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Abstract

The discrimination of textures is a critical aspect of identi"cation in digital imagery. Texture features generated by
Gabor "lters have been increasingly considered and applied to image analysis. Here, a comprehensive classi"cation and
segmentation comparison of di!erent techniques used to produce texture features using Gabor "lters is presented. These
techniques are based on existing implementations as well as new, innovative methods. The functional characterization of
the "lters as well as feature extraction based on the raw "lter outputs are both considered. Overall, using the Gabor "lter
magnitude response given a frequency bandwidth and spacing of one octave and orientation bandwidth and spacing of
303 augmented by a measure of the texture complexity generated preferred results. ( 2000 Pattern Recognition Society.
Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

To attempt image texture segmentation, one must "rst
determine preferred feature sets. `The development of
computational formalisms for segmenting, discriminat-
ing, and recognizing image texture projected from visible
surfaces are complex and interrelated problems. An im-
portant goal of any such formalism is the identi"cation of
easily computed and physically meaningful image fea-
tures which can be used to e!ectively accomplish those
tasks [1], p. 2025a. In this paper, various Gabor "lter
implementations for texture analysis are compared.
Some of these techniques are implemented in existing
publications and some are new methods for generating
texture features based on Gabor "lters. Usually, scientists
use a particular Gabor "lter con"guration and feature
extraction technique for texture analysis without (a)
demonstrating appropriateness of the selected method
and/or (b) comparing the selected method with other
potential methods. In some cases, the implementation

used is inappropriate and the "nal results are suspect. In
other cases, additional computations are performed
which do not necessarily improve the quality of the
texture features. The evaluation performed here provides
guidelines when using Gabor "lters for texture analysis in
order to achieve preferred texture features.

Comparisons are performed using classi"cation and
unsupervised image segmentation. Classi"cation is
a method of choice for comparisons since calculations
can be performed quickly (which provides the opportun-
ity for a wide variety of tests) and quantitative error
estimates can be determined. Features that perform bet-
ter in a classi"cation environment should have a stronger
potential to perform better in an unsupervised image
segmentation role.

To motivate the use of Gabor "lters, Section 2 presents
the relationship between the human visual system (HVS)
and texture interpretation. Then, Section 3 considers how
the Gabor "lters can be con"gured to capture textural
information. Descriptions of various techniques that can
be used for feature extraction based on the raw Gabor
"lter outputs are considered in Section 4. These di!erent
scenarios are tested using both classi"cation and segmen-
tation (Sections 5 and 6). Discussions and conclusions
follow the test results (Section 7).
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2. Background

Multi-channel "ltering is an e!ective consideration in
the "eld of texture analysis. By processing the image
using multiple resolution techniques, "lter banks have
the ability to decompose an image into relevant texture
features that can be used to classify the textures accord-
ingly. Multi-channel "ltering mimics characteristics of
the human visual system (HVS).

The HVS is extremely complex. Receptor cells on the
back inner surface of the eyeball pass electrical impulses
through various nervous pathways to the visual cortex.
In this part of the brain, various cells perform di!erent
types of processing on the incoming signals. Hubel and
Wiesel [2] deduced that simple cells are sensitive to
speci"c orientations with approximate bandwidths of
303. Campbell and Kulikowski [3] carried this concept
further and demonstrated that humans have spatial fre-
quency sensitivity as well as orientational sensitivity.
This led to a model that the HVS is made up of `a
number of independent detector mechanisms each pre-
ceded by a relatively narrow band "lter &tuned' to a di!er-
ent frequency. Each "lter and detector would constitute a
separate &channel'2[4], p. 564a. Experiments indicate
that the frequency bandwidth of simple cells in the visual
cortex is about one octave [5]. This HVS multi-channel
"ltering model agrees with a popular generic approach to
signal decomposition, namely, wavelet analysis.

The research by Rao and Lohse [6] provides addi-
tional insight to this idea of orientation and frequency
sensitivity but from a human perception slant. Subjects
were asked to classify pictures from the Brodatz album
[7] based solely on their own perception. Results indicate
that people essentially use three high-level features for
texture interpretation, namely: repetition, directionality,
and complexity. Repetition and directionality are repre-
sentative of frequency and orientation. Complexity re-
lates to the consistency of the texture. For example,
a purely sinusoidal texture would have low complexity
and a texture without any well-de"ned pattern would
have high complexity. These three characteristics should
be considered when implementing machine vision texture
interpretation algorithms.

For texture analysis, wavelet analysis has the ability to
model the frequency and orientation sensitivities charac-
teristic of the HVS. The scaling and translation proper-
ties of the wavelet transform make it an attractive tool for
image processing applications. The number of oscilla-
tions the wavelet experiences is independent of the scal-
ing and translation. The scaling parameter can be set so
that the basic wavelet is compressed. In this case, more
cycles occur in a shorter time frame, which indicates
higher frequencies, and inherently the wavelet transform
maps a shorter time interval to higher frequencies. Sim-
ilarly, a longer time interval is mapped to lower frequen-
cies. This inherent ability has tremendous potential when

segmenting natural imagery since multiple dominant fre-
quencies are found in natural images and the wavelet
"ltering can take into account these multiple frequencies.
Generally, the wavelet transform can take a signal, break
it down into component pieces, the manipulation of
which can yield features that represent characteristics of
the various textures appearing in the image.

3. Gabor 5lter implementation for texture analysis

Research has demonstrated that the HVS generates a
multi-resolutional decomposition. Since wavelets are in-
trinsically multi-resolutional, they have been utilized in
texture analysis models. The Gabor function can be
implemented as a multi-channel, wavelet-like "lter. It
has properties that make it attractive for computer vision
applications. These properties include its appealing
simplicity, optimum joint spatial/spatial-frequency local-
ization, and ability to simulate the behavior of two-
dimensional receptive "elds of simple cells in the visual
cortex (by isolating speci"c frequencies and orienta-
tions) [8].

When generating texture features using multi-channel
"lters, the following two steps should receive special
consideration. First, the characterization of the "lters
(e.g. functionality, number, orientation, and spacing)
must be selected carefully. Second, feature extraction of
the raw "lter outputs should be performed to improve
the feature set. Here in Section 3 we discuss the Gabor
"lter characterization and in Section 4 feature extraction
based on Gabor "lter outputs is presented.

3.1. Gabor xlter functionality

Spatially, a Gabor function is a Gaussian modulated
sinusoid. The 2-d Gaussian has an aspect ratio of p

x
/p

y
.

The complex exponential has a spatial frequency of
F and an orientation h (counterclockwise with respect to
the horizontal axis). A complex Gabor "lter represented
as a 2-d impulse response is
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Ensuring that the x-axis of the Gaussian has the same
orientation h as the frequency is a convenient implemen-
tation [9]. Rotation in the x}y plane then provides for
any arbitrary orientation of the "lter. The corresponding
representation in the spatial-frequency domain is

H(u, v)"exp M!2p2[(u!F)2p2
x
#v2p2

y
]N.

As in the spatial domain, a rotation can be used to
obtain any desired direction in the spatial-frequency u}v
plane.
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The Gabor "lter has also been implemented for texture
analysis using only its real (even) component [10]. In this
circumstance, the "lter impulse response is
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In this case, the "lter is represented in the spatial-
frequency domain by two symmetrically located Gaus-
sians:

H(u, v)"expM!2p2[(u!F)2p2
x
#v2p2

y
]N

#expM!2p2[(u#F)2p2
x
#v2p2

y
]N.

Using either the real or complex versions, there are six
parameters that must be set when implementing these
Gabor "lters: F, h, p

x
, p

y
, B

F
, and Bh [9]. The frequency

and angular bandwidths (B
F
, Bh ) can be set to constant

values that match psychovisual data. The frequency (F)
and orientation (h) de"ne the center location of the "lter.
To determine the unknowns p

x
and p

y
, two equations are

established. The variable p
x

is determined by setting the
frequency cut-o! to !6 db:

p
x
"

Jln 2 (2BF#1)

J2pF(2BF!1)
.

By setting the cut-o! in the angular direction to !6
db, p

y
is determined:

p
y
"
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J2pF tan(Bh/2)
.

A circular Gaussian may be desired so that there is
a constant spatial extent in all directions. In this case,
p
x

is set to p
y

(p"p
x
"p

y
) and Bh is calculated.

The position (F, h) and bandwidth (p
x
, p

y
) of Gabor

"lters in the frequency domain must be carefully estab-
lished to properly capture textural information. Center
frequencies of channel "lters must lie close to the charac-
teristic texture frequencies or else the "lter responses will
fall o! too rapidly. This assumes that the identi"able
features for certain textures are su$ciently spaced in
spatial-frequency so that cross-"lter interference does not
occur. Since Gabor "lters are not fully bandlimited, some
aliasing will occur. If Gabor "lters are set up to have
a well-localized measure of the local frequency, minor
noise can generate outputs that do not accurately repres-
ent the underlying signal. Some form of smoothing of the
feature maps is commonly used to alleviate this concern
(see Section 4.1).

3.2. Gabor xlter implementations

3.2.1. Supervised methods for Gabor xlter selection
Numerous methods to apply Gabor "lters for texture

analysis have been used. Bovik et al. [9] mention three

supervised approaches to select "lter locations using em-
pirical information based on the power spectrum charac-
teristics of the individual textures. For strongly oriented
textures, the most signi"cant spectral peak along the
dominant orientation direction is used as a "lter location.
Picking the lower fundamental frequency identi"es peri-
odic textures. For nonoriented textures, using the center
frequencies of the two largest maxima is recommended.
Since identi"cation usually requires multiple peaks for
any generic texture, these approaches are unwieldy. Iden-
tifying unique textures with small regions of support is
also di$cult.

Dunn and Higgins [11] have developed a method to
select optimal "lter parameters based on known samples
of the textures. The objective of this wholly supervised
approach is to identify textural boundaries using only
a minimum number of "lters. Only `thea particular "lter
that optimally separates two texture classes is used to
partition an image. This `optimala "lter may re#ect
strong textural characteristics of one class but may ac-
tually express a lack of textural information of the other
class. To use just a single "lter to discriminate each
texture pair may be di$cult because each texture is
subject to spatial variability and the texture may contain
multiple dominant components.

3.2.2. Unsupervised methods for Gabor xlter selection
Obviously, automated methods that identify texture

characteristics are more appealing. Instead of trying to
identify unique peaks that belong to unique textures,
another approach is to use a "lter bank containing "lters
spread throughout the spatial-frequency domain "eld. By
providing near uniform coverage of the spatial-frequency
domain with Gabor "lters, the issue of selecting only
texture-dependent center frequencies is avoided.

If a constant value of p were to be selected for every F,
then the decomposition would be that of a short-time
Fourier transform. From a practical perspective, it makes
sense to increase the spatial-frequency bandwidth of the
"lter with increasing frequency since the power spectrum
typically decreases in a logarithmic fashion and since this
corresponds to narrower impulse responses for higher
frequencies. Given that natural imagery can often be
considered to be non-stationary and wideband, the
Gabor decomposition can capture information at di!er-
ent scales and orientations with the proper matching
frequency.

Jain and Farrokhnia [10] implemented real Gabor
"lters for texture segmentation using frequency band-
width (B

F
) of one octave, center frequency spacing (S

F
) of

one octave, angular bandwidth (Bh ) of 453, and angular
spacing (Sh) of 453. Unit octave spacing matches the
experimentally determined HVS ability, however, 453
angular bandwidths are not in agreement. As mentioned
earlier, a smaller bandwidth of about 303 is more charac-
teristic of the HVS. To provide minimal overlap and still
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maintain reasonable coverage in the spatial-frequency
domain, Bh is set equal to Sh . If Bh is greater than
Sh redundancies occur which can deteriorate the feature
set.

4. Feature extraction of Gabor 5lter outputs

A host of di!erent feature extraction methods can be
applied to the Gabor "lter outputs. Considerable in-
formation can be produced by the Gabor "lter analysis
and it is the e$cient manipulation of this data that will
provide appropriate texture features. The objective here
is to compare the following published and novel methods
for their ability to create unique texture signatures based
on Gabor "lter outputs. Although the published methods
are commonly employed for texture analysis, no known
publication has ever considered which method creates
more separable texture features. The investigated
methods are listed here and described immediately after-
wards.

Journal published methods:

f using the magnitude response [9]
f applying spatial smoothing [9]
f using only the real component [10]
f applying full-wave recti"cation [12]
f using a sigmoidal function [10]
f creating moments (geometric and central) based on the

spatial-frequency plane [13]

Novel methods:

f using a local "lter variance measure to characterize
texture complexity

f using a measure of consistent local "lter response to
characterize texture complexity

f implementing a syntactic approach to characterize the
"lter outputs.

4.1. Journal published methods for Gabor xlter feature
extraction

4.1.1. Magnitude response
Texture identi"cation can be performed based on the

magnitude of the output of the Gabor functions [9]. In
the case of a "lter that `matchesa the particular texture,
the magnitude of the output is large to enable identi"ca-
tion. Filters that do not match the spatial-frequency
components of dominant texture characteristics should
have a negligible response and can be safely ignored as
characteristic of that particular texture. Low responses to
any "lter may be important to identifying a texture if the
responses are consistent.

4.1.2. Spatial smoothing
Gaussian smoothing is known to improve the perfor-

mance of Gabor "lters for texture analysis. Bovik et al.
[9] understand that textures which do not have su$-
ciently narrow bandwidths su!er from `leakagea. They
reduce the e!ects of leakage by post"ltering the channel
amplitudes with Gaussian "lters having the same shape
as the corresponding channel "lters but greater spatial
extents. The extent is controlled by c. If g(x, y) is the
Gaussian function of the Gabor "lter, i.e.:

h(x, y)"g(x, y) exp(2pjFx)

then the function that smoothes the "lter's magnitude
response is g(cx, cy). Bovik recommended setting c to
2
3
. The smaller the value of c, the greater the smoothing.

To match the smoothing of the Gabor outputs with the
Gaussian of the Gabor "lter makes sense since this
should yield results that are still spatially well localized.
Jain and Farrokhnia [10] utilize uniform smoothing
"lters with window sizes as a function of the "lter fre-
quency. Gaussian "lters should be better suited to main-
taining textural boundaries.

There exists a physiological reason for utilizing
smoothing since it mimics characteristics of the HVS.
Hall and Hall [12] describe the existence of sustained
channels in the visual system, indicating that the HVS
not only considers pixels in the "eld of view, but also
pixels in the vicinity.

4.1.3. Real component only
Jain and Farrokhnia [10] use a bank of even-symmet-

ric Gabor "lters to characterize the channels. The
authors justify using only even-symmetric Gabor "lters
on psychophysical grounds, but no full explanation of
this basis is provided. Although less computationally
intensive to spatially "lter than the complex version (only
one convolution mask instead of two), no such gains are
o!ered for "ltering in the spatial-frequency domain.

4.1.4. Rectixcation
Instead of using the magnitude response of the Gabor
"lter, there has been speculation that a non-linear opera-
tion, such as recti"cation, may be more suitable
for feature extraction. Many HVS models consider the
involvement of non-linear behavior [12]. Full-wave
recti"cation (summing the absolute value of the real and
imaginary responses) is a nonlinear method that can be
used to process the complex "lter outputs. Such a process
was advocated by Bergen and Adelson [14] for texture
perception models.

4.1.5. Sigmoidal function
Jain and Farrokhnia [10] subject each "ltered image

to a nonlinear transformation that can be interpreted as
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a blob detector. This nonlinear transformation, reminis-
cent of a sigmoidal activation function used in arti"cial
neural networks, is indicated by

u(t)"tanh(at)"
1!e~2at
1#e~2at

where a is a constant. They use an empirical value of
a"0.25. This sigmoidal function continues to be used in
practice [15], although no comparison with other Gabor
"lter feature extraction techniques has been identi"ed.

4.1.6. Moments based on spatial-frequency plane
Instead of using the magnitude responses, Bigun and

du Buf [13] use moments of the Gabor responses to
reduce the number of texture features generated. These
moments are based on the power spectrum Gabor "lter
responses. They refer to the squared magnitude response
as the `local power spectruma. Geometric moments are
de"ned by

m
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D g(u

i
, u

j
) D2,

where p and q are integers (*0) which represent the
moment order. The authors use p#q(5 to reduce their
feature set from 30 "lter outputs down to 15 features. The
parameters (i, j) index the power spectrum. The "lter
response is g(u

i
, u

j
), de"ned in terms of Cartesian spatial

frequency coordinates. Central moments are de"ned by
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. Bigun and du

Buf provide no analysis comparing the Gabor "lter mag-
nitude responses with these moment features. In addi-
tion, only central moments are employed in their
segmentation studies, without any explanation for the
preference. Note that another form of a moment can be
generated using the magnitude "lter response instead of
the power spectrum.

4.2. Novel methods for Gabor xlter feature extraction

As mentioned earlier, there are seemingly three impor-
tant factors that the HVS uses to identify texture: fre-
quency, orientation, and complexity. Orientation and
frequency are inherently accounted for in the Gabor
"lters. In the case where textures are not very regular, the
complexity (or regularity) of the texture is expected to be
an important issue. Irregular or complex textures are not
as detectable as regular textures by the Gabor "lters
because of "lter leakage caused by the spatial texture
variability. Additional features may be necessary to
complement the existing feature set to address com-
plexity.

4.2.1. Local variance of the xlter response as a
complexity measure

A regular (non-complex) texture has a consistent ap-
pearance. The strongest Gabor "lter responses to a par-
ticular texture should be consistent. A complex texture
will have dominant Gabor responses that #uctuate. Ac-
cordingly, the local spatial variance of a certain "lter
response can be calculated to determine the degree to
which the "lter response is changing. Those textures with
low variances have a low degree of complexity and those
textures generating high variances are complex. This
characteristic can be used as an additional feature for the
Gabor feature set. It will be referred to as the `variance
complexitya texture measure.

4.2.2. Filter response consistency with increasing
Gaussian envelope as a complexity measure

A second method to determine complexity involves
applying multiple Gabor "lters by incrementally increas-
ing the spatial bandwidth (keeping F and h constant). If
the response across the multiple "lters is consistent, then
the texture is regular since it has the same response over a
wider spatial extent. The slope of the responses can be
used as a texture feature. The more horizontal the slope,
the more consistent the "lter response, and thus, the
more regular the texture. This feature can also be used to
augment the existing Gabor "lter bank feature set. It will
be referred to as the `consistency complexitya texture
measure.

4.2.3. Syntactic characterization
The "nal method for manipulating the Gabor "lter

outputs is a syntactic approach. If all the "lter outputs
are ranked in order of magnitude, then one would expect
that the ranking is consistent for the same texture. By
assigning each "lter its own symbol (an integer value),
a syntactic string is created. There are existing methods
for string recognition that can be implemented for cluster
analysis [16]. Here, the strings representing the "lter
outputs are unique since they are all of the same length
and each symbol is only represented once. A `distancea
between two strings A"a

1
a
22

a
M

and B"b
1
b
22

b
M

can be determined by "nding j for which a
i
"b

j
, i"1 to

M. Then the distance measure can be found by summing
all of the di!erences of i and j:

d(A, B)"+ Di!jD when a
i
"b

j
for i"1 to M.

The squared distance has also been used, but this did not
signi"cantly a!ect the overall results.

5. Testing methodology

In this section, a description of the data sets and
classi"ers used is presented.
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Fig. 1. Aerial SAR image obtained during the Labrador Ice
Margin Experiment (Limex) during springtime 1989. The image
has pixels with 100 meter spacing and was taken in nadir mode
at incidence angles of between 50 and 703. This image contains
brash ice (top left hand corner), open water (dark regions in
center; wind blowing left to right), and "rst year ice (right and left
hand sides).

5.1. Classixcation testing

5.1.1. Data sets
Two data sets are used for the classi"cation testing:

textures taken from a SAR aerial image [17] (Fig. 1) and
textures obtained from the Brodatz album [7] (Fig. 2).
The SAR image (C-band, HH, obtained during the Labra-
dor Ice Margin Experiment) contains three distinct classes:
brash ice, "rst year smooth ice, and open water. Two sets
of sixty-four 8]8 samples of each class are selected for
training and testing. Brodatz imagery is undoubtedly the
most common test imagery used in the texture interpreta-
tion literature. This imagery provides opportunity for test-
ing using a variety of classes and for comparing results
with other research. Also, the training and test image
samples are assured to contain one class only; the same
cannot hold absolutely true for the SAR image samples,
although e!orts are made to accomplish this.

Eight di!erent Brodatz textures are used for classi"ca-
tion testing: cloth (D19), cork (D4), cotton (D77), grass
(D9), paper (D57), pigskin (D92), stone (D2), and wood
(D68). (The &DH' represents the numbering system as-
signed in the Brodatz album.) These textures are chosen
since they have a noticeable but not necessarily regular
textural pattern and several of the textures are similar in
nature, comparable to textures found in natural imagery.

The cotton texture, used as a control, is the only one that
has a well-de"ned pattern. Prior to classi"cation, each
256]256 image is normalized to 256 grey levels. Train-
ing samples are selected by dividing the upper left-hand
quadrant into 64 16]16 images. Test samples are se-
lected by dividing the bottom right-hand quadrant into
64 16]16 images. It is interesting to note that the 16]16
samples of Brodatz imagery are not easy to visually
discriminate. From an implementational perspective, it is
easier to amalgamate the 64 8]8 SAR samples into a
single 64]64 image and perform the "ltering on the
entire image using the spatial-frequency domain. Fea-
tures based on pixels located at centres of the samples are
used for the classi"cation purposes. Feature vectors are
dimensioned to the number of Gabor "lters used.

5.1.2. Classixer
There are many methods to perform supervised classi-
"cation. The method of choice here is the Fisher linear
discriminant (FLD) [18]. The FLD provides a non-
parametric method to reduce a multidimensional feature
space down to a one-dimensional (1-d) feature space. The
1-d discriminant is able to classify two classes using the
multidimensional features. If there are more than two
classes, then an exhaustive, competitive pairwise com-
parison is performed. The advantages of using this classi-
"er include: low computational load, optimal reduction
of a multidimensional space to a 1-d space, and inherent
normalization of the distance measures between the
classes regardless of the scaling of the feature dimensions.

For the syntactic characterization classi"cation, the
measure only compares distances between individual
strings. As a result, the k-nearest-neighbor classi"er is
implemented [18]. The computational demands of the
k-nearest-neighbor routine are much higher than the
demands of the FLD.

5.2. Unsupervised image segmentation

5.2.1. Data set
The image (Fig. 3) used for segmentation testing of

various Gabor "lter feature extraction techniques was
originally published by Jain and Farrokhnia [10] and
republished by Jain and Mao [19]. Five Brodatz textures
appear in the image.

5.2.2. Clustering algorithm
The clustering algorithm used is the KIF (K-means

Iterative Fisher) clustering algorithm [20]. KIF was de-
signed for identifying classes in the feature space with
hyperellipsoidal characteristics and Gabor texture fea-
tures satisfy this characteristic [19]. This unsupervised
algorithm is quite straightforward and very e!ective for
the problem at hand. Only a synopsis is provided here,
however, a full description is provided by Clausi [20].
The algorithm utilizes a binary hierarchical tree for

1840 D.A. Clausi, M.E. Jernigan / Pattern Recognition 33 (2000) 1835}1849



Fig. 2. Brodatz images used for classi"cation testing. (a) Cloth [D19], (b) Cork [D4], (c) Cotton [D77], (d) Grass [D9], (e) Paper
[D57], (f) Pigskin [D92], (g) Stone [D2], (h) Wood [D68].

breaking down the clusters in the feature space into
appropriate classes. At each node in the binary tree, the
following steps are performed to decide whether or not
the cluster can be broken into two valid subclusters:

Step 1: K-means [21] is used to identify two dense re-
gions in the cluster under consideration. Each
dense region represents a subcluster. Each sub-
cluster can contain one or more classes.

Step 2: A class pairwise Fisher linear discriminant
[18,22] is used iteratively (iterative Fisher linear
discriminant or iFLD) to improve the subclusters
generated by K-means by taking account the sub-
cluster covariances. Instead of using scatter ma-

trices, actual covariance matrices are used since
an estimate of the number of samples per class is
known. The iterations continue until the Fisher
distance (q) begins to reduce or until "ve iterations
is reached.

Step 3: The Fisher distance (q) represents a normalized
distance separating the two subclusters. Two pos-
sible outcomes may occur. (i) If q exceeds some
constant threshold (q@), then the cluster will be
split and the subclusters retained. At this point,
each subcluster contains one or more true classes.
Each subcluster is then processed through Steps
1}3. (ii) If the distance between the two subclus-
ters is below q@, then the two subclusters represent
a single class and the cluster is not split.
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Fig. 3. Five texture Brodatz image originally published by Jain
and Farrokhnia.

Table 1
Classi"cation accuracies (%) using Gabor "lter outputs for
di!erent functional characterizations

Sh Bandwidth Brodatz Limex

Train
(%)

Test
(%)

Train
(%)

Test
(%)

453 Bh"453 72.9 68.2 84.4 86.5
303 Bh"453 77.3 71.1 87.0 85.4
303 Bh"303 81.6 77.5 91.2 87.5
453 p

x
"p

y
75.8 72.1 87.0 85.4

303 p
x
"p

y
79.7 74.6 88.5 87.5

Both K-means and the FLD are nonparametric
methods that make no explicit statistical assumptions
about the data distribution for each cluster. The KIF
method addresses the di$cult problem of identifying the
number of classes [21] when a suitable q@ is selected for
the image under analysis. Any q@ in a certain range
[q

.*/
, q

.!9
] has been demonstrated to be e!ective for

a variety of imagery when Gabor "lters are used thus
generating a completely unsupervised image segmenta-
tion algorithm. The peak Fisher distance provides an
indication of the separability of a pair of clusters. The
greater the Fisher distance, the greater the separability of
the clusters.

6. Classi5cation and segmentation testing

Here, testing of the functional characterization of the
Gabor "lters is performed using classi"cation. Testing
each feature extraction method to determine relative
classi"cation ability follows. Unsupervised image segment-
ation is performed on di!erent feature extraction methods
based on the preferred functional characterization.

6.1. Classixcation testing of Gabor xlter functional
characterization

Since physiologically derived frequency bandwidths
(B

F
) are approximately one octave, it makes sense to

space center frequencies (S
F
) by the same amount to

minimize overlap of "lters and maximize coverage of the
spatial-frequency domain. Similarly, it makes sense to set
the orientation bandwidth (Bh ) to the orientation spacing
(Sh ). Since scientists generally use Sh"453, yet Sh"303
agrees more closely to physiologically derived HVS char-
acteristics, these two orientation bandwidths are com-
pared. To compare the case of overlapping "lters, setting
Sh to 303 and Bh to 453 is performed. Bandwidths can
also be constrained by assuming circular Gaussians
(p

x
"p

y
) as opposed to elliptical Gaussians (Bh"Sh ).

Frequency radii (F) of J2, 2J2, 4J2 cycles per image
(cpi) are used as center frequencies to "lter the Brodatz

samples and J2, 2J2 cpi are used to "lter the smaller
Limex samples. Thus, when Sh"453, there are 12 fea-
tures for the Brodatz imagery and eight features for the
Limex imagery. For Sh"303, there are 18 and 12 fea-
tures, respectively. The DC component is set to zero to
prevent contribution of the mean local grey level. All
"ltering (Gabor and Gaussian smoothing) is performed
in the spatial-frequency domain to prevent "lter trunc-
ation that may occur in the spatial domain and to ex-
pedite the "ltering process.

Results for Gabor "lter features based on di!erent
functional characterizations are displayed in Table 1.
Better results are obtained with the "ner orientation
spacing Sh"303. Note that the performance of the clas-
si"cation is poorer when Bh"453 than Bh"303 given
the same spacing of Sh"303. In this case, one might
consider that the additional overlap in the spatial-fre-
quency could be conducive to improving the classi"ca-
tion rate, however, the redundancy actually decreases the
e!ectiveness of the features. Improvements are made by
setting Bh"Sh (elliptical Gaussian) as opposed to setting
p
x
"p

y
(circular Gaussian).

6.2. Classixcation testing of Gabor xlter feature extraction

Instead of attempting to improve all the "lter
con"gurations presented in Table 1, only the most
successful "lter con"guration (Sh"Bh"303) will be
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Table 2
Classi"cation accuracies of feature extraction performed on
Gabor "lter outputs using Sh"Bh"303

Brodatz Limex

Train
(%)

Test
(%)

Train
(%)

Test
(%)

Magnitude response 81.6 77.5 91.2 87.5
Real component only 70.7 59.6 83.9 82.8
Full-wave recti"cation 81.6 75.6 91.7 88.5
Sigmoidal function 78.5 75.2 91.7 88.5
Geometric moments 79.1 76.4 91.2 88.5
Central moments 66.2 58.2 92.7 86.5
Complexity (Variance) 82.6 77.7 94.8 88.0
Complexity (Consistency) 82.6 76.7 91.7 88.5

Table 3
Classi"cation accuracies of feature extraction performed on
Gabor "lter outputs using Sh"Bh"303 and Gaussian smooth-
ing (c"2/3)

Brodatz Limex

Train
(%)

Test
(%)

Train
(%)

Test
(%)

Magnitude response 98.1 95.3 100 98.4
Real component only 98.2 95.3 100 99.5
Full-wave recti"cation 98.1 94.5 100 98.4
Sigmoidal function 96.7 93.0 100 99.5
Geometric moments 96.5 95.5 100 99.5
Central moments 87.5 76.6 100 92.7
Complexity (Variance) 96.3 92.6 100 98.4
Complexity (Consistency) 98.4 95.5 100 95.8

post-processed. Post-processing results have been cal-
culated for the next best case (Sh"303; p

x
"p

y
) and

these are always slightly poorer than post-processing
using Sh"Bh"303. Results are presented in Table 2
(unsmoothed "lter outputs) and Table 3 (smoothed "lter
outputs). The objective is to identify methods that are
consistently strong performers across these diverse data
sets.

Note that the results for the central and geometric
moments utilize the magnitude response, not the power
spectrum response as used by Bigun and du Buf. The
classi"cation results using the local power spectrum mo-
ments were poorer than those for the magnitude mo-
ments of the Brodatz imagery and about the same or
poorer for the Limex imagery. The moment order was set
to p#q(4, reducing the number of features from either
18 (Brodatz) or 12 (Limex) to 10.

Both the variance and consistency complexity
measures have been estimated based only on the "lter

output with the highest magnitude response for each
pixel. This "lter has the frequency and orientation that is
assumed to dominate the response of the HVS and thus
controls the regularity that we observe and interpret. The
local variance estimate of complexity has been imple-
mented using 3]3 windows on the magnitude plane for
the "lter with the peak response. The consistency feature
is determined by increasing the "lter bandwidth by 5%
twice. Di!erent window sizes and percentage increases
have been used and results are consistent. The slope of
the three values (determined by linear regression) is used
to represent the consistency feature. In both cases (vari-
ance and consistency), the feature augments the existing
feature set created by the magnitude response determined
by the Gabor "lter bank. If the additional feature is able
to improve the classi"cation accuracy, then this feature
provides a distinguishing characteristic not captured in
the existing feature set.

6.2.1. Smoothing versus no smoothing
Various values of c for smoothing purposes were

attempted and 2/3 performed well all the time so it
was used in the results presented here. The smoothed
responses (Table 3) de"nitely yield results that are sub-
stantially better than their unsmoothed counterparts
(Table 2). The methods with the strongest classi"cation
rate improve test classi"cation accuracy from highs 70s
to mids 90s for the Brodatz imagery, an increase of over
20%. Increases to near perfect accuracy are generated for
the Limex imagery.

6.2.2. Feature extraction of raw xlter outputs
(no smoothing)

Without any smoothing, the magnitude response, full
wave recti"cation, sigmoidal function, geometric mo-
ments, and complexity measures all produce strong, sim-
ilar classi"cation accuracies (Table 2). Central moments
and the real component underperform. That the real
unsmoothed results are poor makes sense since a match-
ed real Gabor "lter response to a sinusoidal signal gener-
ates a sinusoid in the spatial domain. The sinusoidal
variations are not conducive for accurate classi"cation.
In contrast, the complex "lter response to a sinusoid is
constant, generating a consistent measurement that as-
sists accurate classi"cation. This aspect is demonstrated
by considering the 1-d case. The time domain representa-
tion of a real Gabor "lter is

h(t)"
1

pJ2p
expG!

1

2 C
t2

p2DH cosM2pFtN.

The frequency representation of the real component of
the Gabor "lter is de"ned as the convolution of two
spectra:

H(u)"expM!2p2u2p2N * 1
2

[d(u#F)#d(u!F)]
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Fig. 4. (a) Input signal x(t) composed of two sinusoids in se-
quence, the latter with half the frequency of the "rst. (b) Re-
sponse of x(t) to a real Gabor "lter tuned to the "rst sinusoid.
(c) Response of x(t) to a complex Gabor "lter tuned to the "rst
sinusoid.

or

H(u)"1
2

[expM!2p2[(u!F)2p2]N

#expM!2p2[(u#F)2p2]N].

A pure sinusoid represented in the frequency domain is

X(u)"1
2

[d(u#F)#d(u!F)].

Multiplying these two signals yields the following "lter
response:

>(u)"1
4

[d(u#F)#d(u!F)]

which generates a pure sinusoid in the time domain:

y(t)"1
2

cosM2pFtN.

Using the same input signal X(u) and "ltering with
a complex Gabor:

h(t)"
1

pJ2p
expG!

1

2 C
t2

p2DHexp Mj2pFtN

which is represented in the frequency domain as

H(u)"expM!2p2[(u!F)2p2]N.

yields the following output:

>(u)"1
2
d(u!F)

which has a magnitude that is simply a constant in the
time domain:

Dy(t)D"1
2
.

This result is illustrated in Fig. 4. Fig. 4(a) indicates an
input signal, x(t), composed of two sinusoids in sequence,
the latter sinusoid being half the frequency of the "rst.
Fig. 4(b) shows the response of x(t) to a real Gabor "lter
tuned to the "rst sinusoid. This response has obvious
sinusoidal variations. Fig. 4(c) shows the response of x(t)
to a complex Gabor "lter tuned to the "rst sinusoid. This
response is a constant value of 1

2
for the signal region with

the tuned frequency F and a lesser constant value for the
region with frequency F/2. Classi"cation based on con-
stant responses would have more consistent results that
those generated by sinusoidal responses. This advocates
the use of complex Gabor "lters over real Gabor "lters
for the purpose of texture analysis.

6.2.3. Feature extraction of smoothed xlter outputs
The same group of methods that performed best with-

out smoothing* plus the addition of the real compon-
ent method* also performed best following smoothing
(Table 3). Using a wider Gaussian than the Gaussian in
the Gabor "lter smoothes the sinusoidal variation gener-
ated by the real component su$ciently to generate a sim-
ilar classi"cation result. Once again, the central moments
underperform the other methods.
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Fig. 5. Examples of unsupervised image segmentations using various Gabor "lter feature extractions: (a) Magnitude response and
consistency complexity measure. (b) Sigmoidal activation. (c) Geometric moments. (d) Central moments.

6.2.4. General results
For most cases, especially when no smoothing is per-

formed, augmenting the feature set with a complexity
measure provides a minor increase in classi"cation suc-
cess. These complexity measures do take into account
some additional local information, in the same manner
that smoothing takes into account local information.
However, the complexity measures provide very localiz-
ed accounts of the response of the adjacent pixels and are
perhaps better suited for image segmentation of regions
with jagged boundaries.

Results using the syntactic approach are poor ((60%
for Brodatz and (50% for Limex; results only for
smoothed training data sets). When the "lter orientations
are spaced by 453, contrary to the other testing, classi"ca-

tion accuracy of the Brodatz imagery increases, but the
results are still below 80% (Limex results remain below
50%). For brevity, these results are not presented in the
tables. The syntactic approach does not seem appropri-
ate for textures that are not very distinguishable, how-
ever, in the case of distinct textures, they can be easily
used to identify and code a texture in a very compact
manner. For example, none of the cotton samples are
misclassi"ed using the syntactic technique.

6.3. Segmentation testing

The original image contains "ve Brodatz textures.
All results displayed in Fig. 5 utilize smoothed feature
sets given the parameters (Bh"Sh"303, B

F
"S

F
"1
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Fig. 6. Examples of unsupervised image segmentations without smoothing of feature maps: (a) Magnitude response and consistency
complexity measure. (b) Real response.

Table 4
Allowable ranges of s to achieve unsupervised image segmenta-
tion for various Gabor "lter feature extraction methods

Feature extraction technique Allowable range of q

Magnitude response and consistency 10.4 } 14.1
Magnitude response and variance 10.7 } 14.0
Magnitude response 11.4 } 14.0
Full recti"cation 11.3 } 13.9
Real response 11.4 } 13.9
Sigmoidal activation 11.2 } 11.6
Geometric moments 6.77 } 8.29

octave). Given that the Gabor "lters are not rotationally
invariant and that an unsupervised segmentation algo-
rithm is used, the herringbone texture in the bottom
right-hand corner should be segmented into two regions
based on the grating orientation [23]. This is the result
observed in Fig. 5(a) where the smoothed magnitude
responses augmented with the consistency complexity
feature is used as the feature set. For brevity, since similar
segmentations are obtained using the smoothed versions
of the magnitude responses alone, real responses, full
recti"cation, and magnitude responses augmented with
local variance complexity measures, these segmentations
are not displayed. Sigmoidal features are also able to
segment the image properly (Fig. 5(b)), but, the segmen-
tation is not as successful as the results using the magni-
tude response and the consistency complexity measure
(Fig. 5(a)). Geometric moments are able to segment the
image and determine the proper number of classes (Fig.
5(c)), but the quality is noticeably poorer than the pre-
vious two examples (Fig. 5(a) and (b)). Central moments
are unable to create features that segment properly since
the class clusters are not well separated in the feature
space (Fig. 5(d)). In this case, the two clusters identi"ed
each have considerable error in the class assignments.

Ranked allowable ranges of q for all represented results
in Fig. 5 are presented in Table 4. The magnitude re-
sponse alone has an allowable range of 11.4}14.0. Al-
though the sigmoidal method achieves a fairly accurate
segmentation, the range of q is limited (11.2}11.6). Geo-
metric moments require a range of q with values quite
lower (6.77}8.29), indicating the class clusters are closer
in feature space. The method with the preferred range of

q uses the magnitude response coupled with the consist-
ency complexity measure (10.4}14.1).

Fig. 6 illustrates the drawback of not smoothing the
feature maps. Fig. 6(a) depicts a segmentation generated
by using the raw magnitude response coupled with the
consistency complexity measure. Only three classes are
identi"ed. The results of using the raw magnitude re-
sponse and using the magnitude response with the local
variance complexity measure achieved similar results, so
these results are not displayed. Using only the raw real
response (Fig. 6(b)) also identi"es only three classes. Here,
inconsistent regional classi"cations are noticeable (note
the rippling in the top right hand corner). This is a result
of sinusoidal functions being generated as responses to
the real Gabor "lter, as demonstrated in Section 6.2.
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7. Discussion and conclusions

7.1. Summary

Since better results are obtained using Bh"Sh"303,
this is the choice for any texture classi"cation/segmenta-
tion studies. There is some concern that the added di-
mensionality of 303 spacing may not be warranted due to
the increased computational demands. That is, using 303
spacing instead of 453 spacing increases the feature set by
1.5 times and there is a corresponding increase in mem-
ory, disk space, completion times, and swap space to
perform the analysis. For some test texture images, set-
ting Sh to 453 will generate a proper segmentation, how-
ever, to generate a more robust and universal feature set,
Sh"303 is recommended.

With higher smoothing, better classi"cation results
occur. This may be detrimental when textures represent-
ing small spatial regions are to be segmented. Using the
complexity measures provides a method to utilize local
information using a smaller spatial extent and may be
preferable under such circumstances. Additional compu-
tations are required to capture the complexity measures.

Using the smoothed magnitude response augmented
with either of the complexity measures generated the
preferred unsupervised texture segmentation. The draw-
back to using the consistency complexity measure is the
three-fold increase in the number of "lters required. Full
wave recti"cation also generates preferred Gabor texture
features for texture classi"cation or segmentation. Using
the real component requires smoothing to achieve rea-
sonable results, so this method is not advocated. The
smoothed real responses do generate strong discrimina-
tions, however, if less smoothing is used, how these
features will respond is uncertain. Using the sigmoidal
function or geometric moments, although successful for
classi"cation, did not generate appropriate results for
segmentation. If a reduced feature set is a necessity, then
geometric moments may be used. Central moments do
not achieve the same classi"cation and segmentation
success as the other methods and this method is not
recommended.

Generally, magnitude, full wave recti"cation, sig-
moidal activation, and geometric moment responses all
perform consistently the best in classi"cation. For seg-
mentation, magnitude and full wave recti"cation per-
formed the best. Given these results, there is no added
value for the feature set to performing additional calcu-
lations for sigmoidal activation and geometric and cen-
tral moments. Added value is obtained by augmenting
the feature set with one of the complexity texture
measures.

Further investigation is warranted for the syntactic
approach to ascertain its ability to code in a very com-
pact manner distinct textures. If the discrimination of
highly distinct textures using compact codes is required,

and the syntactic approach may be well suited for such
applications.

7.2. Examples utilizing Gabor xlters for texture analysis

Augusteijn et al. [24] classi"ed a Thematic Mapper
(TM) set of images using a number of di!erent methods,
including co-occurrence matrices, power spectrum, and
Gabor features. Power spectrum features (a FIR method
for estimating local frequency) and Gabor "lters are
found to be preferred choices. Only the real component
of the Gabor "lters is utilized, without smoothing. The
Gabor "lters are implemented using a constant band-
width for all frequencies, which generates non-ortho-
gonal (redundant) spatial-frequency domain coverage
and does not take advantage of the wavelet capabilities of
the Gabor "lter. Oddly, no information is provided con-
cerning the nature of the orientation of the Gabor "lters.
Classi"cation improvements could have been made using
a smoothed complex Gabor "lter with octave spac-
ing/bandwidths and 303 spacing/bandwidths.

Ohanian and Dubes [25] compare four di!erent tech-
niques for their classi"cation ability: Markov random
"eld parameters, Gabor "lters, fractal based features, and
co-occurrence features. Here, Gabor "lters do not perform
as well as the co-occurrence measures. Gabor "ltering is
probably not performing optimally since a real "lter is
used with constant spatial-frequency bandwidth, with 453
spacing/bandwidth, and without any local smoothing.

Strand and Taxt [26] compare Gabor and co-occur-
rence supervised texture segmentation with their new
method (one that essentially calculates a local frequency
measurement). The Gabor technique is implemented in-
e!ectively for a number of reasons. For example, their
method parallels Jain and Farrokhnia's which is limited
to 453 "lter spacing and bandwidth and uses a sigmoidal
activation function for feature extraction. Most impor-
tantly, the implemented Gabor approach uses center
frequencies that are clearly too low to be helpful for
discrimination given the textures used in their study (for

example, J2 cycles per image (cpi) and 2J2 or cpi for
256]256 images). Also, the two highest octave frequency

bands for a 256]256 image (5J2 cpi and 6J2 cpi) are
not included. These would have de"nitely assisted the
segmentation since the cotton and herringbone Brodatz
textures are better recognized using these higher frequen-
cies. Filters are restricted to only 0 and 903 orientation,
even though the Brodatz herringbone texture (which has
strong 45 and 1353 features) is used in the test image. The
Gabor "lters in the 0 and 903 directions will be weakly
sensitive to the 45 and 1353 texture characteristics, thus,
little or no discriminating information is captured by
these "lters. Gabor "lters are implemented spatially us-
ing "xed window sizes of 32]32 causing the "lters with
J2 cpi and 2J2 cpi to be dramatically truncated.
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8. Conclusions

For the above three publications, using our recom-
mended Gabor "lter con"guration and feature extraction
would have probably improved results. Successful results
identifying textures using Gabor "lters have been gener-
ated by:

f using a pseudo-wavelet implementation.
f providing full coverage of the spatial-frequency do-

main, without signi"cant overlap between individual
"lters.

f setting the "lter's frequency spacing and bandwidth to
one octave and orientation spacing and bandwidth
to 303.

f setting the DC gain to zero to prevent classi"cation
based on tone.

f utilizing the magnitude response augmented with the
consistency complexity feature.

f smoothing outputs using a Gaussian "lter with the
same shape as the corresponding channel "lter but
greater spatial extent.

f performing all "ltering operations (Gabor and Gaus-
sian smoothing) in the spatial-frequency domain for
improved computational performance.

9. Summary

Gabor "lters have tremendous potential to generate
texture features from digital imagery. Typically, these
"lters are implemented without any attention paid to
properly con"guring the "lter parameters and manipula-
ting the raw outputs to generate optimal texture features
for discriminating the regions of interest. This paper
provides guidance to ensure that the Gabor "lters are
implemented to generate preferred texture discrimination
ability. Both previously implemented and new methods
to extract meaningful texture information using Gabor
functions are described and evaluated using both classi-
"cation and unsupervised segmentation data sets.

The human visual system (HVS) is known to identify
textures based on three primary characteristics: fre-
quency, orientation, and complexity. Gabor "lters mimic
the HVS since they are able to localize frequency and
orientation characteristics, however, complexity is not as
easily de"ned. This concept is related to the ease that the
texture is described. For example, a texture represented
by a single pure sinusoid has low complexity and a tex-
ture with multiple sinusoidal components (with varying
frequencies and orientations) has higher complexity. It is
the discrimination of textures based on frequency, ori-
entation, and complexity that make the Gabor "lter
technique an excellent choice for this task. Two methods
to address the complexity issue using Gabor "lters are
described and implemented. The "rst method involves

measuring the local spatial variance of a "lter's response.
Secondly, the slope of the responses of a "lter with
increasing spatial width is measured.

The Gabor "lter bank may be constructed using an
in"nite number of "lters. Here, various "lter con"gura-
tions have been compared by using di!erent "lter ori-
entation and bandwidths. The "lter bank approach that
modeled the HVS (303 and 1 octave "lter bandwidth and
spacing) in a wavelet manner and still created a near
orthogonal system produced the preferred Gabor "lter
con"guration. This preferred method was used to evalu-
ate di!erent feature extraction techniques: magnitude
response, spatial smoothing, only the real component, full-
wave recti"cation, sigmoidal function, spatial-frequency
based moments, two complexity measures, and a syntactic
approach.

Tests were performed using a SAR sea ice image and
Brodatz images for classi"cation and a previously
published "ve-class Brodatz image for unsupervised
segmentation. Smoothing of the texture feature maps
signi"cantly improves the classi"cation rate and the seg-
mentation accuracy. From a signal processing perspect-
ive, it is demonstrated that raw outputs based on only the
real Gabor "lter component are inappropriate for texture
feature extraction. Using the magnitude response aug-
mented with the consistency complexity measure gener-
ated the most consistently accurate results across both
classi"cation and segmentation testing.
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