Robust Adaptive Attitude Control of a Spacecraft

AER1503 Spacecraft Dynamics and Controls II
April 24, 2015
Agenda

Introduction

Model Formulation

Controller Designs

Simulation Results
Several Ways to control spacecraft attitude

Difficult because:

- MIMO nonlinear system
- Parametric uncertainties
- Non-parametric uncertainties

Will present a controller with the following components:

- PD feedback
- Feedforward – tracking response
- Adaptive – robustness to parametric
- Sliding Mode – robustness to non-parametric
Model Formulation

Motion Equations:
\[I \ddot{\omega} + \omega \times I \omega = u \]
\[\dot{\epsilon} = -\frac{1}{2} \omega \times \epsilon + \frac{1}{2} \eta \omega \]
\[\dot{\eta} = -\frac{1}{2} \omega^T \epsilon \]

Euler Identities:
\[\epsilon^T \epsilon + \eta^2 = 1 \]
\[\epsilon = a \sin \frac{\phi}{2}, \quad \eta = \cos \frac{\phi}{2} \]

Quaternion Altitude Error:
\[\epsilon_e = \eta \alpha \epsilon - \eta \epsilon_d - \epsilon_d \times \epsilon \]
\[\eta_e = \eta \eta_d + \epsilon^T \eta_d \]

Spacecraft plant implemented in Simulink
Controller Design: Adaptive Control

- Using feedback and feedforward control, the equil. is GAS
 - Must know inertia matrix exactly

- With adaptive control, the inertia matrix can be estimated

- **Goal:** have the system behave as if the unknown parameters are known
 - **Adaptation law:** \(\hat{a} = -\Gamma Y^T s \)
 - **Control law:** \(u = Y \hat{a} - K_D s \)
 - \(\Gamma \) is the adaptation gain
 - \(a = [I_{11} \ I_{22} \ I_{33} \ I_{12} \ I_{13} \ I_{23}]^T \) is the unknown elements
 - \(\hat{a} \) is the estimated elements
 - \(s \) is the smoothed error
Controller Design: Adaptive Control

- **Y** is the regressor matrix corresponding to:
 \[\dot{I}\omega_r + \omega^r \times \dot{I}\omega = Y\hat{a} \]

\[
Y = \begin{bmatrix}
\dot{\omega}_{r1} & -\omega_2\omega_{r3} & \omega_3\omega_{r2} & \dot{\omega}_{r2} - \omega_1\omega_{r3} & \dot{\omega}_{r3} + \omega_1\omega_{r2} & \omega_2\omega_{r2} - \omega_3\omega_{r3} \\
\omega_1\omega_{r3} & \dot{\omega}_{r2} & -\omega_3\omega_{r1} & \dot{\omega}_{r1} + \omega_2\omega_{r3} & -\omega_1\omega_{r1} + \omega_3\omega_{r3} & \dot{\omega}_{r3} - \omega_2\omega_{r1} \\
-\omega_1\omega_{r2} & \omega_2\omega_{r1} & \dot{\omega}_{r3} & \omega_1\omega_{r1} - \omega_2\omega_{r2} & \dot{\omega}_{r1} - \omega_3\omega_{r2} & \dot{\omega}_{r2} + \omega_3\omega_{r1}
\end{bmatrix}

- Parameter estimation error: \(\hat{a} = \hat{a} - a \)

- **Lyapunov Proof:**
 \[
 V(t) = \frac{1}{2} s^T Is + \frac{1}{2} \tilde{a}^T \Gamma^{-1} \tilde{a}
 \]

 \[
 \dot{V} = s^T I\dot{s} + \tilde{a}^T \Gamma^{-1} \tilde{a}
 = s^T I\dot{\omega} - s^T I\omega_r + \tilde{a}^T \Gamma^{-1} \tilde{a}
 = s^T(u - \omega^r \times I\omega) - s^T(Y\hat{a} - \omega^r \times I\omega) + \tilde{a}^T \Gamma^{-1}(\hat{a} - a)
 = s^T(Y\hat{a} - K DS - \omega^r \times I\omega) - s^T(Y a - \omega^r \times I\omega) + \tilde{a}^T \Gamma^{-1}(\hat{a} - a)
 = -s^TK DS + s^TY(\hat{a} - a) - s^T \omega^r \times I\omega + (-s^TY \Gamma) \Gamma^{-1}(\hat{a} - a)
 = -s^T K D S
 \]

- **Barbalat’s lemma:** \(\{ V(t) \text{ lower bounded}, \dot{V} \leq 0, \ddot{V} \text{ bounded} \} \), then \(\dot{V} \to 0 \). So \(s \) converges to zero and the system is GAS. (\(\varepsilon \to \varepsilon_d , \eta \to \eta_d \))
Controller Design: Adaptive Control

- Convergence is not exact in the estimated parameters
 - Controller will generate values that allow the tracking error to converge to zero
 - Trajectory must be sufficiently “rich” for convergence ($\hat{a} \to a$)

- Design parameters: λ, K_D and Γ are limited in magnitude
 - Due to high frequency unmodeled dynamics
 - actuator dynamics
 - structural resonant modes
 - sampling limitations
 - measurement noise

AER 1503 – Robust Adaptive Control
April 2015
Controller Design: Adaptive Control

Adaptive and feedforward block

Closed loop system with adaptation
Controller Design: Robust Adaptive

- Non-parametric uncertainties can reduce performance of controller when placed online
 - Drifting of estimated parameter terms in the adaptive controller
- Robustness in the adaptive controller can be achieved with sliding mode control
 - This creates a dead zone where the system does not adapt

- New smoothed error: s_Δ
 - Such that: $|s| \leq \phi \iff s_\Delta = 0$
 - $s_\Delta = s - \phi \text{ sat} \left(\frac{s}{\phi} \right)$

Illustration of saturator function with dead zone
Controller Design: Robust Adaptive

- **Modified adaptation law:** \(\dot{\hat{a}} = -\Gamma Y^T s_{\Delta} \)
- **Motion equations with disturbance:** \(I\dot{\omega} + \omega \times I\omega = u + d \)
- **Lyapunov Proof:**

\[
V(t) = \frac{1}{2} I s_{\Delta}^2 + \frac{1}{2} \tilde{a}^T \Gamma^{-1} \tilde{a}
\]

\[
\dot{V} = s_{\Delta}^T I \dot{s} + \tilde{a}^T \Gamma^{-1} \tilde{a}
\]

\[
= s_{\Delta}^T (Y\dot{\hat{a}} - K_D s - \omega \times I\omega + d) - s_{\Delta}^T (Y\dot{a} - \omega \times I\omega) + \tilde{a}^T \Gamma^{-1} (\hat{a} - a)
\]

\[
= -s_{\Delta}^T K_D \left(s_{\Delta} + \emptyset \text{ sat} \left(\frac{s}{\emptyset} \right) \right) + s_{\Delta}^T Y (\dot{\hat{a}} - \dot{a}) - s_{\Delta}^T s \times I\omega + (-s_{\Delta}^T Y \Gamma) \Gamma^{-1} (\hat{a} - a)
\]

\[
= -s_{\Delta}^T K_D s_{\Delta} - K_D \emptyset |s_{\Delta}| + s_{\Delta} d
\]

\[
\leq -s_{\Delta}^T K_D s_{\Delta}
\]

- **Barbalat’s lemma:** \(\dot{V} \leq 0 \Rightarrow s_{\Delta} \to 0 \)
Controller Design: Robust Adaptive

Robust adaptive and feedforward block

Closed loop system with adaptation and noise
Simulation Results

Simulation Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inertia Matrix</td>
<td>I</td>
<td>$\begin{bmatrix} 15 & 5 & 5 \ 5 & 10 & 7 \ 5 & 7 & 20 \end{bmatrix}$ $kg \cdot m^2$</td>
</tr>
<tr>
<td>Spacecraft initial state</td>
<td>$x(0)$</td>
<td>$[0 \ 0 \ 0 \ 1]^T$ rad</td>
</tr>
<tr>
<td>Proportional gain in PD controller</td>
<td>K_p</td>
<td>200</td>
</tr>
<tr>
<td>Derivative gain in PD controller</td>
<td>K_d</td>
<td>20</td>
</tr>
<tr>
<td>Smoothed error ε_e weight</td>
<td>λ</td>
<td>25</td>
</tr>
<tr>
<td>Initial estimate of inertia matrix params</td>
<td>$\hat{a}(0)$</td>
<td>$[15 \ 10 \ 20 \ 5 \ 5 \ 7]^T$ $kg \cdot m^2$</td>
</tr>
<tr>
<td>Adaptation law gain</td>
<td>Γ</td>
<td>15</td>
</tr>
<tr>
<td>Sliding mode dead zone</td>
<td>ϕ</td>
<td>± 0.15</td>
</tr>
</tbody>
</table>
Simulation Results

Smoothed error without sliding mode

- At steady state, \(s \leq 0.1 \) so dead zone chosen to be \(\varnothing = 0.15 \) to prevent parameter drift

Smoothed error with sliding mode
Simulation Results

- Note how the tracking is almost perfect
Possible Controller Improvements

- Robust adaptive controller for s/c attitude tracking is not optimal

- Possible solutions:
 - Nonlinear Quadratic Regulator
 - Nonlinear Model Predictive Controller
 - MPCs considers the system actuation restrictions
 - Stability and robustness can be ensured through the proper choice of terminal constraints.
Conclusion

- Robust adaptive controller was designed for spacecraft attitude tracking
- Closed loop system was simulated entirely in software using Simulink
- Concepts from sliding mode control were used to add system robustness
Questions?
References

minimize \[\sum_{t=0}^{T-1} l(x(t), u(t)) \]

subject to \[c_{eq}(x) = 0 \]
\[A_{eq}x = B_{eq} \]
\[lb \leq x \leq ub \]
\[x(0) = z, x(T) = 0 \]

The process of calculating the optimal input is as follows:

1) Measure/estimate the current system state \(z \)
2) Solve the optimization problem for the optimal control action plan (set \(U_t^* \)) based on the horizon defined by \(T \)
3) Execute the first optimal control action \(u_t^* \) in the action plan
4) Repeat
Controller Design: PD Feedback

Quaternion Altitude Error:

\[\varepsilon_e = \eta_d \varepsilon - \eta \dot{\varepsilon}_d - \varepsilon_d \times \varepsilon \]
\[\eta_e = \eta \eta_d + \varepsilon^T \eta_d \]

PD Control Law:

\[u(t) = -K_d \omega(t) - k \varepsilon_e(t), \quad K_d = K_d^T, \quad k > 0 \]
Lyapunov Function Candidate:

\[V(t) = \frac{1}{2} \omega^T I \omega + k [\varepsilon^T_e \varepsilon_e + (\eta_e - 1)^2] \]

\[\dot{V} = \omega \times I \omega + 2k [\varepsilon^T_e \dot{\varepsilon}_e + (\eta_e - 1)\dot{\eta}_e] \]

\[= \omega \times (u - \omega \times I \omega) \]
\[= \omega \times (-K_d \omega - k \varepsilon_e - \omega \times I \omega) \]
\[= -\omega \times K_d \omega \]

Figure 2: PD controller with plant
Controller Design: Feedforward

Feedforward Torque: \(u_d = I \dot{\omega}_r + \omega_r \times I \omega \)

Controller Output: \(u = u_d + \ddot{u} \)

Smoothed Error: \(s = \ddot{\omega} + \lambda \varepsilon_e = \omega - \omega_r \)

Reference Angular Velocity: \(\omega_r = \omega_d - \lambda \varepsilon_e \)

Lyapunov Function Candidate:

\[
V(t) = \frac{1}{2} \dddot{\omega}^T I \dddot{\omega} \\
\dot{V} = \dddot{\omega}^T I \dddot{\omega} \\
= \dddot{\omega}^T (\dddot{u} - \dddot{\omega} \times I \omega) \\
= \dddot{\omega}^T \dddot{u}
\]

Integrating both sides from \(t = 0 \) to \(T \):

\[
\int_0^T \dddot{\omega}^T \dddot{u} \, dt = V(T) - V(0) \\
= V(T) \\
\geq 0
\]
Controller Design: Feedforward

Figure 3: Feedforward block

Figure 4: PD and feedforward controller