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Motivation

Why use probability measures for classification?

@ Great variability may occur within a class of patterns due to
measurement noise (e.g., image noise and warping) and
inherent variability (apples can vary in size and shape)

@ We tried to account for these variabilities by treating
patterns as random vectors

@ In the MICD classifier, we account for this variability by
incorporating statistical parameters of the class (e.g.,
mean and variance)

@ This works well for scenarios where class distributions can
be well modeled based on Gaussian statistics, but may
perform poorly when the class distributions are more
complex and non-Gaussian.

@ How do we deal with this?
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Motivation

Why use probability measures for classification?

@ Idea: What if we have more complete information about
the probabilistic behaviour of the class?

@ Given known class conditional probability density
distributions, we can create powerful similarity measures
that tell us the likelihood, or probability, of each class
given an observed pattern.

@ Classifiers built on such probabilistic measures are optimal
in the minimum probability of error sense.
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Bayesian Classifier

Bayesian classifier

@ Consider the two class pattern recognition problem:
@ Given an unknown pattern x, assign the pattern to either
class A or class B.
@ A general rule of statistical decision theory is to minimize
the “cost” associated with making a wrong decision.

@ e.g., amount of money lost by deciding to buying a stock
that gets delisted the next day and is actually a “don’t buy”.
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Bayesian Classifier

Bayesian classifier

@ Let L; be the cost of deciding on class ¢; when the true
class is ¢;

@ The total risk associated with deciding x belongs to ¢; can
be defined by the expected cost:

K
n(x) =Y LiP(ci|x) (1)
i=1

where K is the number of classes and P(c;|x) is the
posterior distribution of class c¢; given the pattern x.
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Bayesian Classifier

Bayesian classifier

@ For the two class case:
r(x) = L11P(c1]X) + L21 P(c2|x) (2)
r(x) = L12P(cq|x) + Lop P(C2|X) (3)
@ Applying Bayes’ rule gives us:

_ LitP(x|c1)P(¢1) + L21 P(x[c2) P(c2)

) o0 @)
ra(x) = Li2P(x|cy)P(cy LZ()LQQP(X\CZ)P(CQ) 5)
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Bayesian Classifier

Bayesian classifier

@ The general K-class Bayesian classifier is defined as
follows, and minimizes total risk:

x € iff ri(x) <r(x) Vj#i (6)
@ For the two class case:
”
(Li1 = Liz)P(x|e)P(er)  (Lar — Le2) P(xIc2)P(c2)  (7)
2

@ How do you choose an appropriate cost?
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Bayesian Classifier

Choosing cost functions

@ The most common cost used in the situation where no
other cost criterion is known is the “zero-one” loss function:

_ [0 =]
L"f—{1 i#] ®)

@ Meaning: all errors have equal costs.

@ Given the “zero-one” loss function, the total risk function
becomes:

Z P(cilx) = P(elx) 9
(¥

@ So minimizing total risk in this case is the same as
minimizing probability of error!
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Bayesian Classifier

Types of probabilistic classifiers

@ Using the “zero-one” loss function, we will study two main
types of probabilistic classifiers:

@ Maximum a Posteriori (MAP) probability classifier
e Maximum Likelihood (ML) classifier

Alexander Wong SYDE 372



Maximum a Posteriori Classifier

Maximum a Posteriori classifier

@ Given two classes A and B, the MAP classifier can be
defined as follows:

A
>

<
B

P(Alx) — P(B|x) (10)

where P(A|x) and P(B|x) are the posterior class

probabilities of A and B, respectively, given observation x.
@ Meaning: All patterns with a higher posterior probability for

A than for B will be classified as A, and all patterns with a

higher posterior probability for B than for A will be
classified as B
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Maximum a Posteriori Classifier

Maximum a Posteriori classifier

@ Class probability models usually given in terms of class
conditional probabilities P(x|A) and P(x|A)
@ More convenient to express MAP in the form:

A
P(x|A) > P(B) (11)
P(x|B) < P(A)
B
A
I(x) z 0 (12)
B

where /(x) is the likelihood ratio and 6 is the threshold
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Maximum a Posteriori Classifier

Maximum a Posteriori classifier

@ When dealing with probability density functions with
exponential dependence (e.g., Gamma, Gaussian, etc.), it
is more convenient to deal with MAP in the log-likelihood

form:
A

log I(x) z log 6 (13)
B
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Maximum a Posteriori Classifier

Maximum a Posteriori classifier: Example

@ Suppose we are given a two-class problem, where P(x|A)
and P(x|B) are given by:

0, X < a4
p(x|A) = { s M <Xx<a (14)
0 a < X
0, X < b1
p(xB){ 55 b <x< b (15)
0 by < x

where b, > a» > a; > by.
@ Assuming P(A) = P(B) = 1/2, develop the MAP
classification strategy.

Alexander Wong SYDE 372



Maximum a Posteriori Classifier

Maximum a Posteriori classifier: Example

A
p(x)
1/(2(az-a1))
P(IA)P(A)
1/(2(b2-b1))
p(xIB)p(B)
b1 a az b2 X g
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Maximum a Posteriori Classifier

Maximum a Posteriori classifier: Example

@ The MAP classification strategy can be defined as:
@ by < x < a;: Decide class B
@ a; < X < ao: Decide class A
@ a» < X < bo: Decide class B
@ Otherwise: No decision
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Maximum a Posteriori Classifier

Maximum a Posteriori classifier

@ When dealing with probability density functions with
exponential dependence (e.g., Gamma, Gaussian, etc.), it
is more convenient to deal with MAP in the log-likelihood

form:
A

log I(x) z log 6 (16)
B
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Maximum a Posteriori Classifier

Maximum Likelihood classifier

@ |deally, we would like to use the MAP classifier, which
chooses the most probable class:

A

P(x|A) > P(B)

P(x|B) < P(A)
B

@ However, in many cases the priors P(A) and P(B) are
unknown, making it impossible to use the posteriors
P(A|x) and P(B|x).

@ Common alternative is, instead of choosing the most
probable class, we choose the class that makes the
observed pattern x most probable.
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Maximum Likelihood Classifier

Maximum Likelihood classifier

@ Instead of maximizing the posterior, we instead maximize

the likelihood:
A
>
P(x|A) _ P(x|B) (18)
B
@ In likelihood form: A
P(x|A) >
P(x|B) < | 19)
B

@ Can be viewed as special case of MAP where
P(A) = P(B).
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