UNIVERSITY OF

WATERLOO

&

David R. Cheriton School of Computer Science

CS 115: Introduction to
Computer Science
Presented By Ahmed Ibrahim

Fall 2015

Recall: General Arithmetic Expressions

((2%6)+(5%2))*(5+3)

(make-binode “* (list “*

(make-binode ‘+ (list “+
(make-binode “* 2 6) (list ¢ 2 6)
(make-binode “* 5 2)) (list ¢ 5 2))

(make-binode ‘+ 5 3)) (list “+5 3))

CS 115 Fall 2015 8: Binary trees

15-12-03

Nested Lists

* In this course, we have discussed flat lists (no nesting),

"o

— for example: (list 1 ’a "hello" ’x);
* And lists of lists (one level of nesting):
— (list (list 1 "a") (list 2 "b"))
* We now consider nested lists (arbitrary nesting):
(list
(list 1 (list 2 3))
4
(list 5 (list678)9))

CS 115 Fall 2015 9: General trees

Recall: Variations on trees

* Number of children of internal nodes:
v’ at most two
v’ exactly two
v any number
* Labels:
v’ on all nodes

— just on leaves

v' Order of children (matters or not)
v’ Tree structure (from data or for convenience)

15-12-03

Nested lists as leaf-labeled trees

* Itis often helpful to visualize a nested list as a leaf-labeled
tree, in which the leaves correspond to the elements of the
list, and the internal nodes indicate the nesting.

(list

(list 1 (list 2 3))
4
(list5(list678)9))

2 3 6 7 8

* Why? it is common practice to use leaf-labeled trees to
represent the evolution of species, populations, organisms
and more.

CS 115 Fall 2015 9: General trees

Examples of leaf-labeled trees:

Empty

(list 4 2)

(list (list 4 2) 3 (list416))

(list (list 3) 2 (list 5) (list 4 (list 3 6)))

Each non-empty tree is a list of sub-trees.
The first sub-tree in the list is either
* asingle leaf (not a list) or
* asub-tree rooted at an internal node (a list).

CS 115 Fall 2015 9: General trees 6

15-12-03

Data definition for leaf-labeled trees

;; A leaf-labelled tree (LLT) is one of the following
;; ¥ empty

;; ¥ (cons Num LLT)

;; ¥ (cons LLT LLT) where first LLT is nonempty.

The labels could be ANY non-list Racket value.

REMEMBER

CS 115 Fall 2015 9: General trees 7

Template for leaf-labeled trees

The template follows from the data definition.

;; (define (my-llt-fun) ;; Aleaf-labelled tree (LLT) is one
B of the following
i (cond 5 * empty
;o [empty?). ..] 5 * (cons Num LLT)
. ;; ¥ (cons LLT LLT) where first LLT is
5 [(cons? (first 1)) ;; nonempty.
5 ... (my-llt-fun (first 1)) . ..
5 ... (my-llt-fun (rest 1)) .. .]

;; lelse. .. (firstl)... (my-llt-fun (rest1))...1))

CS 115 Fall 2015 9: General trees 8

15-12-03

The function count-leaves

(define (my-llt-fun 1)

(cond

[(empty?1)...]

[(cons? (first 1))
(define (count-leaves |) ... (my-llt-fun (first 1)) . . .
(cond ... (my-llt-fun (rest 1)) . . .]

[else ... (firstl)... (my-llt-fun (rest

[(empty? 1) O]

[(cons? (first 1)) ...
(+

(count-leaves (first 1)) /\,
(count-leaves (rest 1)))] / ./\.
[else . /\ N
- AN
(count-leaves (rest 1)))])) T °)

Condensed trace of count-leaves

(count-leaves (list (list 2 3) 4))

= (+ (count-leaves (list 2 3)) (count-leaves (list 4))) 4
= (+ (+ 1 (count-leaves (list 3))) (count-leaves (list 4)))

= (+ (+ 1 (+ 1 (count-leaves (list)))) (count-leaves (list 4)))

= (+(+1(+ 1 0)) (count-leaves (list 4)))

= (+ (+ 1 1) (count-leaves (list 4))) (define (count-leaves)
= (+ 2 (count-leaves (list 4))) (cond
2
= (+ 2 (+ 1 (count-leaves (list)))) Rigzgy(.ﬁlr)s(t)]l))
=(+2(+10)) (+
= (+21) (count-leaves (first 1))
=3 (count-leaves (rest 1)))]
[else
(+1

(count-leaves (rest 1)))]))

CS 115 Fall 2015 9: General trees 10

15-12-03

Flattening a nested list

» flatten produces a flat list from a nested list.
;; flatten: LLT = (listof Num)
;; (define (flatten 1) .. .)

* We make use of the built-in Racket function, append, which

we examined in Module 7.

e (append (list 1 2) (list 34)) = (list 12 3 4)

* You should continue to use cons when constructing a list

REMEMBER

from a single element and another list.

CS 115 Fall 2015 9: General trees

11

Example: flatten function

(define | (list (list 1 2) (list 3 4)))

;; (flatten I) produces a flat list from .

;; flatten: LLT = (listof Num)

(define (flatten 1)

(cond
[(empty? [) empty]
[(cons? (first) (append (flatten (first 1))
(flatten (rest 1)))]

[else (cons (first 1) (flatten (rest 1)))]))

CS 115 Fall 2015 9: General trees

12

15-12-03

Condensed trace of flatten

(flatten (list (list 2 3) 4))

= (append (flatten (list 2 3)) (flatten (list 4)))

= (append (cons 2 (flatten (list 3))) (flatten (list 4)))

= (append (cons 2 (cons 3 (flatten (list)))) (flatten (list 4)))
= (append (cons 2 (cons 3 empty)) (flatten (list 4)))

= (append (cons 2 (cons 3 empty)) (cons 4 (flatten (list))))
= (append (cons 2 (cons 3 empty)) (cons 4 empty))

= (cons 2 (cons 3 (cons 4 empty))) (define (flatten I)

(cond
[(empty? I) empty]
[(cons? (first 1))
(append (flatten (first 1))
(flatten (rest 1)))]
[else (cons (first 1)
(flatten (rest 1)))1))

CS 115 Fall 2015 9: General trees 13

Practical Exercise

;; A leaf-labelled tree (LLT) is one of the following
;; ¥ empty

;; ¥ (cons Num LLT)

;; ¥ (cons LLT LLT) where first LLT is nonempty.

Draw the tree representation for the following LLT:
(list (list 1 7) 4 (list 5) (list (list 8 6) 9)).

CS 115 Fall 2015 9: General trees 14

15-12-03

Additional Practical Exercise

Write the function llt-replace which consumes a leaf-labeled tree
(tree) and produces a new leaf-labeled tree by replacing all leaves in

tree with the symbol ’leaf.

For example, (llt-replace (list (list 1 2) 3 (list 4 5))) should produce (list

(list "leaf 'leaf) 'leaf (list ’'leaf ’leaf)).

(define (llt-replace tree)
(cond
[(empty? tree) empty]
[(cons? (first tree))
(cons (llt-replace (first tree))
(llt-replace (rest tree)))]
[else
(cons 'leaf (llt-replace (rest tree)))]))

CS 115 Fall 2015 9: General trees

(define (my-llt-fun 1)

(cond
[(empty?1)...]
[(cons? (first 1))
... (my-llt-fun (first 1)) . ..
... (my-llt-fun (rest 1)) ...]
[else ... (firstl)... (my-llt-fun (rest

1)

cons, list & append 15

THANK YOU!

CS 115 Fall 2015 9: General trees

16

15-12-03

