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ABSTRACT Image texture interpretation is an important aspect of the computer-assisted discrimination of
Synthetic Aperture Radar (SAR) sea-ice imagery. Co-occurrence probabilities are the most common approach
used to solve this problem. However, other texture feature extraction methods exist that have not been fully studied
for their ability to interpret SAR sea-ice imagery. Gabor filters and Markov random fields (MRF) are two such
methods considered here. Classification and significance level testing shows that co-occurrence probabilities
classify the data with the highest accuracy, with Gabor filters a close second. MRF results significantly lag Gabor
and co-occurrence results. However, the MRF features are uncorrelated with respect to co-occurrence and Gabor
features. The fused co-occurrence/MRF feature set achieves higher performance. In addition, it is demonstrated
that uniform quantization is a preferred quantization method compared to histogram equalization.

RÉSUMÉ [Traduit par la rédaction] L’interprétation de la texture des images est un aspect important de la
discrimination assistée par ordinateur des images de la glace de mer produites par le radar à antenne synthétique
(RAS). Les probabilités de cooccurrence sont l’approche la plus courante utilisée pour résoudre ce problème. Il
existe cependant d’autres méthodes d’extraction des caractéristiques de texture qui n’ont pas encore été
complètement explorées du point de vue de leur aptitude à interpréter les images de la glace de mer du RAS. Les
filtres de Gabor et les champs aléatoires de Markov (CAM) sont deux de ces méthodes examinées ici. Les tests de
classification et de niveau de signification montrent que ce sont les probabilités de cooccurrence qui permettent
d’obtenir le taux de classification le plus élevé, les filtres de Gabor n’étant pas loin derrière. Les résultats obtenus
à l’aide des CAM sont nettement inférieurs à ceux produits au moyen des filtres de Gabor et de la cooccurrence.
Toutefois, les caractéristiques obtenues par CAM sont sans corrélation avec les caractéristiques de la cooccurrence
et des filtres de Gabor. L’ensemble fusionné des caractéristiques de la cooccurrence et des CAM permet d’obtenir
de meilleurs résultats. En outre, on montre que la quantification uniforme est la méthode de quantification à
privilégier par comparaison avec celle de l’égalisation d’histogrammes.
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1 Introduction
Synthetic Aperture Radar (SAR) is a powerful tool for
resource management and environmental monitoring appli-
cations. Not only is SAR a sensor invariant to cloud cover
and darkness, it is also especially useful for monitoring huge
spatial regions that are not easily accessible. This is especial-
ly true for monitoring sea-ice concentrations and extents.
Sea-ice information is important for assisting ship navigation
in ice-infested waters and climate change monitoring in polar
regions (Carsey, 1989; Barber et al., 1992).

Sea-ice image products must be produced in a timely fash-
ion. Given the abundance of SAR digital imagery that must
be analyzed, it makes sense to provide computer-aided tech-
niques for interpretation. Semi-automated or automated ded-
icated methods should generate faster and cheaper SAR sea-ice
image end products. Also, it is hoped that the computer-assisted
techniques will be better able to produce unbiased evalua-
tions of the sea-ice coverage.

The need for automated analysis of SAR sea-ice imagery
has been clearly identified in the recent Canadian Global

Climate Observing System (GCOS) Plan for the Cryosphere
(Agnew et al., 1999). For example, one of the “Two to Ten
Year Action Items” is the continuation of the development of
automated procedures at the Canadian Ice Service (CIS) to
estimate geophysical parameters from RADARSAT (Brown,
1999). Also, a recent National Ice Center (NIC) Science Plan
indicates that one of the primary activities which needs to be
addressed is the development of SAR-based algorithms that
can partially automate the generation of tactical ice products
(Partington and Bertoia, 1997).

The development of reliable, robust methods for the con-
sistent classification of SAR sea-ice data has been inconclu-
sive, even though considerable effort has been made (Barber
and LeDrew, 1991; Sholer, 1991; Barber et al., 1993; Soh
and Tsatsoulis, 1999; Shanmugan et al., 1981; Holmes et al.,
1984; Nystuen and Garcia, 1992). Since SAR sea-ice
imagery contains spatially dependent class characteristics,
texture extraction methods have been commonly used to gen-
erate feature information for sea-ice classes. The most com-
mon texture feature extraction method for remotely sensed
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data is co-occurrence probabilities. However, a host of promis-
ing (Randen and Husoy, 1999) techniques in the research lit-
erature have not been extensively compared nor thoroughly
assessed for their ability to discriminate SAR sea-ice imagery.

This paper compares the ability of three different texture
feature methods to classify SAR sea-ice image samples. The
three methods are: co-occurrence probabilities, Gabor filters
and Markov random fields. Section 2 more fully defines the
objectives of this paper. Section 3 details the texture methods,
discriminant and data used. Testing and results are found in
Section 4 with a discussion in Section 5.

2 Objectives
There are many studies that investigate specific texture mea-
sures, however, there are relatively few studies (Augusteijn
et al., 1995; Clausi, 1996; Connors and Harlow, 1980; Pichler
et al., 1996; Weszka et al., 1976) comparing these methods,
especially with regard to SAR sea-ice image classification
(Barber et al., 1993). No other work that directly compares
the usefulness of each of these particular texture feature
extraction techniques (co-occurrence probabilities, Gabor filters,
and Markov random fields) for classifying SAR sea-ice
imagery is known to the author.

Not only are these techniques considered independently,
they are also considered for their ability to work synergisti-
cally. Features that are uncorrelated to each other are assumed
to provide additional feature information to the classification
system and combined to promote the accuracy of the classifi-
cation. The author knows of no other research in the SAR sea-
ice texture analysis field that considers the fusion of different
texture feature types. This paper will investigate feature fusion
with respect to the classification of SAR sea-ice imagery.

Grey level quantization is recognized to be a necessary step
when creating features based on co-occurrence probabilities.
Other studies have considered the impact of varying the quan-
tization level on the classification ability of the co-occurrence
features (Shokr, 1991; Soh and Tsatsoulis, 1999; Clausi and
Jernigan, 1999). The greater the number of grey levels, the
greater the computational costs yet the information content of
the texture should be better preserved. With reduced grey lev-
els, the computational costs are significantly reduced and the
effect of noise in the data is reduced.

Soh and Tsatsoulis (1999) indicate that grey level quanti-
zation can be performed using one of three schemes: 1) uni-
form quantization 2) Gaussian quantization and 3) equal
probability quantization (also commonly referred to as his-
togram equalization). There are other pixel-to-pixel trans-
forms (e.g., log, square root, etc.) that could be considered for
quantization, but these are not considered here. Uniform
quantization linearly scales the grey levels into the desired
range without considering the grey level distribution.
Gaussian quantization and histogram equalization quantiza-
tion methods map the grey level distribution of the image into
Gaussian and uniform distributions, respectively. Soh and
Tsatsoulis (1999) state that the Gaussian quantization method
is inappropriate for SAR sea-ice imagery since the Gaussian

distribution is not an appropriate model for this data. The
necessity of having the grey level mapping scheme match the
expected grey level distribution of the data in order to perform
optimal textural differentiation is an open question. However,
there is still uncertainty about whether uniform quantization or
histogram equalization is the preferred method for quantizing
image data prior to creating the co-occurrence features. Soh
and Tsatsoulis (1999) assume that uniform quantization would
be superior to histogram equalization when applied to SAR
sea-ice imagery, but no quantitative evidence is provided.
Research has not been undertaken to demonstrate a preference
for one quantization technique over the other when perform-
ing texture analysis of SAR sea-ice imagery. Here, a direct
comparison of these two methods (uniform quantization and
histogram equalization) will be conducted.

Based on the theories identified above, the following
research questions will be addressed with respect to the given
SAR sea-ice dataset:
Q1. Which of the three methods (co-occurrence probabili-

ties, Gabor filters, Markov random fields) offers pre-
ferred classification ability?

Q2. Is uniform quantization or histogram equalization a better
approach for producing discriminating feature sets? Do
the number of quantization levels influence the ability
of the techniques to discriminate between ice classes?

Q3. Does combining feature sets generate an improved clas-
sification? Which combination of feature sets generates
an improved performance?

3 Methods
a Texture Methods

1 GREY LEVEL CO-OCCURRENCE PROBABILITIES

Grey level co-occurrence texture features have been used for
supervised classification of SAR sea-ice imagery (Shokr,
1991; Barber et al., 1993; Soh and Tsatsoulis, 1999). The co-
occurrence probabilities are the conditional joint probabilities
of all pairwise combinations of grey levels (i,j) in the spatial
window of interest given two parameters: interpixel distance
(δ) and orientation (θ) (Haralick et al., 1973). To generate tex-
ture features based on the co-occurrence probabilities, statis-
tics are applied to the probabilities. Generally, these statistics
identify some structural aspect of the arrangement of proba-
bilities within a matrix indexed on i and j, which in turn
reflects some characteristic of the texture. There are many
statistics that can be used (Haralick et al., 1973). However,
due to the redundancy in these statistics, only three statistics
are advocated for SAR sea-ice classification since this
should generate preferred discrimination with the least
redundancy (Barber and LeDrew, 1991). The selected statis-
tics are dissimilarity, entropy and correlation. These have
been used in this study since each measure tends to be inde-
pendent compared to other co-occurrence statistics and each
represents a different characteristic of the co-occurrence
matrix (Clausi, 1996). In addition, each statistic is insensitive
to grey level shifts.
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There is no known rigorous optimal method for selecting θ
and δ. Given no other information concerning the window of
interest, the preferred parameters should utilize adjacent
neighbours, motivating the use of θ = 0, 45, 90, 135 degrees
and δ = 1. SAR sea-ice texture is generally characterized over
spatial scales on the order of the sensor resolution, so setting
δ = 1 pixel for the interpixel spacing is appropriate. There is
a potential for anisotropic behaviour in SAR sea-ice imagery,
so orientations of 0, 45, 90 and 135 degrees are advocated.
This combination of offset and orientation has characterized
SAR texture well and has been identified as being preferred
for such applications (Barber and LeDrew, 1991; Shokr, 1991).
The use of four orientations, one pixel spacing and three statis-
tics generates a 12-dimensional feature space. Where not
explicitly stated, the grey level quantization level is uniform
and set to 32. Rapid feature extraction is performed by using
the linked list method advocated by Clausi and Jernigan (1998).

2 GABOR FILTERS

Success in the texture analysis research literature motivates
the investigation of Gabor filters (Jain and Farrokhnia, 1991;
Bovik et al., 1990; Tuener et al., 1995). Gabor functions,
implemented as pseudo-wavelet operators, generate appropri-
ate texture features in a more computationally efficient man-
ner than the co-occurrence method (Clausi, 1996). Gabor
texture features have been demonstrated as successful for tex-
ture segmentation problems, but few efforts have investigated
their ability to specifically classify SAR sea-ice imagery.
Barber et al. (1993) included Gabor filtering in their compar-
ative study, however, they reduced the outputs of the filter
bank to two features, even though the Gabor filter bank out-
puts, when set up in an appropriate wavelet manner, are effec-
tively independent. Improved discriminating behaviour
should occur with the use of preferred Gabor filter banks
(Clausi and Jernigan, 1998).

A Gabor filter bank (Jain and Farrokhnia, 1991; Bovik
et al., 1990) is a pseudo-wavelet filter bank where each filter
generates a near-independent estimate of the local frequency
content. Gabor filters are attractive for texture interpretation
because of their mathematical tractability, their ease of imple-
mentation for multi-channel filtering, optimal joint spatial/
spatial-frequency resolution, and their ability to model the fil-
ter characteristics of simple cells found in the visual cortex
(Jain and Farrokhnia, 1991; Bovik et al., 1990; Daugman,
1985). Design of a Gabor filter bank for image texture seg-
mentation was proposed by Jain and Farrokhnia (1991). The
technique for extracting texture features used here is based on
a preferred technique developed by Clausi and Jernigan
(1999).

The Gabor filters used here are implemented with the follow-
ing parameters. Filter bandwidths in the 2-d spatial-frequency
plane are one octave and 30 degrees. To achieve proper spatial-
frequency coverage, centre frequencies are also spaced by
one octave and 30 degrees. For example, given 16 × 16 image
samples, the top two centre frequencies are 0.35 and 0.18
cycles per pixel (cpp) (using octave spacing). This imple-

mentation allows generation of a wavelet approximation
using Gabor filters i.e., doubling the filter centre frequency
cuts the spatial extent of the filter in half. Thus, the spatial
localization as a function of spatial-frequency is maintained
for all filters in the filter bank. To determine the standard
deviations (σx, σy), the filter cutoff is set to -6 db. To ensure
average grey level insensitivity, the DC component of the fil-
ter is set to zero.

Given that the filters are well localized in space, local noise
can generate misleading filter outputs. To alleviate this,
smoothing of the magnitude images as a function of the same
Gaussian used in the Gabor function is performed. Using γ =
2/3 for the smoothing Gaussian g(γx, γy) proved effective, as
Bovik et al. (1990) also experienced. Given the top two
octave bands and six orientations, the Gabor filter bank gen-
erates a total of twelve texture features. Since each pixel has
a response to each filter, then a 12-dimensional texture feature
vector represents each centre pixel of each window sample.

3 MARKOV RANDOM FIELDS

Markov random fields (MRFs) have been demonstrated to be
quite effective for texture characterization (Chellappa and
Chatterjee, 1985; Cohen et al., 1991; Yamayaki and Gingras,
1995). Studies of their ability to classify SAR sea-ice imagery
are unknown to the author. Application of MRFs to the iden-
tification of operational forestry parameters compares well
with the co-occurrence technique (Wiebe, 1998). The MRF
method generates parameters for a particular distribution
function based on Markov assumptions. As a result, these tex-
ture measures are assumed to be quite different in nature rel-
ative to the other two methods summarized above.

MRF texture measurements can be made based on various
orientations and pixel spacings. Feature measurements are
determined by applying a specific distribution model to the
underlying data to create texture features. A unique aspect of
these texture features is that they not only provide a measure-
ment of the texture, but they can also be used to create a fac-
simile of the analyzed texture (Chellappa, 1985). Most other
texture models, including the co-occurrence technique, have
not demonstrated this ability.

A Markov random field is a 2-d lattice of points, where
each point is assigned a value based upon a probabilistic
model. An MRF is a random field with Markovian properties,
namely, a point’s value on the lattice is only influenced by
particular neighbouring values. The specific definition of
neighbours and their influence on other points give MRFs the
freedom to model many types of textures. MRF texture mod-
els for SAR images consider every image cell’s backscatter
intensity as a function of other image cells’ intensities in its
neighbourhood (Chellappa, 1985; Besag, 1974).

For the purposes of texture analysis, let X(i,j) be a random
variable which represents the value at (i,j) on an N × M lat-
tice L. For simplicity, we shall index X with only one variable,
e.g., X(c) where c = 1, 2, 3, ..., N × M. For MRFs, if point m
is a neighbour of point c then p(X(c)) depends on the value
X(m). A Markov random field is a joint probability density on
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the set of all possible digital numbers (representing the
backscatter) of L such that p(X(c)) > 0 and

P(X(c) | X(m), m = 1,2,… N × M, c ≠ m)
= p(X(c) | neighbours of c).

For example, assuming that the conditional probability of a
specific configuration of neighbours about point c is Gaussian
we have:

P(X(c) | X(m), m is a neighbour of c, c ≠ m)
= (2πσ2)-1/2 exp[ – (X(c) – Σ βc,m {X(m) + X(m’)})2 /2σ]

where σ represents the standard deviation and βc,m the para-
meters (i.e., the texture features) of the MRF. The summation
(in the exponential) is taken over all symmetric neighbours of
X(n). Symmetric neighbours consist of a pair of image cells
the same distance from the centre cell, c, but at opposing
angles. The variable m′ is defined as being symmetric to cell m.
Looking at Fig. 1, the 1.1 entries are symmetric neighbours.
The number of parameters (order of the model) depends on
the number of symmetric neighbours used in the model. In
Fig. 1, up to 5th order symmetric neighbours are depicted. For
example, a 3rd order symmetric MRF model centred on image
cell c, would include those cells marked 1.x, 2.x and 3.x and
be characterized by six parameters (the 1.1 entries determine
one parameter, the 1.2 entries the next parameter, 2.1 entries
the third parameter, etc.). A number of different techniques
for the determination of the MRF texture features exist: cod-
ing (Besag, 1974, 1986; Cross and Jain, 1983), least squares
(Chellappa and Chatterjee, 1985; Manjurath and Chellappa,
1991) and maximum likelihood estimates (Besag, 1974,
1986).

When p(X(c) | neighbours of c) is Gaussian, a difference
equation can be used to represent the Markov process
(Woods, 1972). The symmetric difference equation is:

X(c) = Σ βc,m[X(c + m) + X(c – m)] + ec

where ec is zero mean Gaussian distributed noise, m is an off-
set from the centre cell c and βc,m is a parameter which
weights a pair of symmetric neighbours to the centre cell. The
summation is over all valid values for m as determined by the
order of the model. For a 2nd order model, the summation
would be over two values of m, namely m = {(1,0),(0,1)}. The
X(c – m) term is the symmetric neighbour of X(c + m). In
matrix notation, this equation is represented by:

X(c) = ββT Qc + ec

where ββ is a vector composed of ββc,m and Qc is a vector
defined by:

The parameters (which represent the texture features) are esti-
mated using a least squares approach:

For every pixel in the window under consideration, a Qc is
determined. The  N × M window is defined by neighbour-
hood L. Then for every window, ββ is estimated which pro-
vides the texture features. The MRF features are, in practice,
insensitive to grey level shifts.

b Information Content
As in Kurvonen et al. (1999), the information content of the
texture measures are evaluated with (1) a separability index
and (2) test classification. A separability index provides a rel-
ative estimate for information content of the texture measure
under scrutiny that provides a basis for comparing different
scenarios. Test classification considers the absolute accuracy
of the texture measures with respect to the true classification.

1 TEST CLASSIFICATION

A common technique for the classification of feature vectors
is the use of the maximum likelihood (ML) classifier. This
technique is not used here because the restricted number of
samples per class creates a class feature space representation
that is sparse, given the dimension of the feature space. The
Fisher linear discriminant (FLD) (Duda and Hart, 1973) is
less sensitive to the number of features compared to ML
because FLD uses a pooled covariance matrix compared to
the individual class covariance matrix employed by ML (Tom
and Miller, 1984). Also, the FLD is an appealing index since
it is non-parametric.

The FLD can be implemented to generate a projection of a
pair of n-dimensional class feature sets onto a one-dimen-
sional vector. The projection provides an optimal separation
of the two classes. Then, a maximum likelihood classifier can
be used where, as in this case, there are sufficient samples to
describe each one-dimensional Gaussian distribution. Only
two classes can be compared at a time using the one-dimen-
sional projection, so, to determine whether a sample belongs
to one of C classes, (C

2 ) comparisons are made. Using all com-
parisons, a sample assigned to a particular class the greatest
number of times is the class to which the sample is assigned.
Sometimes, two classes are assigned an equal number of
times. In this case, the sample is designated “unclassified”.

Using separate training and test datasets, error matrices are
created. In this paper, kappa (κ) coefficients and associated
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Fig. 1. Symmetric neighbours used to define the Markov random field.
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confidence intervals (σ) are used to evaluate each error matrix
(Bishop et al., 1975). When two error matrices are compared,
the following test statistic can be used to determine a signifi-
cance level (Congalton et al., 1983)

Note that there are typographical errors for the equations
determining κ and σ in Congalton et al. (1983) and one is best
to use the equations provided by Bishop et al. (1975).

2 SEPARABILITY INDEX

The Fisher criterion (Duda and Hart, 1973) can be used as a
measure of the separability of two classes in the feature space.
In this work, the scatter matrix (used in the formulation of the
Fisher criterion) is actually defined as a true covariance
matrix i.e., the scatter matrices are weighted by the number of
samples. This is important for the case of classes which have
a different number of samples.

c Synthetic Aperture Radar Images
Detailed information concerning the RADARSAT-1 imagery
is contained in Yackel et al. (this issue) and Mundy and
Barber (this issue). This uncalibrated imagery was collected
as part of the international North Water (NOW) Polynya pro-
ject. In summary, ScanSAR data was acquired from the CIS
in a raw, uncalibrated mode with 150 m nominal resolution
and 100 m pixel spacing. Although Mundy and Barber (this
issue) observed 14 separate surface classes, only 9 classes are
considered for this texture study. Classes were omitted due to
an insufficient number of observed samples to perform a clas-
sification study. The classes studied here include: nilas/new
ice, grey ice, young ice floes, medium first-year ice floes,
rough open water, calm open water, smooth first-year ice,
rubble landfast ice, and multiyear ice.

This dataset is difficult to classify for two reasons: (1) nine
different classes are discriminated simultaneously and (2) rel-
atively smaller window sizes (16 × 16) are used. Most SAR
classification testing considers either fewer ice classes or
larger windows or both. For example, Barber and LeDrew
(1991) used three ice classes (multiyear, first-year rough, first-
year smooth) with 25 × 25 windows. Shokr (1991) compares
5 × 5, 7 × 7 and 9 × 9 windows to classify either three or four
classes. Classification accuracy increases with increased win-
dow size. Soh and Tsatsoulis (1999) consider seven classes,

however, they also used considerably larger 64 × 64 samples
which are recognized as being helpful to the classification
process. Here, the 16 × 16 window size provides sufficient
sampling to populate the 32 × 32 co-occurrence matrix. Some
ice types did not have the spatial coverage to provide suffi-
cient non-overlapping samples at larger window sizes.

Two sets of image samples were created. The “validated”
dataset contains those regions with field observations during
the NOW program that were co-registered in the images. The
“inspected” samples are based on regions that were in the
NOW vicinity but not directly observed during the field pro-
gram. These class samples were selected by inspection of the
images having similar visual characteristics as the validated
classes. Thirty-two non-overlapping samples of each class
within each set were selected.

4 Testing and results
Each of the hypotheses proposed in Section 2 will now be
addressed.

Q1. Which of the three methods (co-occurrence probabili-
ties, Gabor filters, or Markov random fields) offers pre-
ferred classification ability?

To study this question, each method was used to perform
two tests. First, the ground-validated data was used to train
the system and the visually inspected data was classified.
Then, the visually inspected data was used for training and the
validated data was used for test classification. In addition to
recording the kappa coefficients (κ) and confidence intervals
(σ), the minimum and maximum Fisher criterion (from
exhaustive class-pairwise analysis) are recorded based on the
training data. Three MRF orders (3, 4 and 5) are tested to
determine which order produces the most favourable results.
Results are displayed in Table 1.

Co-occurrence results generated the best classification
accuracies and the highest Fisher distances (see results in Q3
for a discussion of the significance levels between the feature
methods). Gabor filters performed favourably but not to the
same extent as the co-occurrence method. MRF results were
poorer than Gabor and co-occurrence results. Based on using
independent feature sets, co-occurrence was demonstrated to
be performing the best.

One may assume that 0.512 kappa value (the best co-occur-
rence classification) is not a strong result. However, note that
other studies (Shokr, 1991; Barber et al., 1993) usually only
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TABLE 1. Classification results for each feature extraction method. κ – kappa coefficient, σ – standard deviation for κ, Min. and Max. J(ω) – minimum and maximum
Fisher criterion.

Validated Data Used for Training Inspected Data Used for Training

κ σ Min. J(ω) Max. J(ω) κ σ Min. J(ω) Max. J(ω)

Co-occurrence 0.475 0.0329 1.4 165.4 0.512 0.0324 0.9 204.1
Gabor Filters 0.392 0.0325 1.0 113.4 0.448 0.0330 1.1 96.3
MRF order 3 0.141 0.0270 0.2 6.5 0.192 0.0282 0.3 6.9
MRF order 4 0.184 0.0280 0.4 9.5 0.173 0.0276 0.3 10.1
MRF order 5 0.158 0.0262 0.4 10.7 0.158 0.0271 0.3 11.0



consider three classes (first-year rough, first-year smooth and
multiyear) while this study is considering a total of nine dif-
ferent classes. For example, Barber and LeDrew (1991) had
test kappas in the approximate range of 0.60 to 0.70, depend-
ing on the experiment. Shokr (1991) performs a host of com-
parative testing, but his results use classification accuracies
instead of kappa coefficients, which does not allow for prop-
er comparison. Tripling the number of classes dramatically
increases the difficulty of the problem. Here, a random
assignment of pixels would only generate about 11% classifi-
cation accuracy, thus, a kappa value of 0.512 is quite strong
considering this circumstance. The 4th order MRF kappa
value of 0.184 is above random assignment and thus, distin-
guishing information is provided in this feature set. Note that
each feature set only captures textural information and not the
average grey level i.e., the methods employed are insensitive
to grey level shifts.

The Fisher distances support the classification evidence.
Co-occurrence and Gabor filtered features have high, similar
Fisher distances. The distances for the MRF methods are
about 10% of the values noted for co-occurrence and Gabor
methods.

The statistical validity comparing the error matrix pro-
duced by classifying the inspected data using a validated data
discriminant versus the error matrix produced by classifying
the trained data using an inspected data discriminant has been
determined (Table 2). The null hypothesis states that, for each
feature extraction method, the pair of error matrices are the
same. Table 2 reveals that there is no statistical significance
between the error matrices created by classifying the test data
using either validation or inspected data for training (in this
paper, a 5% threshold is used i.e., 0.025 and 0.975 are the
confidence levels). Since the null hypothesis is not false, the

error matrices are not demonstrated to be statistically differ-
ent. As a result, for the rest of this paper, the test error matri-
ces produced by the validation and inspected data are
combined into a joint error matrix. The classification accura-
cy provided by this joint error matrix is provided in Table 3.
Results are in agreement with those found in Table 1.

Q2. Is uniform quantization or histogram equalization a bet-
ter method for producing discriminating feature sets?
Do the number of quantization levels influence the abil-
ity of the techniques to discriminate between ice classes?

To test this set of questions, each texture method was used
to determine classification accuracy based on quantization
levels of 64, 32 and 16 for both histogram equalization and
uniform quantization. Quantization was applied to each dataset.
A 4th order MRF was used for MRF results since this pro-
duced the best MRF result in the first question. The null
hypothesis states that, within each feature extraction method,
the results should be consistent regardless of quantization
method or quantization level. Classification results are pre-
sented in Table 4 and significance levels for these results are
displayed in Table 5. Tables in the format of Table 5 are to be
read in the following manner: for each item in the table, what
is the statistical difference of the column entry with respect to
the row entry? Statistical levels below 0.025 are significantly
lower and statistical levels above 0.975 are significantly higher.
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TABLE 2. Significance levels between validated versus inspected error
matrices for each feature extraction method. There is no statisti-
cally significant difference among the various methods (5% sig-
nificance level).

Method Significance Level

Co-occurrence 0.787
Gabor Filters 0.886
MRF order 3 0.903
MRF order 4 0.388
MRF order 5 0.751

TABLE 3. Joint results obtained by determining classification results of an
error matrix created by combining the “Validation” and
“Inspected” error matrices of Table1.

Joint Validation and Inspected Results

κ σ Min. J(ω) Max. J(ω)

Co-occurrence 0.494 0.0231 0.9 204.1
Gabor Filters 0.420 0.0232 1.0 113.4
MRF order 3 0.178 0.0197 0.2 6.9
MRF order 4 0.167 0.0196 0.3 10.1
MRF order 5 0.145 0.0189 0.3 11.0

TABLE 4. (a) Co-occurrence (b) Gabor filter and (c) MRF (4th order) fea-
ture classification and Fisher distances across three histogram
equalization grey levels (64/32/16) and three linear quantizations
(64/32/16).

(a) Co-occurrence Probabilities

κ σ Min. J(ω) Max. J(ω)

Hist. Eq. 64 0.261 0.0217 0.8 114.4
Hist. Eq. 32 0.263 0.0217 1.0 90.8
Hist. Eq. 16 0.285 0.0221 1.2 73.5
Unif. Quant. 64 0.459 0.0232 0.8 197.4
Unif. Quant. 32 0.494 0.0231 0.9 204.1
Unif. Quant. 16 0.465 0.0231 0.8 219.8

(b) Gabor Filters

κ σ Min. J(ω) Max. J(ω)

Hist. Eq. 64 0.268 0.0217 1.1 69.7
Hist. Eq. 32 0.262 0.0217 1.3 60.7
Hist. Eq. 16 0.283 0.0218 1.2 50.7
Unif. Quant. 64 0.459 0.0232 0.9 140.8
Unif. Quant. 32 0.448 0.0232 1.0 132.5
Unif. Quant. 16 0.434 0.0232 0.9 118.5

(c) MRF order 4

κ σ Min. J(ω) Max. J(ω)

Hist. Eq. 64 0.210 0.0203 0.4 9.3
Hist. Eq. 32 0.219 0.0206 0.4 9.6
Hist. Eq. 16 0.228 0.0206 0.4 9.4
Unif. Quant. 64 0.210 0.0203 0.4 9.3
Unif. Quant. 32 0.197 0.0203 0.3 7.7
Unif. Quant. 16 0.154 0.0192 0.3 6.6



For co-occurrence probabilities and Gabor filters, there
was a strong trend, namely, uniform quantization leads to a
statistically significant improvement compared to histogram
equalization (all significance levels are 1.000). For the co-
occurrence probabilities, histogram equalization leads to
kappa values around 0.26 while the uniform quantization was
consistently around 0.46. A similar trend was observed for the
Gabor filters. MRF texture features do not follow this trend.
Both the uniform quantization and histogram equalization
produce similar MRF results across most of the quantization
levels. There was a statistically significant decrease in classi-
fication accuracy at a uniform quantization level of 16 where
lower classification values are noted (0.154 compared to
greater than 0.197 for the rest of the dataset). At such a high
quantization, it may be that the MRF is less successful at find-
ing characteristic differences between the textures due to
excessive data smoothing. Gabor and co-occurrence error
matrices were consistent across different quantizations given
each quantization method.

The Fisher distances support these results. Fisher distances
for co-occurrence and Gabor were higher for the linearly
quantized data compared to the histogram equalization data.

Q3. Does combining feature sets generate an improved clas-
sification?

Correlations of the different features provide insight into the
potential for fusing the features and producing an improved
classification. Correlations are displayed in Table 6. These
correlations were determined by first determining class corre-
lations across all features (12 Gabor features + 12 co-occur-
rence features + 10 MRF 4th order features = 34 features in
total). Then, a correlation matrix based on the class averages
was produced. Since it is unwieldy to display this 34x34 cor-
relation matrix, for each feature type, the average across all
orientations for a given statistic (co-occurrence), frequency
(Gabor), or distance (MRF) was determined. This averaging
process generates the 9x9 matrix found in Table 6.
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TABLE 5. Comparisons of significance levels across all quantization methods for each feature extraction technique: (a) co-occurrence (b) Gabor filters (c) MRF
4th order.

(a) Hist. Eq. 64 Hist. Eq. 32 Hist. Eq. 16 Unif. Quant. 64 Unif. Quant. 32 Unif. Quant. 16

Hist. Eq. 64 x 0.515 0.781 1.000 1.000 1.000
Hist. Eq. 32 x x 0.769 1.000 1.000 1.000
Hist. Eq. 16 x x x 1.000 1.000 1.000
Unif. Quant. 64 x x x x 0.854 0.573
Unif. Quant. 32 x x x x x 0.193
Unif. Quant. 16 x x x x x x

(b) Hist. Eq. 64 Hist. Eq. 32 Hist. Eq. 16 Unif. Quant. 64 Unif. Quant. 32 Unif. Quant. 16

Hist. Eq. 64 x 0.414 0.680 1.000 1.000 1.000
Hist. Eq. 32 x x 0.754 1.000 1.000 1.000
Hist. Eq. 16 x x x 1.000 1.000 1.000
Unif. Quant. 64 x x x x 0.374 0.225
Unif. Quant. 32 x x x x x 0.332
Unif. Quant. 16 x x x x x x

(c) Hist. Eq. 64 Hist. Eq. 32 Hist. Eq. 16 Unif. Quant. 64 Unif. Quant. 32 Unif. Quant. 16

Hist. Eq. 64 x 0.627 0.732 0.500 0.328 0.022
Hist. Eq. 32 x x 0.615 0.373 0.221 0.010
Hist. Eq. 16 x x x 0.268 0.144 0.004
Unif. Quant. 64 x x x x 0.328 0.022
Unif. Quant. 32 x x x x x 0.060
Unif. Quant. 16 x x x x x x

TABLE 6. Feature correlations.  Correlations are determined by averaging individual class correlations and then averaging correlations over all directions for
each feature type illustrated.

Gabor Gabor Co-occ. Co-occ. Co-occ. MRF MRF MRF MRF
0.18cpp 0.35cpp DIS ENT COR 1 pixel √2 pixel 2 pixel √5 pixel

Gabor – 0.18cpp 0.263 0.255 0.419 0.463 0.192 0.022 –0.016 –0.002 –0.002
Gabor – 0.35cpp – 0.317 0.520 0.531 0.065 0.009 0.002 –0.030 0.015
Co–occ. – DIS – – 0.885 0.899 0.125 0.005 –0.013 0.001 0.006
Co–occ. – ENT – – – 0.987 0.308 0.015 –0.014 –0.001 0.002
Co–occ – COR – – – – 0.517 0.040 –0.025 –0.010 –0.005
MRF – 1 pixel – – – – – –0.300 –0.175 –0.065 –0.065
MRF – √2 pixel – – – – – – –0.570 0.025 –0.048
MRF – 2 pixel – – – – – – – –0.070 –0.271
MRF – √5 pixel – – – – – – – – 0.005



Table 6 shows that the co-occurrence features tend to have
high intra-feature correlations, especially with regards to
Dissimilarity (DIS) and Entropy (ENT). This was an expect-
ed result (Barber and LeDrew, 1991; Clausi and Jernigan,
1998). Correlation (COR) was not as strongly correlated with
DIS or ENT. Gabor filter features generally have lower intra-
feature correlations. MRF features have a strong tendency to
produce low intra-feature correlations. Gabor and co-occur-
rence features have relatively strong inter-feature correla-
tions. What is most interesting is that MRF features are not
well correlated with either the Gabor filtered features or the
co-occurrence features. This indicates that the MRF features
were providing unique information to the classification
process that the Gabor and co-occurrence methods do not
measure. By combining MRF features with either or both the
Gabor and co-occurrence features, a more successful classifi-
cation was expected.

Tables 7 (classification results) and 8 (statistical signifi-
cance levels) reveal the outcome of fusing the feature sets
based on using each method’s preferred feature set. Gabor fil-
ters have a statistically lower classification success than co-
occurrence features (0.013). However, fusing co-occurrence
and Gabor feature sets combines redundant information since
these two feature sets were strongly correlated. When Gabor
filters were combined with the co-occurrence probabilities,
there was no statistically significant change (0.315) and the
classification accuracy actually dropped (from 0.494 to
0.478). Although the co-occurrence probabilities combined
with the Gabor filters produced a significant improvement in
the classification (0.962), the classification rate does not
exceed that of co-occurrence alone, which was the objective
of fusing feature sets. As a result, using co-occurrence alone
was a better alternative than combining co-occurrence with
Gabor features. MRF features alone have a consistently poorer
classification than any of the other feature sets, alone or
fused.

In contrast, the addition of MRF features to either Gabor or
co-occurrence features produced improved results. The clas-

sification accuracy increased from 0.494 to 0.543 by adding
MRF features to the co-occurrence features (statistical signif-
icance level of 0.936). Although this does not exceed the hard
threshold of 0.975, it was a strong result. Similarly, the clas-
sification accuracy increased from 0.420 to 0.495 by adding
MRF features to the co-occurrence features (statistically sig-
nificant improvement of 0.989). These results advocate the
use of a combined co-occurrence and MRF feature set for
classifying SAR sea-ice imagery. Also, adding the MRF fea-
tures to the fused co-occurrence/Gabor set improved the clas-
sification accuracy (from 0.478 to 0.499), however, the level
was not statistically significant (0.740). This was in contrast
to the fusing of a feature set with a correlated feature set. For
example, fusing Gabor filters with a co-occurrence/MRF fea-
ture set decreased the classification accuracy from 0.543 to
0.499 (a strong significance level of 0.084). Fusing co-occur-
rence features with a fused Gabor/MRF feature set improved
classification accuracy slightly from 0.495 to 0.499, but the
significance level indicates that this change was definitely not
significant (0.549).

Note that the ability of the training set to discriminate
between the classes increased with additional features (both
minimum and maximum Fisher criteria increase – refer to
Table 1 as well), however, this increase did not have an
impact on the classification of the test data. The highest
Fisher distances were calculated when all three feature sets
were combined, however, this did not lead to strong perfor-
mance of the classifier when applied to test data.

To see how the MRF features improved the co-occurrence
classification rate on a class-by-class basis, consider the two
truth tables found in Table 9. Both tables display results based
on combining truth tables using validated and inspected data
(thus, there were 64 samples per class and some samples were
designated unclassified). Columns represent reference data
and rows represent classified data. Table 9(a) represents results
using co-occurrence texture features alone and Table 9(b)
represents results using co-occurrence features combined
with MRF features. Strong improvements to the classification
of the young ice (23 correctly classified for the co-occurrence
versus 41 correctly classified for the co-occurrence/MRF
combined), rough water (15 versus 25), and rubble landfast
ice (6 versus 20) were noted. The only class with a noticeable
reduction in classification was nilas ice (25 for co-occurrence
versus 18 for co-occurrence and MRF). 

Other improvements were noted using errors of commis-
sion/omission. For example, using co-occurrence alone, 20
samples were erroneously assigned to young instead of rubble
ice and 16 samples were erroneously assigned to rubble
instead of young ice. Combining co-occurrence and MRF fea-
ture sets reduced each of these totals to 1. Thus, the MRF fea-
tures significantly improved the distinction between rubble
and young ice types. The same can be said for rough water
and young ice types: 20/7 samples were assigned to young
ice/rough water that should have been assigned to rough
water/young ice. Adding the MRF features reduced these val-
ues to 5 and 6, respectively.
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TABLE 7. Classification results and Fisher distances of fused feature sets.

Fused Feature Sets

κ σ Min. J(ω) Max. J(ω)

Co-occurrence 0.494 0.0231 0.9 204.1

Gabor Filters 0.420 0.0232 1.0 113.4

MRF order 4 0.178 0.0197 0.3 10.1

Co-occurrence & 0.478 0.0229 3.0 378.6
Gabor Filters

Co-occurrence & 0.543 0.0226 5.2 251.5
MRF order 4

Gabor Filters & 0.495 0.0228 3.3 143.7
MRF order 4

Co-occurrence & 0.499 0.0227 10.5 502.0
Gabor Filters &
MRF order 4



To simulate results based on fewer classes to verify that the
test results were consistent, classes were merged based on
their relative Fisher distance. A preferred classification was
generated when the co-occurrence and 4th order MRF feature
sets were combined. Consider the relative Fisher distances
between each pair of classes based on the training data using
MRF and co-occurrence features (Table 10). The objective
was to merge classes that are closest together in the feature
space. The nearest classes were combined until an arbitrary
number of four classes remained i.e., combine the closest two
classes, namely, calm water and smooth ice at 5.2; then com-
bine nilas/new ice and grey ice since they were the next clos-
est at a distance of 8.4; etc. This merging process, as

expected, grouped classes that were visually similar in the
feature set. The four merged classes were as follows:

Class I – nilas/new ice, grey ice, medium first-year ice floes
Class II – young ice floes, rough water
Class III – calm open water, smooth first-year ice
Class IV – rubble landfast ice, multi-year ice

The classification results based on each of the three texture
methods individually, pairs of texture methods, and all three
methods together using the four class representation are dis-
played in Table 11. Table 12 contains the parallel results for
significance level testing. Results were consistent with previ-
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TABLE 8. Statistical significance levels between combined validation/inspected error matrices for the identified feature sets.

Co-occurrence Gabor Filters MRF 4th Co-occurrence Co-occurrence Gabor Filters Co-occurrence
& Gabor Filters & MRF 4th & MRF 4th & Gabor Filters

& MRF 4th

Co-occurrence x 0.013 0.000 0.315 0.936 0.514 0.563

Gabor Filters x x 0.000 0.962 1.000 0.989 0.992

MRF 4th x x x 1.000 1.000 1.000 1.000

Co-occurrence x x x x 0.978 0.698 0.740
& Gabor Filters

Co-occurrence x x x x x 0.067 0.084
& MRF 4th

Gabor Filters x x x x x x 0.549
& MRF 4th

Co-occurrence x x x x x x x
& Gabor Filters
& MRF 4th

TABLE 9. Combined truth tables for validation and visually inspected classifications given (a) co-occurrence alone (b) co-occurrence with MRF features added.
Classes: nilas/new ice, grey ice, young ice floes, medium first-year ice floes, rough open water, calm open water, smooth first-year ice, rubble land-
fast ice, and multi-year (my) ice.

(a) nilas grey young medium rough calm smooth rubble my

nilas 41 11 0 2 0 0 4 0 0 58
grey 5 25 2 4 0 1 1 11 0 49
young 0 0 23 1 20 0 0 20 0 64
medium 5 18 12 48 18 0 0 4 2 107
rough 0 0 7 4 15 0 0 15 1 42
calm 0 1 0 0 0 49 11 0 0 61
smooth 7 4 0 0 0 12 47 0 0 70
rubble 2 0 16 2 7 0 0 6 1 34
my 0 0 2 0 0 0 0 3 60 65

60 59 62 61 60 62 63 59 64

(b) nilas grey young medium rough calm smooth rubble my

nilas 39 5 0 0 0 1 4 1 0 50
grey 5 18 2 7 2 3 3 6 0 46
young 0 0 41 1 5 0 0 1 1 49
medium 4 16 9 44 13 0 0 5 2 93
rough 0 0 6 7 25 0 0 15 1 54
calm 0 2 0 0 0 46 8 0 0 56
smooth 7 4 0 0 0 12 46 0 0 69
rubble 0 0 1 2 10 0 0 20 2 35
my 2 0 1 1 0 0 0 7 58 69

57 45 60 62 55 62 61 55 64



ous testing. As individual feature sets, co-occurrence and Gabor
produce strong results. Here, co-occurrence and Gabor do not
have a significant difference (0.364 significance level). As with
nine classes, MRF results significantly lagged co-occurrence
and Gabor results. Fusing Gabor features with co-occurrence
features increased the success compared to using co-occur-
rence features alone, and this increase was not statistically
significant (0.691). Fusing co-occurrence with Gabor filters
improved the classification results compared to Gabor alone,
however, this result was not statistically significant (0.801).

Combining MRF with Gabor and combining MRF with co-
occurrence produced much improved results over either
Gabor or co-occurrence alone (significance levels of 0.977
and 0.918, respectively). The best results were obtained by
fusing MRF features with co-occurrence features (kappa of
0.733). Merging all three feature sets dramatically increased
the separability of the training data (maximum Fisher criterion
of 107.4), but the results were not reflected in the test classi-
fication. Fusing Gabor filter features to the co-occurrence/
MRF feature set reduced the classification accuracy (from
0.733 to 0.712).

5 Discussion
The Gabor filter and co-occurrence probability methods mea-
sure texture features in SAR sea-ice imagery basically by
measuring local frequency. Gabor filters directly measure

local frequency components by acting as a bandpass filter
centred on the frequency of interest. The two co-occurrence
measures that generally perform more strongly (dissimilarity
and entropy) (Clausi and Jernigan, 1998) correlate well with
local frequency measures. For example, smooth textures tend
to have fewer entries in the co-occurrence matrix (low entropy)
which are located close to the diagonal (low dissimilarity).
MRF features measure something completely different about
the local texture compared to Gabor filters and co-occurrence
probabilities. Here, model parameters are generated to best fit
a Gaussian distribution. However, there is no correlation
between the MRF features and the co-occurrence or between
the MRF and Gabor features. Yet, the MRF classification
accuracy indicates that they provide meaningful information.
Fusing MRF features with Gabor filter features improves the
classification accuracy of using Gabor features alone. Fusing
MRF features with co-occurrence features produces the same
effect. The combination of MRF and co-occurrence features
is advocated for improved texture feature recognition of SAR
sea-ice imagery since it consistently generated preferred results.

The MRF features add to the classification accuracy by
improving the distinction of a number of class pairs confused
by using only the co-occurrence features. In this dataset, MRF
features improved the distinction between rough open water,
rubble zones and young ice. Distinctions between these ice
types are recognized as being difficult, especially in the con-
text of identifying the other six classes in this dataset. This
supports the use of MRF features for assisting the discrimina-
tion of SAR sea-ice imagery.

Gabor filters, implemented as wavelet operators, are not
ideal candidates for solving the texture classification prob-
lem. Their inherent multiresolutional ability is not utilized for
fixed-sized samples. The effective window size for the Gabor
wavelet filters is gauged by the centre frequency of interest.
Higher frequencies utilize smaller windows and lower fre-
quencies utilize larger windows. This ability is more suited to
the segmentation problem where the window size is not pre-
defined. A future recommendation for classification testing is
to redesign the filter bank to set the effective spatial filter
extent to match that of the window size, regardless of the fre-
quency of interest. This moves away from the concept of a
wavelet filter bank, however, to ensure better coverage of the
entire window sample by each filter, this approach for feature
extraction should be attempted.
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TABLE 10. Fisher distances between each class using combined cooccurrence and 4th order MRF features. Classes: nilas/new ice, grey ice, young ice floes, medium
first-year ice floes, rough open water, calm open water, smooth first-year ice, rubble landfast ice, and multi-year (my) ice.

nilas grey young medium rough calm smooth rubble my

nilas – 8.4 67.3 24.6 49.3 41.4 31.3 61.7 69.1
grey – – 121.6 11.1 68.6 21.4 16.7 93.3 102.1
young – – – 27.0 12.9 176.3 211.6 14.4 43.2
medium – – – – 13.6 29.2 35.1 31.4 45.7
rough – – – – – 133.4 148.5 6.4 30.9
calm – – – – – – 5.2 136.4 155.9
smooth – – – – – – – 160.4 178.3
rubble – – – – – – – – 12.5
my – – – – – – – – –

TABLE 11. Classification test results based on four combined classes.

Combined Classes

κ σ Min. J(ω) Max. J(ω)

Co-occurrence 0.667 0.0243 2.1 81.4

Gabor Filters 0.655 0.0246 2.5 53.6

4th order MRF 0.251 0.0275 0.4 1.6

Co-occurrence & 0.684 0.0238 4.0 94.4
Gabor Filters

Co-occurrence & 0.733 0.0224 5.1 89.5
4th order MRF

Gabor Filters & 0.702 0.0233 5.0 56.5
4th order MRF

Co-occurrence & 0.712 0.0229 6.1 107.4
Gabor Filters &
4th order MRF



In the research literature, some form of quantization is
advocated when using co-occurrence probabilities for texture
analysis. For the datasets utilized in this study, there is strong
support for using uniform quantization as opposed to his-
togram equalization. The co-occurrence measures behaved
quite consistently regardless of the quantization level, given
either uniform quantization or histogram equalization. This is
probably due to the fact that certain co-occurrence statistics
perform better using coarser quantization (such as entropy)
and other statistics perform better with more grey levels (such
as dissimilarity) (Clausi and Jernigan, 1998). Given the para-
meters used in this study, varying the quantization levels did
not have a noticeable effect on the classification accuracy.

A comment should be made concerning the use of present-
ing results for classifying training data only. To have reliable
classification testing, separate test and training data is
required. Some other studies have used the same data for test-
ing and training (Weszka et al., 1976; Chang and Kuo, 1993)
which can lead to misleading interpretations. Classification
accuracies of training data may indicate strong performance,
however, the relevance to test datasets is unknown.

Co-occurrence probabilities are identified as the most suc-
cessful independent method compared to Gabor filters and

Markov random fields for the supervised classification of the
given SAR sea-ice dataset. A more formidable problem is that
of segmentation of SAR sea-ice imagery. Future testing should
involve determining the ability of co-occurrence methods for
the segmentation of SAR sea-ice imagery. Segmentation
involves consideration of the boundaries between different
textures. The ability of the co-occurrence method to identify
textural boundaries is uncertain.

Sea ice is notoriously difficult to classify because of numer-
ous nuances and variations within class, across a scene, from
scene to scene, seasonally, diurnally, etc. A reliable means of
capturing essential textural information is important. Co-
occurrence texture features are a proven method for capturing
essential texture information. In this paper, augmenting co-
occurrence feature sets with features based on Markov ran-
dom fields has been demonstrated to be a viable means of
producing improved texture feature sets.
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TABLE 12. Significance levels for each feature set for results based on four combined classes.

Co-occurrence Gabor Filters MRF 4th Co-occurrence Co-occurrence Gabor Filters Co-occurrence
& Gabor Filters & MRF 4th & MRF 4th & Gabor Filters

& MRF 4th

Co-occurrence x 0.364 0.0 0.691 0.977 0.852 0.911

Gabor Filters x x 0.0 0.801 0.991 0.918 0.955

MRF 4th x x x 1.000 1.000 1.000 1.000

Co-occurrence x x x x 0.934 0.707 0.803
& Gabor Filters

Co-occurrence x x x x x 0.168 0.254
& MRF 4th

Gabor Filters x x x x x x 0.620
& MRF 4th

Co-occurrence x x x x x x x
& Gabor Filters
& MRF 4th
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