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Abstract—This paper describes the application of model pre-
dictive controllers for decentralized control and coordination of
autonomous vehicle platoons. Information about the road tra-
jectory and surrounding vehicles are used to solve a constrained
nonlinear optimization problem to plan the system behavior over
a finite horizon. System actuation restrictions are taken into
consideration in the controller design as optimization constraints.
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I. INTRODUCTION

Increasing traffic demand on existing road infrastructure
poses a serious problem in many urban areas. In addition to
increasing road capacity, the concept of grouping vehicles
into platoons is very desirable because it promises greater
fuel economy due to reduced air resistance, shorter commute
times during peak hours and fewer traffic collisions.

This paper describes the use of model predictive controllers
(MPCs) for a vehicle platoon to optimally track a trajectory
subject to the vehicles’ motion dynamics and actuation
limits. Although optimization solvers are computationally
more intensive compared to conventional controllers, current
convex solvers are fairly sophisticated and the speed with
which optimization problems can be solved on modern
systems makes it a very attractive approach for real-time
applications.

The vehicles are modeled with an equivalent bicycle
model with steering angle, steering rate, velocity and
acceleration actuation limits, which provides the constraints
for the optimization problem. The goal is to implement a
decentralized MPC formation controller based on [1] and
[2] to enable a multi-agent nonlinear system to follow a
trajectory defined by the road. Its overall performance is also
analyzed through simulations conducted in Matlab.

This paper is organized as follows: in Section II, a math-
ematical background on MPCs and their stability conditions
are discussed. An overview of the MPC theoretical approach,
specific to vehicle platoons, is provided in Section III. The
simulation setup is detailed in Section IV and its results are
presented in Section V. Section VI discusses future improve-
ments to the system and the paper concludes with Section VII.

II. PROBLEM FORMULATION

A. MPC Mathematical Formulation

Optimizing a system’s input can be considered a convex
optimization problem. By considering all future costs over
a finite horizon, a set of sub-optimal control actions based
on the current state can be calculated. This problem can be
mathematically represented by:

minimize
x

T−1∑
t=0

l(x(t), u(t))

subject to u(t) ∈ U, x(t) ∈ X
x(t+ 1) = Ax(t) +Bu(t)

x(0) = z, x(T ) = 0

(1)

Where l(x(t), u(t)), a positive definite function, is the
stage cost of being in state x and applying input u; U and
X are the input and state constraints; Ax(t) + Bu(t) is the
discretized system model constraints, z is the measured state
at the current time step, and x(T ) is the final state or terminal
constraint that is driven to 0. The goal is to minimize the
stage cost over a time horizon defined by T .

Although this problem formulation offers a sub-optimal
solution, in practice, it can be easily implemented in real-time
on the physical system. Furthermore, the MPC solution can
provide very near optimal results with significantly less
computation time when compared to solving over an infinite
horizon [3].

The process of calculating the optimal input is as follows:
1) Measure/estimate the current system state z
2) Solve the optimization problem for the optimal control

action plan (set U∗
t ) based on the horizon defined by T

3) Execute the first optimal control action u∗t in the action
plan

4) Repeat
Note that while the control actions for T time steps in the

future are solved, only the first control action is used before
the optimization problem is solved again. This ensures that the
problem remains stable and feasible after executing the first
control action.



B. MPC Stability and Robustness

Some important observations about the feasibility and sta-
bility of MPCs can be found in [4] and [5]. In general, the
solutions calculated by the MPCs are not guaranteed to be
feasible and stable. This is especially true for an uncertain
system:

xt = Axt−1 +But−1 + d (2)

Where d is a bounded disturbance. It is possible that the
disturbance can cause a loss of feasibility and recovering
from infeasibility may not be guaranteed in real-time [6].

As a result, in a closed-loop system, it is necessary to choose
proper terminal costs and constraints to explicitly ensure
feasibility (robustness) and stability. The simplest approach,
which is used in this paper, is to choose the terminal constraint,
x(T ), to be 0. The Lyapunov based proof can be found in
[7]. Other methods include modifying the MPC scheme by
making more restrictive assumptions or introducing additional
degrees-of-freedom [1]. However, because each vehicle in the
platoon is controlled by independent controllers, there is no
guarantee that the platoon will operate collision free at all
times outside of the simulation. It is therefore necessary to
include an additional controller that actuates the vehicle’s
brakes if its forward distance with the next vehicle reaches
a certain danger threshold. This is a very mature technology
in the industry and will be outside the scope of this paper.

III. PROPOSED SOLUTION

A. Vehicle Dynamics

Due to the complexity in modelling an Ackermann-steering
vehicle, a more simple discrete bicycle kinematics model is
used instead to model the vehicle dynamics. xt

yt
θt

 =

 xt−1 + vtcosθt−1dt
yt−1 + vtsinθt−1dt

θt−1 +
vttanδt
L dt

 (3)

Where [ x y θ ]T ∈ R3 represent the Cartesian position
coordinates of the rear wheel in meters and the absolute
heading angle in radians. The rear wheel speed, v ∈ R,
and steering angle, δ ∈ R, are the two system inputs. It is
assumed that the vehicle does not operate at its performance
limits. Thus, the vehicle does not experience tire slip and it
is sufficient to model the relationship between the vehicle’s
inputs and states with a bicycle model.

The acceleration and steering rate of the vehicle can also
be calculated using Eq. 4 and 5 respectively.

at =
vt − vt−1

dt
(4)

δ̇t =
δt − δt−1

dt
(5)

B. MPC Constraints for Trajectory Tracking

For the car leading the platoon, the stage cost is chosen,
by design, to be the sum of the 2-norm errors between the
desired trajectory location, xd, and vehicle’s estimated current
position, xcur, in the time horizon:

∑T−1

t=0
l(x(t), u(t)) =

∑T−1

t=0
||xd(t)− xcur(t)||2 (6)

The state and input constraints are interpreted as lower and
upper bounds on the system state:

lb ≤ x ≤ ub (7)

Also, the initial state constraint is equal to the measured
state and the final state is driven to zero:

x(0) = z (8)

x(T ) = 0 (9)

Actuator limitations is defined by Aeq which is a matrix
with the first 3 × 3 entry equal to the identity matrix. Beq is
set in the beginning of each optimization iteration to be the
measured system state.

Aeqx = Beq (10)

Unfortunately, the bicycle model defined in Eq. 3 is a
nonlinear system and not affine. This necessitates an additional
nonlinear constraint to substitute the non-affine function. Eq.
11 is used to calculate the equality constraints based on all
the discrete states of the system defined in Eq. 3, 4 and 5 in
the time horizon.

ceq =


xt − (xt−1 + vtcosθt−1dt)
yt − (yt−1 + vtsinθt−1dt)

θt − (θt−1 +
vttanδt
L dt)

−vt + vt−1 + atdt

−δt + δt−1 + δ̇tdt

 = 0, t = 1...T

(11)
Combining all the constraints into standard form:

minimize
x

T−1∑
t=0

l(x(t), u(t))

subject to ceq(x) = 0

Aeqx = Beq

lb ≤ x ≤ ub
x(0) = z, x(T ) = 0

(12)



C. MPC Constraints for Platoon Formation

Vehicle formation behavior is a challenging problem
because it involves coordinating the actions of multiple agents
with nonlinear dynamics which is a non-convex problem.
[1] briefly describes the multiple ways the problem has
been approached, including linear matrix inequalities, control
Lyapunov functions and vision based solutions.

It is assumed that the vehicles are dynamically decoupled
and independently actuated based on information available
through the vehicle’s own sensors. The vehicles inside
the platoon will then plan trajectory paths using a similar
procedure described in part B. Essentially, each vehicle
will run its own MPC and will use information about its
surroundings to plan collision-free trajectories that maintains
the formation with safe distances between the vehicles.

Optimal control will be used to minimize the error between
the relative distances between the vehicles with a desired
offset. The new objective function for the following vehicles
is:

f0(x) = ||xtarget − xpos(Tfollow)||2 (13)

Where xtarget is the Cartesian coordinate of the vehicle
being followed which is compared to xpos, the estimated
position of the actual vehicle in Tfollow time steps. The time
horizon specified by Tfollow will be smaller than the horizon
used by the leader vehicle. This is because the leader has
more visibility of the road trajectory in front of the vehicle
compared to the other vehicles in the platoon. Tfollow directly
affects the distance that the vehicles follow each other and
is chosen to produce a desired safe following distance. In
general, the larger the value of Tfollow, the larger the distance
between vehicles in the platoon. This also produces better
tracking results since the horizon is longer for the MPC
planning. The designer should choose a horizon that offers
a good balance between good tracking and safe following
distances.

IV. SIMULATION SETUP

This section describes how the simulation for the vehicle
platoon was implemented in Matlab. A vehicle platoon size
of 5 is arbitrarily chosen with T = 10 for the MPC horizon
for the leading vehicle and Tfollow = 4 for the MPC horizon
for the other vehicles in the platoon. A simulation step size
of dt = 0.1s is used.

The nonlinear equality constraints is calculated using Eq. 11
for each time step in the horizon length to satisfy the upper
and lower bound constraints detailed in Table 1. After solving
the optimization problem at each time step, the first control
action is executed and Beq is updated with the new measured
system state.

Table 1: System parameters

Parameter Symbol Value Unit
Distance between rear and front axle L 2 m

Maximum steering angle δmax ±50× π/180 rad

Maximum steering rate δ̇max ±60× π/180 rad/s
Maximum speed vmax 27 m/s
Minimum speed vmin 0 m/s

Maximum acceleration amax 2.8 m/s2

Maximum deceleration amin -4 m/s2

In Matlab, the ’fmincon’ function is used to solve
the constrained nonlinear optimization problem using
the Sequential Quadratic Programming (SQP) method.
Essentially, the constrained problem is transformed to its
dual / unconstrained problem by using a penalty function for
constraints that are near or beyond the constraint boundary.
[8] indicates that this algorithm will outperform other methods
in terms of efficiency, accuracy, and percentage of successful
solutions.

V. SIMULATION RESULTS

The performance of the MPC for vehicle platoons is illus-
trated in this section. The first simulation, shown in Figure 1,
is implemented on a semi-realistic road trajectory described by
a continuous function. The initial vehicle positions are chosen
such that they are close to the leader vehicle but off the actual
road to show the convergence of the vehicle trajectories to the
desired trajectory without colliding.

Fig. 1. Curved trajectory

The next simulation, in Figure 2, illustrates the tracking
performance of the vehicle platoon for a square road
trajectory. Due to the abrupt changes in the desired trajectory
and the length of the planning horizon, the system is not
expected to track the road perfectly. However, it can be seen
that the results are quite good.



Fig. 2. Square trajectory

From Figure 3 and 4, it can be seen that the vehicles’
velocity and steering inputs respect the acceleration and
steering rate constraints. Such constraints are necessary for
the MPC to create realizable input commands that can be
implemented on an actual system.

Fig. 3. Velocity inputs

The plot in Figure 5 shows the effect of changing the
time horizon on the tracking performance of the controller.
Clearly, increasing the horizon length results in better tracking.

Fig. 4. Steering angle inputs

Fig. 5. Double lane change trajectory

For low computational power systems, a trade off must
be made between computation times and tracking accuracy
through the proper choice of the time horizon constant: T .
Table 2 shows the computation time for various horizon
lengths for a double lane change trajectory. Note that for
T = 10 and 15, there is no noticeable difference in vehicle’s
trajectory. Clearly, tracking accuracy will not continue to
increase past T = 10 for a double lane change maneuver.

Table 2: Computation time for various time horizons

Time Horizon Computation Time (s)
5 18

10 102
15 257

VI. FUTURE IMPROVEMENTS

There are some limitations in the MPC for platoon
formation. Most notably, the tracking effectiveness decreases
with decreasing time horizon. As such, the vehicles that are
following other vehicles are constrained in this respect since
T is restricted by the following distance. Realistically, these
vehicles inside the platoon have less information to work
with because their sensors can only perceive what is in front
of them. In order to improve the trajectory tracking while
also maintaining tight platoon groupings, it may be necessary



to incorporate additional sensor information from the car’s
immediate surroundings for the MPC to use.

In addition, the MPC algorithm presented in this report can
be improved by solving the planning problem approximately.
[3] describes a method called ”Fast MPC” which fixes the
barrier parameter and uses warm-start to limit the total
number of Newton steps. It will then be possible to run the
MPC algorithm on a real-time system in the kilohertz range.

The MPC implementation in this report also assumes that
the vehicles can only use information from its own sensors.
However, if additional information is communicated by the
leader vehicle about the subsequent road trajectory that
will be traversed by the reset of the platoon, then this type
of controller can be improved. This will require car-to-car
communication technology that is also a very popular research
area.

Furthermore, for this system to be realizable, good forward
distance measurements between the vehicles are required. This
is especially important when there are bends in the road
where a directionally fixed forward looking radar may be at
a disadvantage. Vision information from cameras fused with
3D mapping information from LIDAR sensors may be more
suitable.

VII. CONCLUSION

This paper outlines a method of designing a vehicle pla-
toon formation controller using MPC. The simulation results
show that the method can provide good tracking accuracy
while operating within the actuator limitations and vehicle
holonomic constraints. Feasibility and stability is also ensured
for both short and long prediction horizons, guaranteeing that
the vehicles reach the road trajectory. Also, the choice of a
short or long prediction horizon is a trade-off between shorter
computational times versus better tracking errors.
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