists of: leaves 14 siblings
¢ a set of nodes
¢ a set of edges, each of which connects a pair of N «— subtree
nodes 8 20




15-11-12

Path, Depth, Level, and Height

<«— level 0
<+— level 1

depth=2 —» <+— level 2

* There is exactly one path (one sequence of edges)
connecting each node to the root.

» depth of a node = # of edges on the path from it to the
root.

* Nodes with the same depth form a level of the tree.

* The height of a node is the number of edges from the node
to the deepest leaf.

* The height of a tree is the maximum depth of its nodes.

Fall 201 8: Binary trees

Advantages of trees

Trees are so useful and frequently used, because they
have some very serious advantages:

* Trees reflect structural relationships in the data.
* Trees are used to represent hierarchies.

* Trees provide an efficient insertion and searching.

Variations on trees

* Number of children of internal nodes:
— at most two
— exactly two
— any number
e Labels:
— on all nodes
— just on leaves
¢ Order of children (matters or not)

* Tree structure (from data or for convenience)

* We'll see that tree

A Tree is a Recursive Data Structure

Each node in the tree is the root of a smaller tree!

— refer to such trees as sub-trees to distinguish them from
the tree as a whole

— example: node 2 is the root of the sub-tree circled above

— example: node 3 is the root of a sub-tree with only one
node

algorithms often lend
themselves to recursive |
implementations. '




15-11-12

Binary Tree (BT)

* In computer science, a binary tree is a tree data

structure in which each node has at _most two

children, which are referred to as the left child and
the right child.

Binary arithmetic expressions

* A binary arithmetic expression is made up of
numbers joined by binary operations *, +, /, and -.

* ((2*6)+(5%*2))/(5 - 3) can be defined in terms of
two smaller binary arithmetic expressions, (2 * 6) +
(5%2)and 5 - 3.

* Each smaller expression can be defined in terms of
even smaller expressions.

* The smallest expressions are numbers.

Representing binary arithmetic
expressions

* Internal nodes each have exactly two children.
* Leaves have number labels.
* Internal nodes have symbol labels.

* For subtraction and division, we care about the order
of children.

¢ The structure of the tree is dictated by the
expression.

* Rules:
— Rulel: Operators can have children but operands can't.
— Rule2: Nodes can only have 2 children.

€S 115 Fall 201 8: Binary tree 11

Visualizing binary arithmetic
expressions

((2*6) + (5% 2))/(5 - 3) can be represented as a
tree:




15-11-12

Representing binary arithmetic

expressions (cont.)

* How can we group together information for
an internal node?

* How can we allow different definitions for
leaves and internal nodes?

Node structure

(define-struct binode (op argl arg2))
;; A Binary arithmetic expression Internal Node (BINode)
;; is a (make-binode (anyof "* "+ ’/ ’-) BinExp BinExp)

;; A Binary arithmetic expression (BinExp) is one of:
;; ¥aNum

;; ¥ aBINode

;; Examples

5

(make-binode “ 2 6)

(make-binode ‘+ 2 (make-binode ‘- 5 3))

€5 115 Fall 2015 8: Binary trees 14

A more complex example
(make-binode ‘/
(make-binode ‘+
(make-binode “* 2 6)
(make-binode * 5 2))
(make—binc/)de ‘~53))

((2%6)+(5%2))/(5-3)

€S 115 Fall 2015 8: Binary trees

15

Template for binary arithmetic
expressions

The only new idea in forming the template is the
application of the recursive function to each piece that
satisfies the data definition.

> A Binary arithmetic
expression (BinExp) is one of:
*aNum

;; my-binexp-fun: BinExp - Any
;; (define (my-binexp-fun ex) * aBiNode

;5 (cond
5 [(number? ex)...]
B [else. .. (binode-opex)...

... (my-binexp-fun (binode-argl ex)) . ..
5 . .. (my-binexp-fun (binode-arg2 ex)) ... ]))




15-11-12

Evaluation of expressions

(define (eval ex)
(cond
[(number? ex) ex]
[else
(cond
[(symbol=? (binode-op ex) "*)
(* (eval (binode-argl ex)) (eval (binode-arg2 ex)))]
[(symbol=? (binode-op ex) '+)
(+ (eval (binode-argl ex)) (eval (binode-arg2 ex)))]
[(symbol=? (binode-op ex) ’/)
(/ (eval (binode-argl ex)) (eval (binode-arg2 ex)))]
[(symbol=? (binode-op ex) ’-)
(- (eval (binode-argl ex)) (eval (binode-arg2 ex)))1)1))

S 115 Fall 2015

Traversals

* Atraversal is a process that visits all the nodes in the
tree.
— breadth-first traversal
— depth-first traversal
* There are three different types of depth-first
traversals:
— PreOrder traversal - visit the parent first and then left and
right children;
— InOrder traversal - visit the left child, then the parent and
the right child;
— PostOrder traversal - visit left child, then the right child
and then the parent;

Pre-order Traversal

- - 1. Visit the root node.
2. Traverse the left sub-tree.
3. Traverse the right sub-tree.

Ref.: Data Structures and Algorithms Using Python, by Rance D. Necaise.

€S 115 Fall 2015 8: Binary trees

Pre-order Traversal Example

/+23+5%28
(/(+23)(+5(*28))




15-11-12

In-order Traversal

Similar to the preorder traversal, but we traverse the left sub-
tree before visiting the root.

1. Traverse the left sub-tree.
2. Visit the root node.
3. Traverse the right sub-tree.

Ref.: Data Structures and Algorithms Using Python, by Rance D. Necaise.

€5 115 Fall 201 8: Binary trees 21

In-order Traversal Example

2+3/5+2*8
(2+3)/(5+(2*8))

Post-order Traversal

1. Traverse the left sub-tree.

| 3. Visit the root node.

Ref.: Data Structures and Algorithms Using Python, by Rance D. Necaise.

€S 115 Fall 201 8: Binary tree

2. Traverse the right sub-tree.

Post-order Traversal Example

23+528*+/
(234)(5(28%*)+/




