UNIVERSITY OF

WATERLOO

David R. Cheriton School of Computer Science

CS 115: Introduction to
Computer Science

Presented By Ahmed Ibrahim

Fall 2015



General Tree

* Binary trees can be used for a large variety of
application areas. One limitation is the restriction

on the number of children.
 What if there can be any number of children?

* How might we represent a node that can have up
to three children?




General arithmetic expressions

* For binary arithmetic expressions, we formed binary
trees.

e Racket expressions using the functions + and * can
have an unbounded number of arguments.

* For simplicity, we will restrict the operations to +
and *,

For example: (+(*42)3(+512)2)



Visualizing the arithmetic expression

We can visualize an arithmetic expression as a general

tree. +
* 3 + 2
4 2 5 1 2 AN
There are
(+ (>X< 4 2) 3 (+ 51 2) 2) labels on all

the nodes of
the tree




Structure definition of general
arithmetic expressions

e For a binary arithmetic expression, we defined a
structure with three fields: the operation, the first
argument, and the second argument.

* For a general arithmetic expression, we define a
structure with two fields: the operation and a list of
arguments (which is a list of arithmetic expressions).

e We also need the data definition of a list of
arithmetic expressions.



Structure definition of general
arithmetic expressions (cont.)

;; Binary arithmetic expression:
(define-struct binode (op argl arg2))

(define-struct ainode (op args))
;; An Arithmetic expression Internal Node (AINode) is a

;; (make-ainode (anyof "* ’+) (listof AExp))
;; An Arithmetic Expression (AExp) is one of:

a3 Num
»» *an AlNode

CS 115 Fall 2015 9: General trees 6



General arithmetic expressions (cont.)

Examples of arithmetic expressions:
3
(make-ainode '+ (list 3 4))
(make-ainode "* (list 3 4))
(make-ainode '+
(list (make-ainode "* (list 4 2))
3
(make-ainode '+ (list 51 2))
2))

It is also possible to have an operation and an empty list.

CS 115 Fall 2015 9: General trees 7



Additional Exercises

Place the keys 1, 2, 3, 4, 5, 6, and 7 into the following
trees so that the resulting trees are binary search trees.

CS 115 Fall 2015 9: Genera | trees 8



Mutual Recursion

* In computer science, mutual recursion is a form of
recursion where two computational objects, such as
functions or data types, are defined in terms of each
other.

e Everything will be in pairs:

data definitions, templates, functions.



Mutual Recursion Example

(define (F n)

(cond Y
[(>=0n) 1] ﬁ
[else (define (M n)
(- n (M (subl n))))) (cond
[(>=0n) 0]
Q‘ ) [else

(- n (F (subl n))])

CS 115 Fall 2015 9: General trees

10



Function remainder-n

Write a function remainder-n that consumes an AExp (in which
all numbers are non-negative integers) and a positive integer n,
and produces a new AExp in which all numbers have been
replaced with their remainder when divided by n.

Check of the given AExp is number or not. [(number? ex) (remainder ex n)]

Start to create a new AExp by add the op into each node, then update
the list. (make-ainode (ainode-op ex)...

3. Using update-args function will help to update args.
(define (update-args exlist n)...
1. Check if the list is empty or not. [(empty? exlist) empty]
2. Start to construct a new list with an updated version of the args.

(cons (remainder-n (first exlist) n) (update-args (rest exlist) n))
CS 115 Fall 2015 9: General trees 11



Templates for arithmetic expressions

;; (define (my-aexp-fun ex)
;; (cond
[(humber? ex)...]
;; lelse...(ainode-opex)...
5 ... (my-listof-aexp-fun (ainode-args ex)) . . . ]))

;; (define (my-listof-aexp-fun exlist)
;; (cond
5 [(empty? exlist) ... ]

[else ... (my-aexp-fun (first exlist)) . ..
5 ... (my-listof-aexp-fun (rest exlist)) ... ]))

CS 115 Fall 2015 9: Genera | trees

12



Alternate data definition

* |n Module 6, we saw how a list could be used instead
of a structure holding student information.

e Here we could use a similar idea to replace the
structure AINode and the data definitions for AExp

and (listof AExp).

* Each expression is a list consisting of a symbol (the
operation) and a list of expressions.




Alternate data definition (cont.)

;; An Alternate arithmetic expression (AltAExp) is one of:
;; ¥a Num

;; * (cons (anyof "* ’+) (listof AItAExp))

;; Examples:

3

(list ‘+ 3 4)

(list ‘+
(list “k 4 2)
(list ‘451 2)
2)

CS 115 Fall 2015 9: General trees



Templates for AltAExp and (listof
A I t A E X p ) Efs:ge (my-aexp-fun ex)

[(number? ex)...]
[else .. [(ainode-opex)...

... (my-listof-aexp-fun (ainode-args ex)) . .. ]))
;; (define (my-listof-aexp-fun exlist)

;; (cond
;; (define (my-altaexp-fun ex) 5 [(empty? exlist) ... ]
.. [else ... (my-aexp-fun (first exlist)) ...
7 (Cond ... (my-listof-aexp-fun (rest exlist)) ... ]))
5 [(number? ex) .. . ]
o lelse ... (firstex)...
5 ... (my-listof-altaexp-fun (rest ex)) ... ]))

;; (define (my-listof-altaexp-fun exlist)

;; (cond

;; [(empty? exlist) . .. ]

;; [else . .. (my-altaexp-fun (first exlist)) . . .

5 ... (my-listof-altaexp-fun(restexlist)) . . . ]))

CS 115 Fall 2015 9: General trees 15



An example

(2% 6)+(5%2))*(5+3)

(make-binode * (list “*

(make-binode ‘+ (list ‘+
(make-binode “ 2 6) (list “k 2 6)
(make-binode * 5 2)) (list %k 5 2))

(make-binode ‘+5 3)) (list ‘+ 5 3))

CS 115 Fall 2015 8: Binary trees

16



Another example

(list “+
(list “+
(list ¢ 2 6)
(list k57 2))
(list™*532))



Some uses of general trees

The contents of organized text and web pages can be
stored as a general list.

(list ‘chapter
(list ‘section
(list “paragraph "This is the first sentence." "This is
the second sentence.")

(list ‘paragraph "We can continue in this manner."))
(list ‘section .. .)



Some uses of general trees (cont.)

(list 'webpage
(list "title "CS 115: Introduction to Computer Science 1")
(list “paragraph "For a course description,"

(list ’link "click here." "desc.html") "Enjoy the
course!")

(list "horizontal-line)
(list ‘paragraph "(Last modified yesterday.)"))

In lab, you will develop templates and write functions for
general trees.



Additional Exercise

(define-struct node (key val left right))

;; A binary search tree (bst) is either:

;; - empty or

;; - a structure (make-node k v Ift rgt) where
;; ¥ kis an integer key,

;; ¥ vis astring value, and ...

* Write the function sum-leaves that consumes an BT and
produces the sum of all the values in BT. The sum of the
leaves in an empty tree is 0.

* Write the function min-key. It consumes a non-empty bst and
produces the smallest key it contains. Your function must not
visit every node in the tree.

CS 115 Fall 2015 9: General trees 20



