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Abstract— The operational segmentation of SAR sea ice
imagery is a practical, challenging objective in the realm
of applied pattern recognition. This research is in support
of operational activities at the Canadian Ice Services (CIS),
a government agency that monitors all ice-infested regions
under Canadian jurisdiction. This paper uses a fusion of tone
and texture to segment SAR sea ice images in an unsupervised
manner. A novel Markov random field (MRF) segmentation
technique is employed and produces improved results over
K-means and the traditional MRF implementation.

I. I NTRODUCTION

The research literature contains many examples of the
application of pattern recognition techniques to remote
sensing imagery. However, few of these examples directly
satisfy a defined operational need. This paper discusses
an application of pattern recognition applied to remote
sensing imagery with a demonstrated operational basis.
This research is in support of the activities of the Canadian
Ice Service (CIS) (http://www.cis.ec.gc.ca/), a government
agency that is responsible for the monitoring of all ice-
infested waters of Canada.

Sea ice monitoring is critical for Canada, given its north-
ern latitude coupled with extensive ocean-based coastal
regions. These regions must be monitored to satisfy tactical
needs with respect to ship navigation and ice breaker pri-
orities and to satisfy environmental assessment needs with
respect to evaluating ice volumes, extents and types. The
only means of producing timely information is through the
use of remotely sensed imagery. Also, given the uncertain
weather conditions in coastal zone regions coupled with the
desire to capture imagery day or night, it is preferable to
use synthetic aperture radar (SAR) for such an application.
RADARSAT is a Canadian owned and operated satellite
that carries a SAR sensor. The sensor was designed with
ice reconnaissance as its primary target market. It uses
a 5cm wavelength andHH polarization. Many different
modes exist that encompass a variety of incidence angles
and pixel resolution. The SCANSAR mode is routinely
used at CIS at a resolution of50m. Operationally, this

data is2 × 2 block averaged which does not damage its
visible interpretation.

An example of a SAR sea ice image and its correspond-
ing ice map produced at CIS is presented in Fig. 1. Given
that this SAR image is dimensioned to11, 152 × 17, 632
(pixels), the details of the ice typing are not apparent.
At full resolution, details are provided that allow the ice
analyst to create the ice map. The ice map indicates regions
of consistent ice types. An ”egg code” describes each of
the regions identified in the SAR image. These egg codes
are representative of a World Meteorological Organization
standard (see http://www.natice.noaa.gov/egg.htm for de-
tails) used in ice typing worldwide. The first row of the
egg code represents the total ice concentration (in tenths),
the second row represents the ice concentration for each
of the constitutive ice types, the third row indicates codes
for the particular ice type, and the fourth row represents
codes for the floe size.

II. BACKGROUND

The objective of typical ice typing algorithms in the re-
search literature is to identify solidified ice stages, namely
first year rough, first year smooth, and multiyear ice types.
However, this is quite limited with respect to the true scope
of the operational requirements. For example, open water
takes on different forms depending on incidence angle
and prevalent winds, making it very difficult to classify.
Ice types in the early stages of development can mimic
characteristics in later stages of development. SAR sea ice
imagery is complex due to both sensor (eg. speckle noise,
antenna gain patterns) and environmental (eg. ice type
transitions, prevailing weather conditions) characteristics.
The ice analyst uses a variety of cues for determining the
ice types of a particular region, primarily tone, texture and
floe boundary shape.

The primary shortcoming of the ice maps as a source
of information is that each egg code region only gives
regional approximations of the ice concentrations. In other
words, the ice map product does not provide information
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Fig. 1. RADARSAT SCANSAR sea ice image of the Gulf of St. Lawrence taken February 19, 1997 (dimensions 11,152× 17,632 pixels). Corresponding
ice map produced by Canadian Ice Services (CIS).

on a pixel-by-pixel basis. Given the vast geographical size
of egg code regions, the concentrations do not provide
sufficient navigational information. For example, one may
know that a particular egg code region has approximately
20% multiyear ice, but there is no information to tell the
ship’s navigator where the multiyear is concentrated in a
region that typically extends for hundreds of kilometers.

The objective in this research is to use the egg code
data as input for performing pixel-by-pixel segmentation
of thee associated SAR region. That is, for example, one
would know a priori the number of classes as well as the
labels for these classes. Although the egg codes provide an
appropriate starting point for the segmentation, it is well-
recognized that these offer only approximate estimates of
the a priori probabilities.

III. SAR SEA ICE SEGMENTATION

A. Texture Features

Texture is a very important cue in the human visual
system. Texture features have a demonstrated ability to
support image segmentation in many areas and have also
demonstrated potential for classifying sea ice types in SAR
imagery [1] [2] [3] [4]. Various texture methods are found
in the research literature to extract texture features [5].
For SAR sea ice image classification, there is supportive
evidence that the gray level co-occurrence probability
(GLCP) method [6] is an effective method to generate
appropriate texture features [1] [2] [3] [7] [4].

Details of this algorithm are widely available and
described in the above references. With respect to the
testing performed here, we captured the probabilities [1] by
quantizing to 64 grey levels, used a window size of7× 7,
a pixel separation of 1, and standard orientations of 0, 45,
90, and 135 degrees. Two statistics were applied to the
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probabilities to capture the texture features: contrast and
entropy. This generates an 8-dimensional feature space.

Generally, the co-occurrence feature response can be
modelled by a Gaussian distribution function. Denote the
feature vector extracted from a random image (X = x) by
F = f , whereF denotes a random variable andf is an
instance ofF . Y = y stands for a segmented result based
on the feature vectorF = f . That is,

p(fk
s |ys = m) =

1√
2πσk

m
2

exp

[
− (fk

s − µk
m)2

2σk
m

2

]
, (1)

whereµk
m andσk

m are the mean and standard deviation for
them-th class in thek-th feature component, andfk

s is the
k-th feature component off at sites.

B. Classification

Standard pattern recognition methods for performing
clustering or classification do not account for neighbour
relationships that are critical for solving a segmentation
problem. For example, the standard K-means [8] approach
clusters based only on the feature space representation,
completely ignoring the spatial interactions. That is, a
model that accounts for the high probability that adjacent
pixels belong to the same class should be used.

A Markov random field (MRF) is recognized to be a
powerful stochastic tool used to model the joint probability
distribution of the image pixels in terms of local spatial
interactions [9] [10] [11]. Using MRF models for image
segmentation has a couple of advantages. First, the spatial
relationship can be seamlessly integrated into a segmen-
tation procedure. Second, the MRF based segmentation
model can be inferred in the Bayesian framework which
is able to utilize different types of image features.

IV. SEGMENTATION MODEL

According to the Bayes rule, the segmentation problem
is formulated as:

P (Y = y|F = f) =
p(F = f |Y = y)P (Y = y)

p(F = f)
. (2)

P (Y = y|F = f) is the posteriori probability ofY = y
conditioned onF = f . p(F = f |Y = y) denotes the
probability distribution ofF = f conditioned onY = y
and functions to fit the feature data, which is thus referred
to as the feature modelling component.P (Y = y) is a
priori probability ofY = y and is used to describe the label
distribution of a segmented result only, which is normally
referred to as the region labelling component.p(F = f) is
the probability distribution ofF = f . It will be assumed
that each component ofF = f be independent on the

other components with respect toY = y (conditional
independence).

Suppose the energy form ofP (Y = y) is ER and that
of

∏K
k=1 [p(fk|Y = y)] is EF . A general energy formE

for P (Y = y|F = f) can be derived from the product of
P (Y = y) and

∏K
k=1 [p(fk|Y = y)] [10]:

E = ER + αEF , (3)

whereα is a weighting parameter used to determine how
much ER and EF individually contribute to the entire
energyE. Its Gibbs form [11] isP (Y = y|F = f) =
1
Z exp

[− 1
T E

]
, whereZ =

∑
ΩY

exp
[− 1

T E
]

and ΩY is
a set of all possible configurations ofY . Concrete forms
for each ofER andEF are required for practical segmenta-
tion. Generally, for a segmentation task, the second order
pairwise MLL model is chosen and the potentials of all
non-pairwise cliques are defined to be zeros [11].

The intensity feature can be modelled using a Gamma
distribution, allowing the energy formEF to be written as:

EF (x) =
∑

s,Ys=m

{
l

µm
xs − (l − 1) log xs + l log µm

}

(4)
wherel is the number of looks. For the task of segmenting
different ice types, the GLCP features are used as the image
features. Under the assumption of a Gaussian distribution,
the energy formEF of the product of allp(fk

s |Ys = m)
can be written as:
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∑
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(5)
whereµm andσm represent the class mean and standard
deviation.

To implement the MRF model (Eq. (3)) requires estima-
tion of three parameters:α (from Eq. (3)),µm, andσm (for
all m). Traditionally, estimation ofµm and σm for each
class requires training data. However, using an unsuper-
vised environment, training data are not provided. Instead,
the expectation-maximization (EM) algorithm [12] [13] is
used to estimateµm andσm.

The difficulty is that there is no closed-form definition
for α. A commonly used strategy [10] is to assign an
a priori constant value by experience before executing
the EM algorithm. A root problem is that the traditional
MRF-based segmentation model is very easily trapped in
local maxima due to the spatial homogeneity constraint
imposed by the region labelling component. As a result,
the feature modelling component might not be able to learn
the global parameters (i.e.µm and σm for each class).
A new implementation scheme is proposed here to solve
this problem by making the weighting parameterα vary
during unsupervised segmentation. The introduction of the
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variable weighting parameter should not only enable the
segmentation procedure to learn the global parameters of
the feature modelling component but also impose a spatial
homogeneity constraint on the label distribution (through
the region labelling component). In this context, the param-
eter may vary with respect to the annealing procedure. The
following function is selected for the variable weighting
parameterα:

α(t) = c1 ∗ γt + c2, 0 < γ < 1, (6)

whereγ, c1 and c2 are constants andt represents thetth

iteration. Experimentally, we have determined that setting
γ = 0.95, c1 = 80 and c2 = 1/K (where K is the
dimension of the feature space) are appropriate values for
a variety of imagery. Using this function, the feature mod-
elling component will first (whenα(t) is larger) dominate
the MRF model in order to learn its global parameters and
then (whenα(t) is close toc2) interact with the region
labelling component to refine the segmented result. Thus,
the energy of the MRF model can be rewritten as:

E = ER + α(t)EF (7)

V. EXPERIMENTAL RESULTS

The image shown in Fig. 2(a) is part of a C-band HH
RADARSAT ScanSAR image (100m pixel spacing) in the
Baffin Bay / Davis Strait region acquired on February 7,
1998. This image consists of three types of sea ice: multi-
year ice (bright floes), grey-white ice (running primarily
from top to bottom in the middle), and grey ice (observed
on the left hand side and surrounding the multi-year floes
on the right hand side). Visually, this image would be very
difficult to segment and even the manual segmentations
by trained human operators would have tremendous vari-
ability (manual segmentation would also be a very time
consuming exercise). Although tonal distinctions are noted
visually, the histogram is unimodal (not shown).

Segmentation using K-means (Fig. 2(b)) shows a seg-
mentation that is not effective. Boundaries of unique re-
gions are somewhat defined, however, the regions them-
selves are “spotty” in their classification since local spatial
interactions are not accounted. Segmentation using the
MRF model with constant weighting produces an inef-
fective segmentation where the form of the ice regions is
not properly recognized (Fig. 2(c)). The only method that
produces an acceptable segmentation is the MRF model
using a variable weighting scheme (Fig. 2(d)). Here, the
multi-year floes are consistent and the grey and grey-white
regions show acceptable divisions. The application of the
MRF model with the variable parameter using a fused
(texture and intensity) is able to generate the most accurate
result.

VI. CONCLUSIONS

An unsupervised means of segmenting SAR sea ice
egg code regions is proposed and successfully tested. The
variable weighting MRF procedure is a more appropriate
method for performing SAR sea ice segmentation than
using K-means or the traditional MRF method.
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Fig. 2. (a) Original RADARSAT image (631 × 595 pixels). Segmentation using (b) K-means, (c) MRF model with a constant weighting parameter
(α = 8) and (d) MRF model with a variable weighting parameter (α(t) = 80 ∗ 0.95t + 1/9). All segmentations performed using intensity fused with
GLCP texture features.


