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Abstract

A critical shortcoming of determining co-occurrence probability texture features using Haralick’s popular grey

level co-occurrence matrix (GLCM) is the excessive computational burden. In this paper, the design, implementation,

and testing of a more efficient algorithm to perform this task are presented. This algorithm, known as the grey level

co-occurrence integrated algorithm (GLCIA), is a dramatic improvement on earlier implementations. This algorithm

is created by integrating the preferred aspects of two algorithms: the grey level co-occurrence hybrid structure (GLCHS)

and the grey level co-occurrence hybrid histogram (GLCHH). The GLCHS utilizes a dedicated two-dimensional

data structure to quickly generate the probabilities and apply statistics to generate the features. The GLCHH uses a

more efficient one-dimensional data structure to perform the same tasks. Since the GLCHH is faster than the GLCHS

yet the GLCHH is not able to calculate features using all available statistics, the integration of these two methods

generates a superior algorithm (the GLCIA). The computational gains vary as a function of window size, quanti-

zation level, and statistics selected. Using a variety of test parameters, experiments indicate that the GLCIA requires a

fraction (27–54%) of the computational time compared to using the GLCHS alone. The GLCIA computational time

relative to that of the standard GLCM method ranges from 0.04% to 16%. The GLCIA is a highly recommended

technique for anyone wishing to calculate co-occurrence probability texture features, especially from large digital

images.

r 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A popular method for texture feature extraction in

remote-sensing image interpretation is the use of co-

occurrence probabilities, first introduced by Haralick

et al. using the grey level co-occurrence matrix (GLCM)

(Haralick et al., 1973). Co-occurrence probability

texture features have been used in many different

applications such as Systeme Probatoire d’Observation

de la Terra (SPOT) land cover classification (Marceau

et al., 1990; Franklin and Peddle, 1990), cloud recogni-

tion (Gu et al., 1991), synthetic aperture radar (SAR) sea

ice classification (Barber and LeDrew, 1991; Soh and

Tsatsoulis, 1999), as well as Landsat MSS ice recogni-

tion (Welch et al., 1990). However, since the GLCMs are

recognized as sparse matrices, excessive computation is

required to generate the co-occurrence texture features.
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Other methods have been used to reduce the computa-

tional demands of generating co-occurrence texture

features relative to the GLCM approach (Unser, 1986;

Clausi and Jernigan, 1998; Svolos and Todd-Pokropek,

1998; Clausi and Zhao, 2002). Unser (1986) investigated

sum and difference histograms to store the co-occurring

data, which are efficient relative to using matrices. No

computational comparisons with the GLCM were

performed, but the theory clearly indicates a dramatic

reduction in the computational time relative to the

GLCM. Clausi and Jernigan (1998) reduce the compu-

tational time relative to the GLCM computational time

by presenting a grey level co-occurrence linked list

(GLCLL) structure that stores the non-zero co-occur-

ring probabilities in a sorted linked list. An advancement

on the GLCLL is illustrated by Svolos and Todd-

Pokropek (1998) where a tree data structure is used to

store the co-occurring probabilities. This represents a

reduction in the computational demands since the tree

structure search has computational order O(logm)

compared to O(m) of the GLCLL approach. Computa-

tional order is a standard technique to estimate the total

number of calculations required to perform a particular

algorithm. Another computational improvement on the

GLCLL is the grey level co-occurrence hybrid structure

(GLCHS) (Clausi and Zhao, 2002). The GLCHS is more

efficient than the GLCLL since it avoids the need for

maintaining sorted linked lists by using a combined hash

table and linked list data structure.

In this paper, the sum and difference histograms are

implemented using a GLCHS framework. The resulting

implementation (the grey level co-occurrence hybrid

histogram (GLCHH)) is demonstrated to reduce the

computational demands relative to the GLCHS alone.

However, the sum and difference histograms are not

able to act as a basis to use all of Haralick’s statistics

exactly. For these statistics, the GLCHS is used.

Consequently, an integrated method called the grey

level co-occurrence integrated algorithm (GLCIA) is

created, which offers a dramatically improved solution

by combining the GLCHS and GLCHH methods. Fig. 1

illustrates the research history leading to the develop-

ment of the GLCIA.

The quantization level (where G indicates the number

of grey levels) is an important consideration when

determining co-occurrence texture features. Quantiza-

tion was originally used in the co-occurrence texture

method to minimize memory needs and to increase the

computational speed. A certain degree of quantization

also reduces noise; however, significant quantization can

destroy pertinent signal content (Clausi, 2002; Soh and

Tsatsoulis, 1999). The GLCM method is highly sensitive

to the number of grey levels, given that the computa-

tional complexity is proportional to OðG2Þ (Clausi

and Jernigan, 1998). The GLCIA algorithm’s computa-

tional performance will be shown to be not as sensitive

to G as previous methods. As a result, there is interest

in using the GLCIA algorithm in commercial remote-

sensing software packages to reduce the number of

computations for various G: For example, PCI’s

Geomaticar software constrains G to 16 grey levels

when producing co-occurrence texture features,

which can reduce their effectiveness since recent re-

search recognizes the need for a greater number of

quantization levels for discriminating SAR sea ice

imagery, e.g. G ¼ 24 (Clausi, 2002) and G ¼ 64 (Soh

and Tsatsoulis, 1999).

This paper will first briefly discuss the individual

algorithms used as a basis for the GLCIA. This leads to

the development of the GLCHH design. From this, the

design and implementation of the novel GLCIA is

presented. Computational speed testing is performed to

compare different algorithms. Also, the GLCIA is

applied to a 1000� 1000 pixel image to demonstrate

total computation time required for a full image. A

summary concludes the paper.

2. Basic algorithms for determining co-occurrence texture

features

After briefly defining co-occurrence probabilities, this

section then describes each of the algorithms that act as

a basis for the preferred algorithm, the GLCIA.

2.1. Co-occurrence probabilities defined

The co-occurrence probability between two grey levels

i and j given a spatial offset (dx; dy) can be computed for

all possible co-occurring grey level pairs in an image

window (Haralick et al., 1973). Co-occurrence prob-

abilities are mathematically defined in the following

manner. Consider elements ra;b in a fixed image window
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Fig. 1. Research history of GLCIA algorithm.
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R with dynamic range G; where a and b represent

indexed positions in the window (a ¼ 1;y;A;
b ¼ 1;y;B). Given a certain spatial offset (dx; dy), the

total number of co-occurring grey level pairs (i; j) (where
0pioG and 0pjoG) is determined by

Cði; jjdx; dyÞ ¼Cði; jÞ

¼Cardfða; bÞAR; ra;b ¼ i; raþdx ;bþdy
¼ j;

1pa þ dxpA; 1pb þ dypBg; ð1Þ

where ‘Card’ (the cardinality) indicates the total number

of elements for the given set. Effectively, a two-

dimensional histogram is created (dimensioned to

G � G) that represents the total number of occurrences

for each (i; j) grey level pair that occurs in a fixed sized

window given a certain spatial offset. The constraints at

the end of the equation are necessary to ensure that all

grey level pairs are selected from within the given

window. The co-occurring probabilities are determined

by dividing Cði; jÞ by the total number of counts across

all i and j; i.e.

Pði; jjdx; dyÞ ¼ Pij ¼ Cði; jÞ=N; ð2Þ

where

N ¼
XG	1

i¼0

XG	1

j¼0

Cði; jÞ: ð3Þ

Comparably, the co-occurring probabilities can be

implemented using a relative orientation (y) and distance
(d). However, the (dx; dy) notation is more convenient to

the end user since orientations other than the basic 0
,

45
, 90
, and 135
 are awkward in the (y; d) notation.

2.2. Grey level co-occurrence matrix (GLCM)

Early implementations stored the co-occurrence prob-

abilities Pij in a GLCM dimensioned to the number of

grey levels, G: To determine texture features, selected sta-
tistics are applied to each GLCM by iterating through

the entire matrix (see the GLCM column in Table 1).
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Table 1

Common statistics applied to co-occurrence probabilities

Statistics name GLCM GLCLL/GLCHS GLCHH

Uniformity (UNI)
PG

i¼1

PG
j¼1 P2

ij

PL
k¼1 P2

k
N/A

Entropy (ENT) 	
PG

i¼1

PG
j¼1 Pij log Pij 	

PL
k¼1 Pk log Pk

N/A

Maximum probability (MAX) max Pij

� �
8ði; jÞ max Pkf g 8ðkÞ N/A

Dissimilarity (DIS)
PG

i¼1

PG
j¼1 Pij ji 	 jj

PL
k¼1 Pk jik 	 jk j

PLd

k¼1 dkDk

Contrast (CON)
PG

i¼1

PG
j¼1 Pijði 	 jÞ2

PL
k¼1 Pkðik 	 jkÞ

2 PLd

k¼1 d2
k Dk

Inverse difference moment (IDM) PG
i¼1

PG
j¼1

Pij

1þ ði 	 jÞ2
PL

k¼1
Pk

1þ ðik 	 jkÞ
2

PLd

k¼1
Dk

1þ d2
k

Inverse difference (INV) PG
i¼1

PG
j¼1

Pij

1þ ði 	 jÞ
PL

k¼1
Pk

1þ ðik 	 jkÞ
PLd

k¼1
Dk

1þ dk

Correlation (COR) PG
i¼1

PG
j¼1

ði 	 mÞðj 	 mÞPij

s2
PL

k¼1
ðik 	 mÞðjk 	 mÞPij

s2

PLs

k¼1 Skðsk 	 2mÞ2 	
PLd

k¼1 Dkd2
k

4s2

m ¼
PG

i¼1 i
PG

j¼1 Pij m ¼
PL

k¼1 ikPk m ¼ 1
2

PLs

k¼1 skSk

s2 ¼
PG

i¼1ði 	 mÞ2
PG

j¼1 Pij s2 ¼
PL

k¼1ðik 	 mÞ2Pk s2 ¼
PLs

k¼1 Skðsk 	 2mÞ2 þ
PLd

k¼1 Dkd2
k

4

Pij and Pk represent co-occurring probability in GLCM and GLCHS. CsðkÞ and CdðkÞ represent sum and difference histograms

required for GLCHH. (i; j) represents co-occurring pair for GLCM and (ik ; jk) represents co-occurring grey levels pair within GLCHS
linked list. sk and dk represent sum (ik þ jk) and difference (jik 	 jk j) of co-occurring pairs. L;Ls; and Ld are linked list lengths of these

three algorithms. m and s2 represent mean and variance necessary for calculating only the COR statistic. These are the mean and
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Given that the GLCM is quite sparse (relatively few

non-zero entries), this leads to many unnecessary

calculations and considerable computing overhead.

When applying this process to large remote-sensing

images, exceptional computation is required which

makes the algorithm not feasible in operational envir-

onments.

An example of a GLCM is presented in Fig. 2. Fig. 2A

depicts a square image window with a window size A ¼
B ¼ n ¼ 5 and G ¼ 4: Fig. 2B represents the corre-

sponding GLCM given (dx ¼ 1; dy ¼ 0). Note that this

GLCM is implemented in a symmetric manner, i.e. using

(dx ¼ 1; dy ¼ 0) and (dx ¼ 	1; dy ¼ 0) at the same time,

so that only the lower triangle needs to be stored. This

symmetry method has no loss of generality with respect

to generating discriminating features (Clausi, 1996) and

is advantageous due to reduced calculations when

applying the statistics. Minor adjustments to the

application of the statistics to a lower triangular matrix

are required so that identical features are determined

using a full matrix. With larger G; the matrix becomes

sparser with a corresponding increase in the computa-

tional burden to apply the statistics.

For full image segmentation, each pixel is represented

by its own feature vector (excluding the border pixels).

Given a particular window in the image, the derived co-

occurrence texture features (as a function of dx; dy;G; n;
and the selected statistics) represent a feature vector for

the window’s centre pixel. Once the co-occurrence

probabilities and statistics are determined for a given

window, the next centre pixel’s features are determined

by moving the window over one column. Since most of

the probabilities will remain the same, the probabilities

only have to be updated by including co-occurring

probabilities introduced by the new column and

subtracting co-occurring probabilities introduced by

the column left behind. Note that the larger the window,

the smaller the percentage of pixel pairs that will change.

By updating these probabilities when moving the

window column by column (or row by row), the entire

image can be covered using a ‘‘zigzag’’ path (Clausi and

Jernigan, 1998). This approach is computationally

advantageous and has been used for each algorithm

implemented in this paper.

2.3. Grey level co-occurrence linked lists (GLCLL)

In the GLCLL method, a sorted linked list stores only

the non-zero co-occurring probabilities. A linked list is a

data structure that allows rapid access from node to

node using pointers. The kth node in the list contains a

probability value (Pk) and the grey level pair (ik; jk).
Therefore, double summations over the entire GLCM

are avoided and only single summations over the length

of the linked lists (L) are required (Table 1). The linked

list length L is much smaller than the matrix size G � G;
so tremendous gains are achieved. GLCLLs are a

reduction in the computational demands relative to the

GLCM (Clausi and Jernigan, 1998). Given a variety of

window sizes and quantizations, the GLCLL method

required 0.20–18% of the computing time relative to the

GLCM, for a given test image across various window

sizes and grey level quantizations.

Maintaining the sorted list as the window moves

requires additional computation. First, whether or not

the co-occurring pair is represented on the linked list

must be determined. This check is easily performed if the

lists are sorted. If the co-occurring pair is represented on

the linked list, its probability value is updated. If the pair

is not represented, then a node is inserted and initialized

at the proper location in the list. Without a sorted list,

one would always have to search the entire list for a

particular grey level pair, which would be more time

consuming.

2.4. Grey level co-occurrence hybrid structure (GLCHS)

The GLCHS (Clausi and Zhao, 2002) uses a hybrid

implementation—a hash table to access a linked list

(Fig. 3). The hash table is dimensioned to the lower

triangle size that would be required by an equivalent

GLCM as in Fig. 2, i.e. GðG þ 1Þ=2. In this sense, the

constraint iXj is imposed. Access to the hash table is

provided by using (i; j) as a unique key, i.e. iG þ j: Each
entry in the hash table contains a pointer. If this pointer

is null, then the particular co-occurring pair (i; j) does
not have a representative node on the linked list. In this

case, a new node would be created, inserted at the end of

the linked list, and its grey level values set. If the pointer

is not null, then it points to an existing corresponding

node on the linked list. In this case, the only necessary

step is to increment the probability. This framework

allows for ease of modifying a probability associated

with a node, as well as adding and deleting nodes

without the need for a sorted list. The GLCHS will be
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Fig. 2. (A) 5� 5 image window with G ¼ 4 (range of 0–3).

(B) Corresponding lower triangle GLCM given (dx; dy)=

{(1, 0), (	1, 0)}.
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built in the order in which the co-occurring pairs are

encountered.

Fig. 3 illustrates the implementation of a GLCHS

using the image window from Fig. 2A. The pair (3,3) is

the first co-occurring pair in the image window, so it is

inserted at the start of the linked list. Similarly, the pair

(2,2) is inserted as the last node. This design significantly

reduces the completion times for determining co-

occurrence probability texture features. The hash table

allows rapid access to an (i; j) pair and the linked list

provides a fast means to apply the statistics. The

GLCHS is an improvement on the GLCLL method

requiring 28–38% of the GLCLL computation time and

0.10–32% of the GLCM computation time for the given

test image (depending on quantization and window size)

(Clausi and Zhao, 2002).

2.5. Sum and difference histograms

There exists a means of using vectors in the form of

sum and difference histograms for the purpose of

generating co-occurrence texture features (Unser,

1986). A sum and a difference associated with the

relative displacement (dx; dy) are defined as

sa;b ¼ ra;b þ raþdx ;bþdy ; ð4aÞ

da;b ¼ ra;b 	 raþdx ;bþdy : ð4bÞ

A sum histogram is defined as

Cði; dx; dyÞ ¼CsðiÞ

¼Cardfða; bÞAR; sa;b ¼ i;

1pa þ dxpA; 1pb þ dypBg; ð5Þ

where i ¼ 0; 1;y; 2ðGF1Þ: The corresponding differ-

ence histogram is defined as

Cd ðj; dx; dyÞ ¼CdðjÞ

¼Cardfða; bÞAR; da;b ¼ j;

1pa þ dxpA; 1pb þ dypBg; ð6Þ

where j ¼ 	ðG 	 1Þ;y;G 	 1: The normalized sum and

difference histograms are defined by

SðiÞ ¼ CsðiÞ=NH for all i; ð7aÞ

DðjÞ ¼ CdðjÞ=NH for all j; ð7bÞ

where

NH ¼
XHs

i¼1

CsðiÞ ¼
XHd

j¼1

CdðjÞ; ð8Þ

and Hs and Hd represent the lengths of the sum and

different histograms, respectively.

The normalized sum and difference histograms can be

used to determine co-occurrence texture features. Due to

similarity, and for succinctness, the statistics are

effectively represented in Table 1 under the GLCHH

heading. Here, the GLCHH uses Ls and Ld as upper

summation limits. The normalized sum and difference

histogram statistics would simply substitute Hs for Ls

and Hd for Ld for the GLCHH equations identified in

Table 1. Additional Haralick statistics (Haralick et al.,

1973) implemented using sum and difference histograms

are provided. Only a subset is used here for demonstra-

tion of commonly used statistics. The computational

advantage is obvious: summations over vectors of length

Hs ¼ Hd ¼ 2G 	 1 are used as opposed to summations
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Fig. 3. GLCHS method for determining image texture features. Nodes created are based on sample image in Fig. 2A. Double pointers

are created to access lower triangular matrix to represent hash table. Each pointer in hash table may then point to node on linked list.
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over matrices of size G � G in the GLCM approach.

Figs. 4A and B show the normalized sum and difference

histograms created based on the window in Fig. 2A.

These represent the probability of a given sum or

difference occurring within the window of interest. For

example, half of the co-occurring pairs have the same

grey level value; therefore, ‘0’ has a value of 0.5 in the

normalized difference histogram.

The drawback of the sum and difference histograms is

that they cannot be used to determine all of Haralick’s

statistics exactly (Unser, 1986). For example, the

statistics UNI, ENT, and MAX (see Table 1) cannot

be determined exactly using sum and difference histo-

grams (although estimates of two of these terms, namely

UNI and ENT, can be made).

3. Grey level co-occurrence integrated algorithm

(GLCIA)

This section will first discuss the design of the more

efficient method to implement the sum and difference

histograms using the GLCHS’s data structure. Then, the

complete final algorithm known as the GLCIA will be

presented by integrating the GLCHH and GLCHS

algorithms. The description of the GLCIA implementa-

tion concludes Section 3.

3.1. Grey level co-occurrence hybrid histogram

(GLCHH)

The sum and difference histograms are generally

sparse vectors, especially with smaller window sizes and/

or larger G: As a result, they may be implemented using

the hybrid data structure used by the GLCHS. These

pointer-based data structures will run faster than

standard vectors. This implementation will be referred

to as the GLCHH. The normalized sum and difference

histograms must each be represented using a hybrid data

structure. These will be referred to as the grey level co-

occurrence hybrid sum histogram (GLCHSH) and the

grey level co-occurrence hybrid difference histogram

(GLCHDH).

This concept is illustrated in Fig. 5. Fig. 5A represents

the sum histogram using a hash table with pointers

pointing to nodes on a linked list and Fig. 5B represents

the comparable implementation for a difference histo-

gram. Since a histogram is represented, only a one-

dimensional hash table is created which is accessed by a

single key (either the sum or the difference). As with the

GLCHS, the linked list is built based on the order in

which the co-occurring pairs are encountered in the

window. For example, the first node in Fig. 5A holds the

sum ‘6’ which represents the sum of the first co-

occurring pair encountered in the window of Fig. 2A

given dx ¼ 1 and dy ¼ 0: The dimension of the hash

table for the GLCHSH is 2G 	 1: To accommodate

the lower triangle GLCM (i.e. iXj) for the GLCHDH

(Fig. 5B) and maintain consistency across the earlier

algorithms, the hash table only needs to contain G

elements. That is, since iXj; no negative values would

appear in the difference histogram.

In the sum and difference histograms, each histogram

was a fixed length (Hs ¼ Hd ¼ 2G 	 1). In the above

implementation, only the sum or differences with non-

zero values are stored so that these fixed lengths only

represent the maximum lengths of the GLCHH im-

plementation. Ld and Ls represent the variable lengths

for the GLCHH implementation. The eligible statistics

used to calculate texture features based on the GLCHH

are indicated in Table 1.

3.2. Grey level co-occurrence integrated algorithm

(GLCIA)

Since only sums and differences need to be determined

using the GLCHH implementation, it represents, in

theory, a faster algorithm to calculate co-occurrence

texture features compared to the GLCHS, which

requires a two-dimensional hash table with longer linked

lists. However, as mentioned earlier, not all the statistics

commonly used can be calculated using normalized sum

and difference histograms. As a result, the GLCHH

method and the GLCHS method can be integrated to

produce a preferred method for determining co-occur-

rence probability texture features. This method is called

the GLCIA. Note that all of the methods compared here

calculate identical texture feature values.

Table 2 indicates the order comparison for each

technique. Each order is divided into two components.

The first term refers to determining the probabilities; the

second refers to the application of the statistics. With

regard to the first term, most methods are of O(n) due to

the zigzag updating scheme. The only method that
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Fig. 4. (A) Normalized sum histogram based on sample image

in Fig. 2A. Indices represent possible sums of co-occurring pairs

in sample image given relative displacement of (dx ¼ 1; dy ¼ 0).

(B) Normalized difference histogram based on sample image

in Fig. 2A. Indices represent possible differences of co-

occurring pairs in sample image given relative displacement of

(dx ¼ 1; dy ¼ 0).
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differs is the GLCLL which requires updating and

searching for a particular (i; j) pair which leads to O(nL),

where L represents the linked list length. With regard to

the second term, a indicates a generic order for each

method to account for applying each statistic. The

GLCM requires looping through the entire matrix which

requires OðG2Þ: The other methods depend on the length
of their linked lists, which is different for each of

GLCHS, sum and difference histograms, and GLCHH.

GLCHH is the preferred method since ðLs;LdÞo
ðHs;HdÞoL:

3.3. GLCIA implementation

The software is implemented in the C programming

language in a Unix environment using an in-house

library as a basis. Fig. 6 represents the flowchart of the

routine. First, the image file and the necessary para-

meters (dx; dy;G; n; statistics) are read. Window selection

begins at the top left corner of the image. Since the

window will move in a zigzag pattern to cover the entire

image, the window will move left to right for even rows
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Fig. 5. Sum and difference components of GLCHH data structure based on sample image in Fig. 2A. In each case, hash table is

dimensioned to number of indices indicated in Fig. 4 and relative displacement of (dx ¼ 1; dy ¼ 0) is used. (A) GLCHSH data structure

to store normalized sum histogram. (B) GLCHDH data structure to store normalized difference histogram.

Table 2

Comparison of computational orders across different

algorithms

Method Order

GLCM OðnÞ þOðaG2Þ
GLCLL OðnLÞ þOðaLÞ
GLCHS OðnÞ þOðaLÞ
Sum and difference histograms OðnÞ þOðaHsÞ

OðnÞ þOðaHdÞ
GLCHH OðnÞ þOðaLsÞ

OðnÞ þOðaLdÞ

First term represents computational order for creating prob-

abilities. Second term represents computational order for

determining statistics. Computational order improves as one

moves further down this list.
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and right to left for odd rows. Each movement of

the window leads to an updating step (left, right, or

down) and, as mentioned earlier, instead of re-

calculating all probabilities following a window shift,

the data structures are simply updated with the new

information.
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 end 

output features to file 

free memory

next row 

next column

next displacement 

begin 

read image 

report parameters 

read parameters (δx,δy,G,n,statistics)

start to determine image features 
for (row=0;row<nrows–n+1;++row)

row%2=0?

first window? 

Yes for (col=0; col<ncols–
n+1; ++col)

Yes No 

update linked 
list right

update linked 
list down

col = 0?

Yes No 

No 

Yes No 

for (col=ncols–n; 
 col>=0;--col)

update linked 
list left

update linked 
list down 

col = 
ncols-n?

create GLCHDH
based linked list

statistics=
uni,ent,max?

Yes No 

create GLCHS 
based linked list

for (j=0; j<num_displacement; ++j) 

for (i=0; i<statistics; ++i) 

temp =  head[j].next 

Yes 

while  (temp!=NULL)?

calculate features 

temp = temp.next 

No 

select GLCHS  
based linked list 

No Yes 

select GLCHH 
based linked list 

      statistics=cor ?

select GLCHDH 
based linked list

No Yes

statistics=uni,ent,,max?

create GLCHH 
based linked list

statistics
=cor? Yes 

No 

Fig. 6. Flowchart of GLCIA routine for determining co-occurrence probability texture features.
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Decisions concerning which data structures to create

are made based on which statistics have been selected.

Algorithm efficiencies (both speed and memory) are

introduced by limiting, when necessary, the co-occurring

information collected from the window. Not all

GLCHH statistics require both sum and difference

histograms (see Table 1). For any of DIS, CON, IDM,

and INV, the GLCHDH data structure is required. For

COR, both the GLCHDH and GLCHSH are required.

The GLCHS is used for any of the statistics UNI, ENT

or MAX. For each window, looping over all selected

displacement pairs is required to calculate the necessary

feature using the proper statistic.

4. Testing and results

This section is divided into four areas. First, the

methodology is outlined (Section 4.1). Following

this, completion times for the GLCIA method are

provided (Section 4.2). Then, these results are compared

to the GLCHS in terms of completion times and in

terms of linked list lengths (Section 4.3). Finally, the

GLCIA is applied to a large image to gain im-

proved understanding of its computational capabilities

(Section 4.4).

4.1. Methodology

Testing is performed on a Sun Sparc Ultra 1 200E

(200MHz, 128Mbyte RAM, 322 SPECint, 462 SPECfp)

workstation using a four-class 128� 128 pixel Brodatz

(Brodatz, 1966) test image (Fig. 7). Six window sizes

(5� 5, 10� 10, 15� 15, 20� 20, 25� 25, and 30� 30)

and five quantization levels (128, 64, 32, 16, and 8) are

used as parameters. The interpixel displacements (dx; dy)

are selected as {(1, 0), (1, 1), (0, 1), (	1, 1)}. The

program for each algorithm is based on the same

framework, i.e. the same routines for reading in the

image, writing out the features, etc. All that differs

between programs is the algorithm itself.

4.2. GLCIA completion times

Timed testing is performed for the GLCIA using three

scenarios.

(i) The first scenario uses all eight statistics indicated

in Table 1. This requires both the GLCHS (to

determine MAX, ENT, and UNI) and the GLCHH

(for the other five statistics CON, IDM, INV, DIS,

and COR);

(ii) The second scenario uses five statistics in Table 1

(CON, IDM, INV, DIS, and COR) that require the

GLCHH data structure, i.e. both the GLCHDH

and GLCHSH; and

(iii) The third scenario uses four statistics (CON, IDM,

INV, DIS) that require only the GLCHDH data

structure.

Table 3 indicates the test results using the GLCIA

algorithm for each of these three scenarios. The

indicated computation times are in units of ms/window.
Comparing across the three different scenarios is not

appropriate since each method applies a different

number of statistics. Determining speeds on a per

statistic basis (i.e. ms/window/statistic) is not appropriate
since statistics have different computational require-

ments. This table does indicate that larger n as well as

larger G increase computational times for the GLCIA

method, supporting the orders indicated in Table 2. This

increase is due to a higher number of co-occurring pairs

which leads to longer linked lists. Longer linked lists

require additional computation to add more nodes to the

linked list and, more significantly, to apply the statistics.

4.3. Comparing GLCIA to GLCHS completion times

Fig. 8 illustrates the GLCHS compared to the GLCIA

computational times as a function of G and n for each of

the three scenarios provided in Section 4.2. The GLCIA

completion times indicated in Table 3 as well as

comparable completion times for the GLCHS are

plotted. Table 4 indicates the percentage ratio of the

GLCHS vs. the GLCIA completion times for each test

indicated in Fig. 8. For all cases, GLCIA shows a

demonstrated improvement over GLCHS. In the case of

calculating all eight statistics, the percentage of the

computational time required ranges from 27.0% to
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Fig. 7. Brodatz (1966) 128� 128 test image.
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Table 3

Average GLCIA computational time (ms/sample) given G and n for each of three scenarios: eight statistics {DIS, CON, IDM, INV,

COR, UNI, ENT, MAX} (requiring GLCHH and GLCHS), five statistics {DIS, CON, IDM, INV, COR} (requiring only GLCHH),

and four statistics {DIS, CON, IDM, INV} (requiring only GLCHDH)

Grey levels (G) Window size (n � n)

5� 5 10� 10 15� 15 20� 20 25� 25 30� 30

GLCIA method (8 statistics) 128 12.4 38.4 75.3 119.9 169.3 217.5

64 11.2 33.1 62.0 92.3 122.8 149.5

32 9.8 24.9 41.6 54.2 63.9 71.7

16 7.7 16.1 21.4 25.5 28.6 31.6

8 5.9 9.5 12.0 13.9 15.9 17.9

GLCIA (GLCHH ) method (5 statistics) 128 10.1 19.8 27.3 34.9 36.5 40.3

64 8.1 13.8 18.1 21 23.1 25.0

32 6.8 10.2 12.7 15.2 16.6 19.4

16 5.5 7.8 10.0 11.8 13.9 15.8

8 4.6 6.4 8.5 10.1 12 14.3

GLCIA (GLCHDH) method (4 statistics) 128 6.9 11.9 15.4 19.5 20.2 21.7

64 6.1 8.8 11.1 13.2 14.4 16.6

32 4.9 6.6 8.7 10.0 11.6 13.4

16 4.1 5.7 7.2 8.9 10.4 11.5

8 3.3 4.9 6.7 7.9 9.2 10.8

window size (n x n)
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Fig. 8. Comparison of GLCIA and GLCHS computational times (ms/sample). (A) Average computational time comparison between

GLCHS and GLCIA data structures. Eight statistics {DIS, CON, IDM, INV, COR, UNI, ENT, MAX} are used. (B) Average

computational time comparison between GLCHS and GLCIA (GLCHV) data structures. Five statistics {DIS, CON, IDM, INV,

COR} are used. (C) Average computational time comparison between GLCHS and GLCIA (GLCHDV) data structures. Four

statistics {DIS, CON, IDM, INV} are used.
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53.9%. For the cases of four and five statistics, these

ranges are even lower (4.1–36.9% and 5.1–41.4%), as a

result of not having to use the hybrid structure. If one

wanted to determine texture features using only the

statistic CON, n ¼ 25; and G ¼ 64; then approximately

5% of the GLCHS computing time would be required.

If a GLCM is used for the same purpose, this would

amount to 9.1� 5–0.46% of the time required (using

Table 4 of Clausi and Zhao (2002)).

Reasons for the overall improvement of GLCIA

compared to GLCHS can be motivated by considering

the average linked list lengths across each sample

window in the image using GLCHS, GLCHSH, and

GLCHDH (Table 5). The terms in parentheses represent

the percentage of the indicated linked list length with

respect to the maximum possible linked list length for

that particular implementation (i.e. if a lower triangle

GLCM implementation was used). The linked list

lengths follow predictable patterns: increasing G or

increasing n increases the average linked list lengths. As

mentioned earlier and demonstrated here, longer linked

lists require additional computational time to maintain

the list (adding and deleting of nodes) and to apply the

statistics.

With increasing window size, the relative linked list

length between GLCHDH and GLCHS as well as

GLCHSH and GLCHS decreases. For example, given

G ¼ 128 grey levels and n ¼ 5 pixels, the GLCHDH

average linked list length is 12.9 and that of the GLCHS

is 17.4 (a ratio of 0.74). At n ¼ 30; this ratio becomes

0.077 (50.6/653.9). That is, with increasing window size,

the GLCHDH should become relatively more efficient

than the GLCHS when calculating co-occurrence

texture features. This result agrees with results in Fig. 8.

The percentage of the maximum linked list length

(indicated within brackets in Table 5) indicates that, as

expected, larger G and smaller n lead to sparser vectors

and matrices, GLCMs or sum/difference histograms

should be used. This demonstrates the enhanced need

for a storage mechanism that does not store zero

probability terms.

4.4. Application of GLCIA to full textured image

To give the reader an appreciation of the total time

required to determine co-occurrence texture features

using the GLCIA, a larger image will be considered.

Table 6 indicates computation times (in seconds)

required for determining co-occurrence texture features

given different statistics using a previously published

1000� 1000 pixel Brodatz image mosaic (Jain and

Farrokhnia, 1991, Fig. 13). Parameters include: G ¼ 32

and 64, n ¼ 32; and (dx; dy)={(1, 0), (1, 1), (0, 1),

(	1, 1)}. The statistics include combinations of CON

(requiring only the GLCHDH), COR (requiring both

GLCHDH and GLCHSH, i.e. the complete GLCHH),

and ENT (requiring the GLCHS). When CON alone is

determined, a total of 47 s is required for G ¼ 64 to

determine texture features for the whole image. Deter-

mining features using both CON and COR (requiring
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Table 4

Percentage ratios (%) for GLCIA vs. GLCHS, GLCIA (GLCHH) vs. GLCHS, and GLCIA (GLCHDH) vs. GLCHS in each sample

window based on data in Fig. 5

Grey

levels (G)

Window size (n � n)

5� 5 10� 10 15� 15 20� 20 25� 25 30� 30

Percentage of computational

time for full GLCIA

compared to GLCHS

(8 statistics)

128 53.4 37.9 32.9 29.3 28.8 27.0

64 50.5 36.1 31.4 29.8 28.2 27.0

32 48.8 34.7 32.8 30.8 30.2 29.8

16 47.2 37.0 36.0 36.3 35.4 36.6

8 53.6 45.9 47.1 48.4 51.0 53.9

Percentage of computational

time for GLCIA (GLCHH)

compared to GLCHS

(5 statistics)

128 41.4 19.8 12.2 9.0 6.3 5.1

64 34.2 15.4 9.5 6.9 5.3 4.6

32 32.2 14.4 10.1 8.6 7.9 8.2

16 32.5 18.3 16.8 16.3 17.6 18.1

8 39.3 29.8 31.6 32.9 34.6 38.4

Percentage of computational

time for GLCIA (GLCHDH)

compared to GLCHS

(4 statistics)

128 36.9 16.6 9.7 7.3 5.1 4.1

64 34.1 13.6 8.3 6.3 5.0 4.6

32 30.1 13.1 9.7 8.3 8.0 8.2

16 30.6 18.4 16.3 16.9 17.5 18.2

8 35.5 29.2 31.0 30.6 32.5 34.6
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the full GLCHH) requires 108 s, again for G ¼ 64:
However, once a statistic that requires the GLCHS is

used, the computational time required increases appre-

ciably. Determining ENT alone requires 538 s and

determining all three indicated statistics requires 653 s.

Keep in mind that these routines were run on a 200MHz

machine, and in theory, current 2.0GHz processors

would require 10% of the indicated computing time.

That is, in theory, CON would require less than 5 s and

CON/COR would require less than 11 s to perform the

processing for the indicated examples.

Using CON, ENT, and COR is a reasonable choice of

statistics for image texture segmentation (Clausi, 2002)

and it is practical to require approximately 1min (using

a 2.0GHz processor) to determine whether texture

features for a 1000� 1000 pixel image is practical.

Granted, remote-sensing images are often larger and one

may choose additional relative displacements to increase
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Table 5

Average linked list length and percentage with respect to maximum linked list length (in parentheses) for GLCHS, GLCIA

(GLCHSH), and GLCIA (GLCHDH) as a function of n and G

Grey

levels (G)

Window size (n � n)

5� 5 10� 10 15� 15 20� 20 25� 25 30� 30

Average linked list

length per sample

and (percentage of

maximum) for

GLCHS algorithm

128 17.4 (0.2) 80.2 (1.0) 183.4 (2.2) 318.9 (3.9) 478.4 (5.8) 653.9 (7.9)

64 16.7 (0.8) 73.4 (3.5) 157.4 (7.6) 253.8 (12.2) 351.2 (16.9) 442.5 (21.3)

32 15.0 (2.8) 57.6 (10.9) 105.4 (20.0) 145.3 (27.5) 175.1 (33.2) 197.1 (37.3)

16 11.8 (8.7) 34.3 (25.2) 49.3 (36.3) 57.9 (42.6) 63.6 (46.8) 68.1 (50.1)

8 7.5 (20.8) 15.2 (42.2) 18.4 (51.1) 20.2 (56.1) 21.4 (59.4) 22.3 (61.9)

Average linked list

length per sample

and (percentage of

maximum) for

GLCIA

(GLCHSH)

algorithm

128 16.2 (6.4) 62.9 (24.7) 112.5 (44.1) 148.0 (58.0) 169.0 (66.3) 180.8 (70.9)

64 14.8 (11.7) 49.1 (38.7) 74.2 (58.4) 86.6 (68.2) 92.6 (72.9) 96.2 (75.7)

32 12.6 (20.0) 33.2 (52.7) 42.6 (67.6) 46.3 (73.5) 48.4 (76.8) 49.9 (79.2)

16 9.7 (31.3) 19.5 (62.9) 22.7 (73.2) 24.2 (78.1) 25.1 (81.0) 25.8 (83.2)

8 6.5 (43.3) 10.6 (70.7) 11.8 (78.7) 12.3 (82.0) 12.7 (84.7) 12.9 (86.0)

Average linked list

length per sample

and (percentage of

maximum) for

GLCIA

(GLCHDH)

algorithm

128 12.9 (10.1) 30.5 (23.8) 39.1 (30.5) 44.1 (34.5) 47.7 (37.3) 50.6 (39.5)

64 10.2 (15.9) 18.8 (29.4) 22.4 (35.0) 24.7 (38.6) 26.4 (41.3) 27.9 (43.6)

32 7.2 (22.5) 11.0 (34.4) 12.6 (39.4) 13.7 (42.8) 14.5 (45.3) 15.3 (47.8)

16 4.7 (29.4) 6.4 (40.0) 7.1 (44.4) 7.7 (48.1) 8.1 (50.6) 8.6 (53.8)

8 3.1 (38.8) 3.8 (47.5) 4.2 (52.5) 4.5 (56.3) 4.7 (58.8) 4.9 (61.3)

Table 6

Total time (s) required using 200MHz computer to determine co-occurrence texture features given combinations of three frequently

used statistics

Total time (s) Probability time (s) Percentage probability time

G ¼ 64 G ¼ 32 G ¼ 64 G ¼ 32 G ¼ 64 G ¼ 32

CON/ENT/COR 653 346 102 87 15.6 25.0

CON/ENT 637 303 80 66 12.6 21.7

CON/COR 108 83 59 58 54.6 70.7

ENT/COR 637 340 102 87 16.0 25.5

CON 47 42 37 37 79.7 87.7

ENT 538 274 56 41 10.3 25.1

COR 109 78 59 58 59.5 74.1

CON: contrast; ENT: entropy; COR: correlation. ‘‘Probability time’’ refers to the time used just to calculate probabilities. The right

hand side column contains percentages of the ‘‘probability time’’ with respect to ‘‘total time’’.
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the feature space dimensionality; however, these com-

putational times allow the co-occurrence texture method

to be used in a wider context given the dramatic decrease

in times. Although not tested, it is reasonable to assume

that larger images would have a linear increase in the

computational time. For example, a 2000� 2000 image

would require approximately 4min to process. By

considering the results for the GLCHS algorithm (Clausi

and Zhao, 2002, Table 4), the GLCIA algorithm will

require (given all eight statistics and depending on

quantization and window size) 0.04–16% of the

computation time required by the GLCM. For the

preferred quantization levels of GX32 (Soh and

Tsatsoulis, 1999; Clausi, 2002), this is reduced to the

range 0.05–5.0%. If statistics that do not require the

GLCHS are used (i.e. MAX, ENT, and UNI are not

used) and GX32; then the GLCIA algorithm requires

0.04–1.3% of the GLCM computation time.

The GLCIA code fundamentally completes two tasks

given a particular window: determine the probabilities

and then apply the statistics to the probabilities to

generate the texture features. The second and third

column pairs in Table 6 indicate an approximation of

the amount of time and its associated percentage of the

total time required to determine the probabilities. For

ENT, using the GLCHS, which generates longer linked

lists than the GLCHH, close to 10% (or 56 s) of the

computational time is spent determining the probabil-

ities. The rest of the time (482 s) is spent applying the

statistics. CON, on the other hand, uses 80% (37 s) of its

computational time to determine its GLCHDHs, with

10 s spent on applying the statistic. Anytime the GLCHS

is required, significant computing is required to apply

the statistics relative to the GLCHH. Using GLCHHs

requires approximately the same amount of time to

generate the probabilities as the GLCHSs (note the 59 s

for COR and 56 s for ENT); however, the considerably

shorter linked lists of the GLCHHs allows the applica-

tion of the statistics to proceed much faster.

These results indicate that the GLCIA is a substantial

improvement on earlier implementations for rapid

determination of co-occurrence probability texture

features. This method would also be an improvement

on the binary tree implementation by Svolos and Todd-

Pokropek (1998) since the binary tree requires O(logm)

(where m is the cardinality of the set of elements stored

in the tree) to store the probabilities while the GLCHS

(using a hash table) requires only O(1).

5. Conclusion

This paper describes a rapid means of calculating co-

occurrence probability texture features. One reason that

the co-occurrence approach has not been suitable for

operational use is due to the exceptional computation

required. By applying the GLCIA, completion times are

dramatically reduced compared to traditional and other

recent methods to perform the same task. The GLCIA is

a highly recommended technique for anyone wishing to

calculate co-occurrence probability texture features,

especially from large-scale remote-sensing images.
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