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Introduction

 Several Ways to control spacecraft attitude

 Difficult because:

 MIMO nonlinear system

 Parametric uncertainties

 Non-parametric uncertainties

 Will present a controller with the following 

components:

 PD feedback

 Feedforward – tracking response

 Adaptive – robustness to parametric

 Sliding Mode – robustness to non-parametric
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Model Formulation

Motion Equations:
𝐼  𝜔 + 𝜔×𝐼𝜔 = 𝑢

 𝜀 = −
1

2
𝜔×𝜀 +

1

2
𝜂𝜔

 𝜂 = −
1

2
𝜔𝑇𝜀

Euler Identities:
𝜀𝑇𝜀 + 𝜂2 = 1

𝜀 = 𝑎 sin
∅

2
, 𝜂 = cos

∅

2

Quaternion Altitude Error:

𝜀𝑒 = 𝜂𝑑𝜀 − 𝜂𝜀𝑑 − 𝜀𝑑
×𝜀

𝜂𝑒 = 𝜂𝜂𝑑 + 𝜀𝑇𝜂𝑑
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Spacecraft plant implemented in Simulink



Controller Design: Adaptive Control

 Using feedback and feedforward control, the equil. is GAS

 Must know inertia matrix exactly

 With adaptive control, the inertia matrix can be estimated

 Goal: have the system be have as if the unknown parameters are 

known

 Adaptation law:   𝑎 = −Γ𝑌𝑇𝑠

 Control law: 𝑢 = 𝑌 𝑎 − 𝐾𝐷𝑠

 Γ is the adaptation gain

 𝑎 = 𝐼11 𝐼22 𝐼33 𝐼12 𝐼13 𝐼23
𝑇 is the unknown elements 

  𝑎 is the estimated elements

 𝑠 is the smoothed error
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Controller Design: Adaptive Control

 𝑌 is the regressor matrix corresponding to: 
 𝐼  𝜔𝑟 + 𝜔𝑟

×  𝐼𝜔 = 𝑌 𝑎

𝑌 =

 𝜔𝑟1 −𝜔2𝜔𝑟3 𝜔3𝜔𝑟2

𝜔1𝜔𝑟3  𝜔𝑟2 −𝜔3𝜔𝑟1

−𝜔1𝜔𝑟2 𝜔2𝜔𝑟1  𝜔𝑟3

 𝜔𝑟2 − 𝜔1𝜔𝑟3  𝜔𝑟3 + 𝜔1𝜔𝑟2 𝜔2𝜔𝑟2 − 𝜔3𝜔𝑟3

 𝜔𝑟1 + 𝜔2𝜔𝑟3 −𝜔1𝜔𝑟1 + 𝜔3𝜔𝑟3  𝜔𝑟3 − 𝜔2𝜔𝑟1

𝜔1𝜔𝑟1 − 𝜔2𝜔𝑟2  𝜔𝑟1 − 𝜔3𝜔𝑟2  𝜔𝑟2 + 𝜔3𝜔𝑟1

 Parameter estimation error:  𝑎 =  𝑎 − 𝑎

 Lyapunov Proof:

𝑉 𝑡 =
1

2
𝑠𝑇𝐼𝑠 +

1

2
 𝑎𝑇Γ−1  𝑎

 𝑉 = 𝑠𝑇𝐼  𝑠 +   𝑎𝑇Γ−1  𝑎
= 𝑠𝑇𝐼  𝜔 − 𝑠𝑇𝐼  𝜔𝑟 +   𝑎𝑇Γ−1  𝑎
= 𝑠𝑇 𝑢 − 𝜔×𝐼𝜔 − 𝑠𝑇(𝑌𝑎 − 𝜔𝑟

×𝐼𝜔) +   𝑎𝑇Γ−1  𝑎 − 𝑎
= 𝑠𝑇 𝑌 𝑎 − 𝐾𝐷𝑠 − 𝜔×𝐼𝜔 − 𝑠𝑇(𝑌𝑎 − 𝜔𝑟

×𝐼𝜔) +   𝑎𝑇Γ−1  𝑎 − 𝑎
= −𝑠𝑇𝐾𝐷𝑠 + 𝑠𝑇𝑌  𝑎 − 𝑎 − 𝑠𝑇𝑠×𝐼𝜔 + −𝑠𝑇𝑌Γ Γ−1  𝑎 − 𝑎
= −𝑠𝑇𝐾𝐷𝑠

 Barbalat’s lemma: {𝑉 𝑡 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑒𝑑,  𝑉 ≤ 0,  𝑉 𝑏𝑜𝑢𝑛𝑑𝑒𝑑}, then 
 𝑉 → 0. So s converges to zero and the system is GAS.(𝜀 → 𝜀𝑑 ,𝜂 → 𝜂𝑑)
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Controller Design: Adaptive Control

 Convergence is not exact in the estimated parameters

 Controller will generate values that allow the tracking error to 

converge to zero

 Trajectory must be sufficiently “rich” for convergence (  𝑎 → 𝑎)

 Design parameters: 𝜆, 𝐾𝐷 and Γ are limited in magnitude

 Due to high frequency unmodeled dynamics

 actuator dynamics

 structural resonant modes

 sampling limitations

 measurement noise
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Controller Design: Adaptive Control
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Adaptive and feedforward block

Closed loop system with adaptation



Controller Design: Robust Adaptive 

 Non-parametric uncertainties can reduce performance of 

controller when placed online

 Drifting of estimated parameter terms in the adaptive 

controller

 Robustness in the adaptive controller can be achieved with 

sliding mode control

 This creates a dead zone where the system does not adapt

 New smoothed error: 𝑠Δ

 Such that: 𝑠 ≤ ∅ ⟺ 𝑠Δ = 0

 𝑠Δ = 𝑠 − ∅ sat
𝑠

∅
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Illustration of saturator function with dead zone



Controller Design: Robust Adaptive 

 Modified adaptation law:   𝑎 = −Γ𝑌𝑇𝑠Δ
 Motion equations with disturbance: 𝐼  𝜔 + 𝜔×𝐼𝜔 = 𝑢 + 𝑑

 Lyapunov Proof:

𝑉 𝑡 =
1

2
𝐼𝑠Δ

2 +
1

2
 𝑎𝑇Γ−1  𝑎

 𝑉 = 𝑠Δ
𝑇𝐼  𝑠 +   𝑎𝑇Γ−1  𝑎

= 𝑠Δ
𝑇 𝑌 𝑎 − 𝐾𝐷𝑠 − 𝜔×𝐼𝜔 + 𝑑 − 𝑠Δ

𝑇(𝑌𝑎 − 𝜔𝑟
×𝐼𝜔) +   𝑎𝑇Γ−1  𝑎 − 𝑎

= −𝑠Δ
𝑇𝐾𝐷 𝑠Δ + ∅sat

𝑠

∅
+ 𝑠Δ

𝑇𝑌  𝑎 − 𝑎 − 𝑠Δ
𝑇𝑠×𝐼𝜔 + −𝑠Δ

𝑇𝑌Γ Γ−1  𝑎 − 𝑎

= −𝑠Δ
𝑇𝐾𝐷𝑠Δ − 𝐾𝑑∅ 𝑠Δ + 𝑠Δ𝑑

≤ −𝑠Δ
𝑇𝐾𝐷𝑠Δ

 Barbalat’s lemma:  𝑉 ≤ 0 ⟹ 𝑠Δ → 0
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Controller Design: Robust Adaptive 
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Closed loop system with adaptation and noise

Robust adaptive and feedforward block



Simulation Results
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Parameter Symbol Value

Inertia Matrix 𝐼
15 5 5
5 10 7
5 7 20

𝑘𝑔 ∙ 𝑚2

Spacecraft initial state 𝑥(0) 0 0 0 1 𝑇 𝑟𝑎𝑑
Proportional gain in PD controller 𝐾𝑝 200

Derivative gain in PD controller 𝐾𝑑 20
Smoothed error 𝜀𝑒 weight 𝜆 25

Initial estimate of inertia matrix parameters  𝑎(0) 15 10 20 5 5 7 𝑇 𝑘𝑔 ∙ 𝑚2

Adaptation law gain Γ 15
Sliding mode dead zone ∅ ±0.15

 Simulation Parameters



Simulation Results
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Smoothed error without sliding mode Smoothed error with sliding mode

 At steady state, 𝑠 ≤ 0.1 so dead zone chosen to be ∅ = 0.15 to 

prevent parameter drift



Simulation Results

 Note how the tracking is almost perfect
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Robust adaptive controller tracking results Robust adaptive controller tracking error



Possible Controller Improvements

 Robust adaptive controller for s/c attitude tracking is 

not optimal

 Possible solutions:

 Nonlinear Quadratic Regulator

 Nonlinear Model Predictive Controller

 MPCs considers the system actuation restrictions

 Stability and robustness can be ensured through the proper 

choice of terminal constraints.
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Conclusion

 Robust adaptive controller was designed for 

spacecraft attitude tracking

 Closed loop system was simulated entirely in software 

using Simulink

 Concepts from sliding mode control were used to add 

system robustness 
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Thank You

Questions?
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MPC
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Controller Design: PD Feedback

Quaternion Altitude Error:

𝜀𝑒 = 𝜂𝑑𝜀 − 𝜂𝜀𝑑 − 𝜀𝑑
×𝜀

𝜂𝑒 = 𝜂𝜂𝑑 + 𝜀𝑇𝜂𝑑

PD Control Law:

𝑢 𝑡 = −𝐾𝑑𝜔 𝑡 − 𝑘𝜀𝑒 𝑡 , 𝐾𝑑 = 𝐾𝑑
𝑇 , 𝑘 > 0
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Controller Design: PD Feedback

Lyapunov Function Candidate: 

𝑉 𝑡 =
1

2
𝜔𝑇𝐼𝜔 + 𝑘 𝜀𝑒

𝑇𝜀𝑒 + 𝜂𝑒 − 1 2

 𝑉 = 𝜔×𝐼  𝜔 + 2𝑘 𝜀𝑒
𝑇  𝜀𝑒 + 𝜂𝑒 − 1  𝜂𝑒

=0 @𝑒𝑞𝑢𝑖𝑙

= 𝜔× 𝑢 − 𝜔×𝐼𝜔
= 𝜔× −𝐾𝑑𝜔 − 𝑘𝜀𝑒 − 𝜔×𝐼𝜔
= −𝜔×𝐾𝑑𝜔
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Figure 2: PD controller with plant



Controller Design: Feedforward

Feedforward Torque: 𝑢𝑑= 𝐼  𝜔𝑟 + 𝜔𝑟
×𝐼𝜔

Controller Output: 𝑢 = 𝑢𝑑 +  𝑢

Smoothed Error:𝑠 =  𝜔 + 𝜆𝜀𝑒 = 𝜔 − 𝜔𝑟

Reference Angular Velocity: 𝜔𝑟 = 𝜔𝑑 − 𝜆𝜀𝑒
Lyapunov Function Candidate: 

𝑉 𝑡 =
1

2
 𝜔𝑇𝐼  𝜔

 𝑉 =  𝜔𝑇𝐼   𝜔
=  𝜔𝑇  𝑢 −  𝜔×𝐼𝜔
=  𝜔𝑇  𝑢

Integrating both sides from 𝒕 = 𝟎 to 𝑻:

 
0

𝑇

 𝜔𝑇  𝑢 𝑑𝑡 = 𝑉 𝑇 − 𝑉 0

= 𝑉 𝑇
≥ 0

23AER 1503 – Robust Adaptive ControlApril 2015



Controller Design: Feedforward
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Figure 3: Feedforward block

Figure 4: PD and feedforward controller


