
SD 372 Pattern Recognition

Lab 0: Matlab Walkthrough
(Ungraded Lab)

1 Purpose

The instructions for this lab are as follows:

1. Create a function to calculate the pdf of a two-dimensional normal
distribution.

µ =

[
0
0

]
Σ =

[
1 0
0 1

]

2. Plot:

• a 3-dimensional picture of the pdf

• contours showing the portions of the pdf that are the same value

• a 2-D image that uses colour to show the values of the pdf

3. Plot the region where the pdf is larger than 0.1. On the same graph,
plot the mean.

The goal of this lab is to introduce Matlab to those who haven’t used it
before. In the process, this lab will introduce functions that are essential
for the graded labs, as well as provide some insight on the two-dimensional
normal (Gaussian) distribution. Some details are intentionally left out so
that you get used to using Matlab’s help command.

The TAs are here to help you get started and to help you out if you get
stuck. After you work your way through this lab, you will be well prepared
to work on Lab 1. This is not a graded lab so you do not need to hand this
in.

1

2 File Setup

Creating a Directory

Before starting the lab, we want to create a directory to work in. For exam-
ple, to create the directory N:/MYFILES/syde372, enter the following
commands into the Command Window.

>> cd N:/

>> mkdir MYFILES

>> cd MYFILES

>> mkdir syde372

>> cd syde372

To verify that you are in the newly created directory, look at the “Current
Directory:” under the main menu or enter the following command:

>> pwd

ans =

N:\MYFILES\syde372

Creating the Files

Now, we’d like to create two files:

lab0.m – the script that will execute the lab
Gauss2d.m – a function that outputs the pdf of a 2-D normal dist.

First, let’s create the script:

1. Select File → New → M-file from the menubar. The M-File Editor
will open.

2. Enter the following in the editor:

% SYDE Lab 0 - Matlab Introduction

% Name: John Doe Date: Jan 21, 2004

These two lines are comments because they begin with %.

2

3. Select File → Save from the M-File Editor menubar.

4. Enter the desired filename: lab0.m

This script file doesn’t do anything yet, but we will add to it once we finish
setting up the files we need.

Now let’s create the function. Create a new M-File, enter the following into
the editor and save it as Gauss2d.m:

% GAUSS2D 2-D Gaussian pdf

%

% INPUTS:

% x1 - 1xN vector - range of x1 component

% x2 - 1xM vector - range of x2 component

% Mu - 2x1 vector - the mean of the random variable

% Sigma - 2x2 matrix - the variance matrix of

% the random variable

%

% OUTPUT:

% Y - NxM matrix - the pdf for the range of x1, x2

%

% USAGE (Example):

% Y = Gauss2d([-3:0.1:3],[0:0.1:6],[0 3]’,[1 1; 1 4])

% This function creates the pdf for a 2D Gaussian

% random variable

function Y = Gauss2d(x1, x2, Mu, Sigma)

This file contains many comments and it also declares a function taking four
arguments that returns a matrix Y. This function has not been defined yet
so if we try to run it, the error message shown on Page 4 will be displayed.

It is important to note that Matlab requires the filename and function name
to be the same.

Try This

• Type help Gauss2d in the Command Window and notice what hap-
pens. Which comments are not displayed?

3

3 Implementing the Function

Now that we have our files setup, we can work on the function used to
calculate the pdf. To gain an understanding of what exactly we want it to
do, let’s create the script that calls the function first.

lab0.m

Add the following lines to lab0.m:

clear all % clear all variables from memory

close all % close all open figures

% define the mean and variance of the pdf

mu = [0 0]’

sigma = [1 0; 0 1]

dx = 0.5 % step-size

x1 = [-3:dx:3] % range of the random variable x1

x2 = [-3:dx:3] % range of the random variable x2

% this calls the function we create

y = Gauss2d(x1,x2,mu,sigma)

Save the file and then enter the following commands in the Command Win-
dow:

>> lab0

>> whos

Entering lab0 at the command line runs the script we created. The whos

command displays the contents of memory. Notice that all of the variables
that are assigned are displayed in the Command Window. Use the help

ops command if you need help understanding what is going on.

Matlab should have also displayed an error message such as:

Warning: One or more output arguments not assigned during

call to ‘gauss2d’

4

This means that Gauss2d isn’t returning a value yet and thus we need to
work on it.

Gauss2d.m

The purpose of this function is to create a pdf that we can graph. If you
look up how graphs are constructed in Matlab, it shows that it is possible to
plot a surface (i.e. a pdf) given two vectors and a matrix of values (i.e. the
third paragraph shown after typing help mesh). So, we want this function
to output a matrix that is the appropriate dimension to plot (see Section 4
for more information on plots).

Add this line to the end of Gauss2d.m:

Y = zeros(length(x1), length(x2));

This initializes Y to be a matrix of the correct size. In this function, Y is
the output because it is on the left side of the equal sign in the function
declaration. Once all of the instructions in the function have been executed,
the last value calculated for Y is returned.

Now, we want fill the matrix with values. The value of the pdf at a point
v = [x1 x2]

T is:

p(v) =
1

2π|Σ|
1
2

exp

[
−1

2
(v − µ)TΣ−1(v − µ)

]
(1)

One way to calculate the matrix is to use two for-loops. In doing so,
Gauss2d.m will look like:

5

function Y = Gauss2d(x1, x2, Mu, Sigma)

Y = zeros(length(x1), length(x2));

for i=1:length(x1)

for j=1:length(x2)

v = [x1(i);x2(j)];

Y(i,j) = 1/(sqrt(2*pi)*det(Sigma))*...

exp(-0.5*(v-Mu)’*inv(Sigma)*(v-Mu));

end

end

Note that the zeros command is optional because the loop sets all of the
values of Y. However, this command tells Matlab how much memory to
reserve for the matrix. If this command wasn’t included, the size of Y would
change during the for loop and this function would be less efficient.

Don’t forget to save each M-File before using it.

Try This

• Try running lab0.m now that the function has been defined. Ensure
that you understand how all the variables are generated.

• If you are unclear about what is happening, use the help command
with the function name (i.e. help length), or help ops for punctu-
ation.

• What happens if you put semi-colons at the end of variable assignments
in the script? (i.e. mu = [0 0]’;)

• Use the help command to learn about who, what, which and why.

4 Plots

The easiest way to demonstrate the plotting techniques is by example. So,
let’s update lab0.m to surpress the variable assignment outputs and illus-
trate three different methods of plotting. The new version of lab0.m is
shown on the following page.

6

% SYDE Lab 0 - Matlab Introduction

% Jan 21, 2004

clear all

close all

mu = [0 0]’; % the mean of the pdf

sigma = [1 0; 0 1]; % the variance matrix of the pdf

dx = 0.5; % step-size

x1 = [-3:dx:3]; % range of the random variable x1

x2 = [-3:dx:3]; % range of the random variable x2

% Calculate the pdf

y = Gauss2D(x1,x2,mu,sigma);

% Show a 3-D plot of the pdf

figure

subplot(2,1,1);

surf(x1,x2,y);

xlabel(’x_1’);

ylabel(’x_2’);

% Show contours of the pdf

subplot(2,1,2);

contour(x1,x2,y);

xlabel(’x_{1}’);

ylabel(’x_{2}’);

axis equal

% Show a colour map of the pdf

figure

imagesc(x1,x2,y)

xlabel(’x_{1}’);

ylabel(’x_{2}’);

Several new commands are demonstrated. For example, the subplot com-
mand allows you to put multiple graphs in the same figure. The xlabel and
ylabel show how to label the axes using strings with subscripts. The surf,
contour, and imagesc commands are the functions used to create the plots.

7

For more details about these and other functions, consult Matlab’s help.

Run this script and notice how colour is used to indicate the values in the
variable y. To find out more about how the colour changes, lookup help

colormap.

Try This

• Change the value of dx to 0.1 and re-run lab0.m. The graphs should
look a lot smoother now.

• Try using the zoom tools (the magnifying glasses) and rotate tool (the
dotted circle with an arrow on it) in the figures.

• Look up the following functions needed to label graphs: title, xlabel,
ylabel, text, legend and axis.

5 Plotting Regions

As mentioned in the purpose, we would like to plot the region where the pdf
is greater than 0.1, and the mean of the pdf. To do plot a region using the
same axes (and plotting techniques) as before, we need a matrix the same
size as the one used in the previous section. The easiest way to do this is
add this line to the end of lab0.m:

z = (y>0.1);

This compares each element of the matrix y with the scalar 0.1. If an element
is greater than 0.1, the corresponding element in z is assigned to equal 1.
Otherwise, that element in z is assigned to equal 0. Therefore, if we plot z

like we did with y, then we have successfully plotted the region.

Adding the following to the end of lab0.m will plot the region and a yellow
point that represents the mean:

8

figure

imagesc(x1,x2,z)

hold on % allow us to plot more on the same figure

plot(mu(1,1),mu(2,1),’y.’); % plot the mean

xlabel(’x_{1}’);

ylabel(’x_{2}’);

To make this graph look nice, dx should be set to 0.1 or less.

Try This

• Display the matrices y and z in the Command Window to make sure
you understand how the data is stored in them.

• What happens when you compare two matrices of the same size? i.e.
w = (y>z)

• Label the mean with a green ‘X’ instead of a yellow dot (hint: help

plot).

• Change the colors used to plot the regions.

• Try changing mu and sigma and see how the pdf changes. You may
have to change x1 and x2.

• Redefine x1 and x2 to be functions of mu and sigma.

6 Concluding Remarks

That’s the end of this Matlab tutorial! If you understand everything that
happened here, you are in excellent shape for the graded labs in this course.
If you need help understanding some particular concepts, do not hesitate to
contact one of the TAs.

9

7 Matlab Resources

On the course website1, there are two Matlab tutorials:

• http://antares.uwaterloo.ca/obadawy/tutorials/matlab/

• http://ocho.uwaterloo.ca/∼pfieguth/Teaching/372/Matlab/index.html

Also, the best place to get references for Matlab is the Mathworks website:

• http://www.mathworks.com/access/helpdesk/help/helpdesk.shtml

To learn the aspects of Matlab that are most relevant to this course, consider
browsing through the following help topics (examples shown in brackets):

general General purpose commands (help, who, pwd)
ops Operators and special characters (∗, .∗, ∼=, [;], . . .)
lang Programming language constructs (if, for, function)
elmat Matrices and matrix manipulation (eye, repmat, size, find)
elfun Elementary math functions (cos, exp, floor)
matfun Matrix functions (det, inv, eig)
datafun Data analysis and Fourier transforms (max, sum, cov)
graph2d Two dimensional graphs (plot, hold, title)
specgraph Specialized graphs (contour, imagesc, surf)
graphics Handle graphics (figure, axis, close)
strfun Character strings (blanks, num2str)
iofun File input/output (load, input, pause)
timefun Time and dates (tic, toc, cputime)
datatypes Data types and structures (double, cell)

– cell arrays, {}, are powerful for storing data

1http://ocho.uwaterloo.ca/∼pfieguth/Teaching/372/sd372.html

10

