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Abstract—This paper compares the discrimination ability of
two texture analysis methods: Markov random fields (MRFs)
and gray-level cooccurrence probabilities (GLCPs). There exists
limited published research comparing different texture methods,
especially with regard to segmenting remotely sensed imagery.
The role of window size in texture feature consistency and
separability as well as the role in handling of multiple textures
within a window are investigated. Necessary testing is performed
on samples of synthetic (MRF generated), Brodatz, and synthetic
aperture radar (SAR) sea ice imagery. GLCPs are demonstrated
to have improved discrimination ability relative to MRFs with
decreasing window size, which is important when performing
image segmentation. On the other hand, GLCPs are more sensitive
to texture boundary confusion than MRFs given their respective
segmentation procedures.

Index Terms—Comparison, discrimination ability, gray-level
cooccurrence probability (GLCP), Markov random fields (MRFs),
remote sensing, segmentation, texture features.

I. INTRODUCTION

T EXTURE, a representation of the spatial relationship of
gray levels in an image, is an important characteristic

for the automated or semiautomated interpretation of digital
images. Given the existing and expected volume of remote
sensing imagery to be processed, the use of computer-assisted
interpretation methods is important. Texture is recognized to
be an integral component of such interpretation processes.
Since synthetic aperture radar (SAR) imagery contains spatially
dependent class characteristics, texture extraction methods have
been commonly used for class discrimination. For example, in
the case of SAR sea ice imagery, texture has been recognized
to provide better characterization than using gray levels alone
[1]–[3]. Sea ice segmentation has been a challenging research
topic for years, and there are few publications about SAR
sea ice image segmentation using texture methods, especially
using unsupervised approaches. Many different variables may
influence the appearance of sea ice in a SAR image (e.g.,
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Fig. 1. GMRF parameters used to generate the synthetic textures [30].

Fig. 2. Test image pairs for the second research question. (a) Synthetic GMRF
textures (models A and B in Table I) (1024� 1024). (b) Brodatz textures (wood
grain and raffia) (1024� 1024). (c) SAR sea ice textures (L: first-year ice R:
multiyear ice) (768� 768).

tone, texture, season, geographical location, weather conditions,
etc.). The same ice type generally varies in appearance from
image to image as well as within the same image. Thus, the
selected training samples in a supervised algorithm may not
be sufficient to include all the class variability throughout the
image.

Many texture feature extraction methods exist. Tuceryan
and Jain [4] identify four major categories for texture fea-
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(a) (b) (c)

Fig. 3. Three texture images separated by straight boundary. (a) Synthetic texture. (b) Brodatz textures (paper and pigskin). (c) SAR sea ice textures.

tures: statistical (such as gray-level cooccurrence probabilities
(GLCPs) [5]), geometrical (including structural), model-based
(such as Markov random fields (MRFs) [6]), and signal pro-
cessing (such as Gabor filters [7], [8]). Limited research has
been conducted to compare methods between these major cat-
egories or to compare specific methods within each category.
Also, limited research is known that compares methods in
operational situations, such as the computer-assisted tactical
use of remote sensing imagery. Any such comparative studies
are summarized here.

Comparative texture studies not using remote sensing
imagery include the following. Randen and Husoy [9] exten-
sively compare only signal processing texture methods for
segmentation purposes. Pichler et al. [10], [11] investigate
wavelet segmentation methods applied to artificial and Brodatz
imagery. Ojala et al. [12] performed a classification-only
study comparing four second-order statistical operators (not
including GLCPs). Ohanian and Dubes [13] compared MRFs,
Gabor features, GLCPs, and fractal methods for classification
purposes. Conners and Harlow [14] perform a theoretical
classification comparison of GLCP, gray-level run length,
gray-level difference, and power spectrum methods.

A number of studies have compared texture operators using
remote sensing imagery. Weszka et al. [15] perform a remote
sensing classification study using the same statistics as Conners
and Harlow [14], with comparable results. Weszka et al.
found that the power spectrum features generally performed
poorly relative to the other feature sets. Carr and Miranda [16]
compare, in a classification context, a statistical method (the
semivariogram) with GLCPs. They utilize a variety of remote
sensing imagery for testing. Their results indicate that the semi-
variogram produced higher classification accuracies than the
GLCP method for microwave imagery and lower classification
accuracies than the GLCP method for optical imagery. Whether
or not one method is significantly outperforming the other is
unknown, since no statistical testing was performed. Gong
et al. [17] compare the GLCP method to a pair of alternative
statistical methods for land-use classification applied to a
Satellite Pour l’Observation de la Terre High Resolution Vis-
ible (SPOT HRV) band 3 land class image. They demonstrate

that the GLCP and simple statistical transformation methods
can largely improve the classification accuracies using only
the spectral images. Clausi [18] comprehensively compares
GLCPs, MRFs, and Gabor filters for classification using nine
classes of validated SAR sea ice imagery. Classification and
significance level testing demonstrate that GLCPs classify the
data with the highest classification rate, with Gabor filters a
close second. MRF results significantly lag Gabor and cooc-
currence results. However, the MRF features are uncorrelated
with respect to cooccurrence and Gabor features. The fused
cooccurrence/MRF feature set achieves higher classification
performance.

The background review yields limited research comparing
the two common texture approaches: model-based and statis-
tical texture categories. Comprehensive, recognized supervised
or unsupervised segmentation comparative studies using re-
mote sensing imagery are not known to the authors. The cited
comparison texture papers often only consider the classification
problem (using homogeneous texture window samples with
known class labels for training and testing), without consid-
ering full image segmentation, noted to be more challenging.
In the case of image segmentation, windows will sometimes
contain more than one texture class, making the feature ex-
traction and class assignment decisions far more challenging,
especially when unsupervised segmentation is employed. This
paper compares the unsupervised segmentation capabilities
of two popular texture methods: GLCPs (a statistical method)
and MRFs (a model-based method). Most notably, the paper
emphasizes the role of window size selection when determining
and utilizing GLCP and MRF texture features for unsupervised
segmentation. Test data includes synthetic (MRF generated),
Brodatz, and SAR sea ice imagery. Synthetic and Brodatz
imagery give the opportunity to test algorithms, where the class
assignments are known for certain; the same cannot be said for
the SAR sea ice imagery. Even though professionally created
ice charts are used for validation, the potential for ice type
mixing exists and is unavoidable.

The paper proceeds in the following fashion. Section II dis-
cusses the two feature extraction and segmentation schemes.
Section III motivates and poses a number of research questions.



CLAUSI AND YUE: COMPARING COOCCURRENCE PROBABILITIES AND MRFs 217

TABLE I
GMRF PARAMETERS USED TO GENERATE

THE SYNTHETIC TEXTURES [25]

This is followed by Section IV, which describes the experiments
and results used to investigate the research questions. A sum-
mary (Section V) concludes the paper.

II. TEXTURE ANALYSIS METHODS

This section briefly describes the two texture analysis
methods: GLCPs and MRFs.

A. GLCPs

GLCPs, first published by Haralick et al. [5], are the most
common method for texture feature extraction in the remote
sensing literature. The cooccurrence probabilities are the con-
ditional joint probabilities of all pairwise combinations of gray
levels ( ) in the fixed-size spatial window given two parame-
ters: interpixel distance ( ) and orientation ( ). To generate tex-
ture features based on the cooccurrence probabilities, statistics
are applied to the probabilities. Generally, these statistics iden-
tify some structural aspect of the arrangement of probabilities
stored within a matrix indexed on and , which in turn re-
flects some qualitative characteristic of the local image texture
(e.g., smoothness or roughness). There are many statistics that
can be used; however, due to the redundancy amongst these sta-
tistics, only three statistics are advocated for shift-invariant ap-
plications, since these should generate preferred discrimination
[3]. The selected statistics are dissimilarity (D), entropy (E), and
correlation (C). These have been used in this study, since each
tends to produce independent features with respect to features
produced by other cooccurrence statistics, and each represents
a different characteristic of the cooccurring probabilities [19].

There is no known rigorous optimal method for selecting
and a priori. In this paper, given no other information

concerning the texture of interest, the preferred parameters
will be as follows. Adjacent neighbors should be utilized,
motivating the use of 0 , 45 , 90 , 135 , and .
The standard approach is to use a symmetrical cooccurrence
matrix as determined by capturing 0 as well as 180 , 45
as well as 225 , etc. SAR texture is generally characterized
over spatial scales on the order of the sensor resolution, so
setting pixel for the interpixel spacing is appropriate. To
account for anisotropic behavior, individual orientations of 0 ,
45 , 90 , and 135 are advocated. This combination of offset
and orientation has characterized SAR texture well and has
been identified for being preferred for SAR sea ice applications
[3], [18]. Geomatica (a commercial remote sensing software
package created by PCI Geomatica Inc.) is used to generate
the cooccurrence texture features on a pixel-by-pixel basis.

Fig. 4. Change of standard deviation of the estimated GLCP texture features
and the GMRF model parameters with different window size. (a) GLCP texture
features (D: dissimilarity, E: entropy, C: correlation, � = 1). (b) GMRF model
parameters.

TABLE II
RATIO OF THE STANDARD DEVIATIONS FOR EACH WINDOW SIZE (64, 32, 16, 8)
WITH RESPECT TO WINDOW SIZE 96 FOR BOTH GLCP AND GMRF FEATURES

This software uses a fixed gray-level quantization level of 16.
The role of varying the gray-level quantization with respect
to GLCP statistics is presented in [19].

There are a variety of clustering approaches that could be
used to assign class labels to the GLCP feature vectors. For sim-
plicity, a standard -means clustering routine [20] is used for the
GLCP segmentation examples in this paper.

B. MRFs

MRFs are recognized for being effective for texture analysis
[21], [22]. Since the method allows a model of the grayscale
pattern to be created, algorithms are developed based on fun-
damental principles (as opposed to ad hoc heuristics) [23]. The
model parameters can be used to characterize the texture as well
as generate facsimiles of the texture [21]. The basic premise
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TABLE III
BHATTACHARYYA ERROR BOUNDS AND FISHER CRITERIA

OF THE TEXTURE PAIRS IN FIG. 2

is that neighborhood pixels are expected to have similar char-
acteristics. This method sets itself apart from the standard pat-
tern recognition methods that do not inherently account for the
image spatial interactions. As a result, these texture features and
the corresponding segmentation algorithm are quite different in
behavior than GLCP texture features combined with -means
clustering.

Let represent an image. Then, represents a random
variable at a site ( ) on the lattice system . For
convenience, can be indexed as , .
A label represents a site distinction in the image defined on .
Let be a set of discrete labels. For image segmentation, the
challenge is to assign an appropriate label from the set .

For a discrete label set , the probability that random vari-
able takes the value is denoted , abbrevi-
ated , and the joint probability is denoted

and abbreviated . is
said to be an MRF on with respect to a neighborhood system

if and only if and is only dependent on its
neighbors. The latter condition indicates that only neighboring
sites have direct interactions with each other.

Under the assumption of a Gaussian MRF (GMRF), the fol-
lowing model is produced [21]:

(1)

where is a real number representing the center pixel of the
neighborhood, and are a pair of pixels centered
around , is a zero-mean Gaussian noise, and represents
the MRF parameters, i.e., the parameters that describe the
model and characterize the texture. The summation is over
some neighborhood , as defined by the order of the MRF
model. The order of the MRF model is based on the distance
from the center pixel. For example, as shown in Fig. 1, the MRF
parameters weight the sum of a symmetrical pair of pixels.

(a)

(b)

Fig. 5. Averaged GLCP texture features over 50 arbitrarily selected rows from
Fig. 3(c) (between the two vertical lines are the boundary regions). (a) n = 16.
(b) n = 32.

The two first-order parameters will weight the symmetrical
neighbors at 1.x in Fig. 1. A second-order system would include
all the neighbors marked by 1.x and 2.x, generating a total of
four MRF parameters. A third-order system (all of 1.x, 2.x, and
3.x pairs) would require six MRF parameters, and so on.

Selecting the model order for a given dataset is an impor-
tant consideration. Here, the method developed by Kashyap and
Chellappa [24] is used to estimate the model order for each
dataset [25]. Using this method, the third-order GMRF model
is used for synthetic texture, and the fourth-order GMRF model
is used for Brodatz and sea ice textures.

For a given region, there are a number of ways to determine
the GMRF parameters. Here, a least squares approach is em-
ployed. In matrix notation, (1) is indicated by

(2)

where is a vector composed of all , and is a vector defined
by

(3)
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(a)

(b)

Fig. 6. Averaged GMRF model parameters over 50 arbitrarily selected rows from Fig. 3(c) (between the two vertical lines are the boundary regions). (a) n = 16.
(b) n = 32.

The least square estimation of the parameters is evaluated by

(4)

For every pixel in a given window defined by , a is deter-
mined. Then, for every window, a is estimated that provides
the GMRF features for that window.

The approach of model-based image segmentation is to
articulate the regularities between neighboring pixels mathe-
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Fig. 7. Estimated texture parameters of pixel s using a 5� 5 window should
be more similar to the parameters of texture B than A.

(a) (b)

(c) (d)

Fig. 8. Segmentation (using n = 16) of Brodatz texture image with
a three-cycle per image texture boundary. (a) Original image. (b) True
segmentation. (c) GLCP result. (d) GMRF result.

matically, and then to exploit this information in a Bayesian
framework to indicate which label has the highest probability.
During the segmentation process, the prior distribution models
are needed to capture the tendencies and constraints that
characterize the scenes of interest. This method will inherently
encourage nearest neighbor pixels to have a higher probability
of belonging to the same class.

For the segmentation problem, image is composed of two
components, namely a pixel intensity array and a corresponding

(a) (b)

(c) (d)

(e) (f)

Fig. 9. Segmentation of Brodatz texture image with an 11-cycle per image
texture boundary. (a) Original image. (b) True segmentation. (c) GLCP result
(n = 16). (d) GMRF result (n = 16). (e) GLCP result (n = 8). (f) GMRF
result (n = 8).

texture label array, i.e., . A Bayesian model is
used to describe the probability of a certain label for a pixel
given the pixel intensity. The iterated conditional mode (ICM)
method is used to perform the GMRF image segmentation [26].
For succinctness, details of this procedure are not detailed here.
Further details of the MRF models and Bayesian segmentation
procedure are found in [25]. Briefly, the segmentation proceeds
in two stages. First, the GMRF parameters must be estimated.
This must be done because the GMRF parameters are depen-
dent on the image data assigned to a particular label, and this
information is unknown a priori. So, to estimate the GMRF pa-
rameters, the image is divided into nonoverlapping windows.
For each window, the GMRF parameters are determined using
(4). Then, -means is used to group like estimates and produce
an estimate for a given label. Second, image pixels are assigned
to a particular label based on a Gibbs estimate. The estimate is
based on a Gaussian component (requiring the local image data)
and a label term (based on the neighborhood label assignments).
This is performed in an iterative fashion (over each pixel in the
image) until a stopping criteria or some minimum energy crite-
rion is met.
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III. RESEARCH QUESTIONS

The GLCP method is the preferred method for texture
feature extraction for SAR sea ice imagery [1], [3], [27].
However, to obtain an optimal solution, exhaustive combinations
of quantizations, displacements, window sizes, orientations,
and statistics must be performed. Brodatz imagery is often
used as a test base for texture analysis algorithms in the
research literature. Encouraging results have been obtained
for unsupervised texture segmentation using Brodatz textures
[28], [29]. Unfortunately, the texture appearance of a consistent
ice type is not as regular as a Brodatz texture, and most of the
time, different ice types as well as open water are interwoven
with each other. Can GMRF methods be used in SAR sea ice
image segmentation? Which of GLCP and GMRF produce
a better segmentation result? There exists limited published
research investigating the potential of GMRF methods in SAR
sea ice image segmentation. Although many efforts consider the
supervised classification potential of GLCPs, limited research
investigating its unsupervised segmentation potential are known.

An important aspect of texture segmentation (using GLCPs
or GMRFs) is the window coverage. Large windows produce
better estimates of the texture; however, in the case of segmenta-
tion, large windows can also lead to the undesirable situation of
multiple texture classes within a common window. Small win-
dows are less likely to contain multiple classes; however, the
limited coverage may produce misleading features. These is-
sues are investigated within the context of the following research
questions.

A. Research Questions

1) Influence of Window Size: How does window size influ-
ence the estimated individual GLCP texture features and GMRF
model parameters?

The same window size ( ) can be used to determine the GLCP
texture features as well as the GMRF model parameters. For
both methods, the size of is a very important parameter, and a
different number of pixels in can generate different estimation
results. It is necessary to evaluate the effect of window size on
the stability of each estimated GLCP texture feature and GMRF
model parameter. Conclusions with regard to this research ques-
tion can assist the selection of a suitable window size for each
method.

2) Cluster Separability: How does the window size influ-
ence the separability of the clusters of the estimated GLCP tex-
ture features and GMRF model parameters?

This research question compares GLCP texture features
versus GMRF model parameters for feature space separability.
For a given pair of textures, the feature space separability
for each of GLCP and GMRF features provides a means to
evaluate their texture identification ability. This evaluation will
act as a basis to help understand the cause of an ineffective
segmentation, presented later in the paper.

From this second research question, another issue can also
be addressed, i.e., given a sufficiently large window size, which
method is better at characterizing texture? The question is in-
spired by the fundamental difference of statistical-based and

(a) (b)

(c) (d)

(e) (f)

Fig. 10. Segmentation of Brodatz texture image. (a) Original image. (b) True
segmentation. (c) GLCP result (n = 16). (d) GMRF result (n = 16). (e) GLCP
result (n = 32). (f) GMRF result (n = 32).

model-based texture analysis techniques. MRF texture models
are associated with the natural formation process of the ana-
lyzed textures. The model-based texture analysis technique is
able to describe and reconstruct image textures. But, there is no
known method to synthesize textures based on the GLCP texture
features. From this point, it is a logical inference that the MRF
method is expected to contain more complete texture structure
information for distinguishing various textures than the GLCP
method.

3) Multiple Textures and Irregular Boundaries: Given a
window, what is the effect on the estimated GLCP texture
features and GMRF model parameters if the window contains
multiple textures with the possibility of irregular boundaries?

The first and second research questions deal with homoge-
neous texture samples. For the segmentation problem, some of
the selected texture samples will contain multiple textures. The
larger a window, the greater the probability that various classes
will be included in it. In this case, the estimation of GLCP
texture features or GMRF model parameters may be damaged.
What is the relationship of the estimated texture features from
the multitexture window with the texture features of each tex-
ture in the window?
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IV. METHODS AND TESTING

A. Research Question 1: Influence of Window Size

1) Method for Research Question 1: Influence of Window
Size: How does the window size influence the estimated indi-
vidual GLCP texture features and GMRF model parameters?

For a given texture, the relative change of a feature’s stan-
dard deviation as a function of window size is calculated. The
experiment is designed to check the effect of different window
sizes on the stability of the estimation in each dimension for
each method.

One synthetic texture (1024 1024) [generated using the
model parameters “A” in Table I and illustrated in Fig. 2(a)]
one Brodatz texture (1024 1024) (pigskin) (illustrated on
the right-and side of Fig. 3(b), and one SAR sea ice image
(768 768) [the multiyear component of Fig. 2(c)] are used
for the experiments. The SAR image, as obtained from the
Canadian Ice Services (CIS), was captured from the Beaufort
Sea, October 13, 1997, using Radarsat ScanSAR SW1 mode
(2 2 block averaged to 100-m pixels). Note that the SAR
images used in this paper have accompanying operational ice
charts produced at CIS. This information is used to deter-
mine ice types in the imagery. From each texture image, 60
window samples are randomly selected for each window size
( ). The standard deviation per feature
per window size is determined for each set of 60 samples. To
measure the relative change, the value of is normalized by
the of the 96 window size for a given feature.

2) Results for Research Question 1: Influence of Window
Size: Representative plots are provided in Fig. 4 using the
pigskin texture of Brodatz image (each dataset produced
similar results). These plots show relative changes of for
each estimated GLCP texture feature and each GMRF model
parameter from window size 96 to window size 8. Fig. 4(a)
plots six representative GLCP texture features, and Fig. 4(b)
plots the six third-order GMRF model parameters. A pair of
observations are noted. First, larger windows lead to more
stable texture features estimates than smaller windows. Sim-
ilarly, with decreasing window size, the of each estimated
GLCP texture feature and the GMRF model parameter increase
exponentially. Second, with decreasing window size, the of
each GMRF model parameter increases faster than the GLCP
texture features, especially from window size 32 to window
size 8.

These observations are supported by the values in Table II,
which indicates the average standard deviation ratios of each
estimation from all three textures used in this experiment. For
example, using the GLCP method, the largest average standard
deviation ratio is 9.33 using a synthetic texture based on com-
paring window sizes 8–96, whereas, the largest ratio using the
GMRF method is 28.32, which also occurred using the synthetic
texture and the window size 8 compared to 96. The GMRF’s
average standard deviation ratio of the smaller window sizes
(64, 32, 16, 8) to the larger window size (96) always exceeds
that of the GLCPs. Positive and negative values of the GMRF
model parameter behave quite differently in the texture forma-
tion process. In this case, large standard deviations could signif-
icantly damage the texture model estimation.

(a) (b)

(c) (d)

(e) (f)

Fig. 11. Segmentation of Brodatz texture image. (a) Original image. (b) True
segmentation. (c) GLCP result (n = 16). (d) GMRF result (n = 16). (e) GLCP
result (n = 32). (f) GMRF result (n = 32).

Based on this experiment, to obtain a stable estimation, the
GMRF method requires a relatively larger window size than the
GLCP to obtain the same degree of stability in the feature esti-
mates. It is noted here that textures are generally multiscale and
may require the use of more than one window size to perform
segmentation properly. For brevity, only the relative ability of
the GLCP and GMRF methods will be investigated in this paper.

B. Research Question 2: Cluster Separability

How does the window size influence the separability of the
clusters of estimated GLCP texture features and GMRF model
parameters?

1) Method for Research Question 2: Cluster Separa-
bility: This research question explores the effect of different
window sizes on the multidimensional feature space separa-
bility. The Fisher criterion [20] is used as a nonparametric
measure of the separability of two class clusters in the feature
space. This criterion calculates a ratio of the between-class
separability and the within-class variation. Larger Fisher cri-
terion values demonstrate improved separation of two classes.
Further insight can be obtained by calculating the upper bound
of classification error between feature cluster pairs using the
Bhattacharyya error bound [20]. In this case, smaller errors
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Fig. 12. GLCP segmentation result for STAR-1 image.

indicate better separability of two class clusters in the feature
space.

Three texture image pairs are used for testing, as illustrated
in Fig. 2. These include synthetic (1024 1024) (models A and
B in Table I), Brodatz (1024 1024) (wood grain and raffia),
and SAR sea ice texture images (768 768). The multiyear ice
is obtained from the same image used in Research Question 1.
The first-year sample uses the same modality and processing
but was captured from the Gulf of St. Lawrence on February 19
1997. Sixty sample windows with sizes 8, 16, 32, and 64 are
randomly selected from each image. The two images in each
pair represent internally consistent but mutually distinct texture
patterns.

2) Results for Research Question 2: Cluster Separa-
bility: Table III reports the Bhattacharyya error bounds
(BEBs) of each texture pair and the Fisher criterion ( ) of each
projected texture pair. A number of observations can be made.
When , all of the GLCP pairs have a lower Bhattacharyya
bound as well as a higher Fisher criterion compared to the
GMRF pairs. In contrast, for and , the GMRF
has lower Bhattacharyya bound and higher Fisher criterion.
Separability is relatively strong given smaller windows for
GLCP texture features compared to GMRF texture features.
However, for large windows, GMRF features are more sepa-
rable than GLCP features. Corresponding line projections (for
succinctness, these are not displayed here) visibly validate

Fig. 13. GMRF segmentation result for the STAR-1 image.

these numerical results. Testing for produces similar
results as for .

Based on this experiment, another conclusion in the second
research question can be obtained. With a large window size,
the GMRF model and GLCP texture features have capable sep-
arability given homogeneous samples. The BEBs are all at most
on the order of , indicating that the homogeneous 32 32
windows contain sufficient data to distinguish the given class
pairs.

C. Research Question 3: Multiple Textures and Irregular
Boundaries

Given a window, what is the effect on the estimated GLCP
texture features and GMRF model parameters if the window
contains multiple textures with the possibility of an irregular
boundary?

1) Method for Research Question 3: Multiple Textures
and Irregular Boundaries: Features for windows containing
multiple textures can produce misleading segmentation results.
Based on the calculation of GLCP texture features and GMRF
model parameters, a reasonable assumption is that the extracted
GLCP or GMRF texture features from a multitexture window
should have a linear weighting proportional to the area coverage
of individual texture features. For example, given two texture
types A and B in window , then , where

is any texture feature of window , is the area proportion
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Fig. 14. GLCP segmentation result for Radarsat image captured over the Gulf
of St. Lawrence (February 19, 1997).

of texture A in window , is the area proportion of texture B
in window , and .

2) Results for Research Question 3: Multiple Textures and
Irregular Boundaries: Fig. 3(a)–(c) shows three bipartite tex-
ture images, each 256 256: synthetic, Brodatz, and SAR sea
ice, respectively. Texture estimates for each image are estimated
based on two window sizes ( , ) for samples cen-
tered at each pixel across 50 randomly selected rows. Selected
results are only presented for the sea ice image [Fig. 3(c)] be-
cause results for other images are similar in nature. Figs. 5 and
6 depict the average feature values for the 50 samples for each
of GLCP and GMRF texture features, respectively. The vertical
line pairs represent the window extent when centered on the
boundary of the two textures. The resulting parameters change
in approximately a linear manner from one texture to another.

This experiment demonstrates that texture measures using
either method can be damaged by the multitexture windows.
Given a window with multiple textures, each estimated GLCP
texture feature seems to be a weighted linear combination of the
corresponding GLCP texture features of each texture. The same
conclusion applies to each estimated GMRF model parameter.

Consequently, significant segmentation error can occur, as il-
lustrated by Fig. 7. The boundary between textures A and B is a
right angle. Nine pixels in a 5 5 window are located on pixel ,
and 16 pixels belong to texture B. Pixel belongs to texture A.

Based on the above experiment, for both methods, the derived
features will be closer to texture B than to texture A, encour-
aging pixel to be misclassified as texture B. In this case, the
corner pixel would be eroded, since it would be erroneously
classified as texture B. This example illustrates that textured im-
ages with irregular boundaries will strongly affect the perfor-
mance of the texture segmentation methods. Commonly, texture
feature images in the research literature utilize straight bound-
aries, which can provide misleading results if extrapolated to
natural imagery with irregular texture boundaries.

How do these damaged estimations affect the segmentation
results for each method? Figs. 8 and 9 show the segmentation
results of two bipartite images with different texture boundaries.
To concentrate on the effect of the textural boundary on the seg-
mentation, each image contains the same two Brodatz textures
(paper and pigskin). In the case of a straight vertical boundary
given both and , GLCP and GMRF texture fea-
tures and their associated segmentation schemes successfully
segment the image (not shown for brevity).

Fig. 8(a) has a sinusoidal boundary with three periods, which
makes it difficult to distinguish compared to a straight boundary.
For each GLCP and GMRF, a 16 16 window size is used,
and the segmentation result is effective. By increasing the fre-
quency of the sinusoidal boundary, a more difficult segmenta-
tion problem is produced (see Fig. 9). The segmentation results
for both GLCP and GMRF using a 16 16 window are unsuc-
cessful [see Fig. 9(c) and (d)]. Fig. 9(e) and (f) shows the seg-
mentation results using an 8 8 window size. In this case, the
GLCP method produces a much better segmentation than the
GMRF method. Also, generates a much better result than

, given the GLCP texture features.
For multiple texture images with simple boundaries, sample

windows will contain single textures more often than such im-
ages with complex boundaries. For simple boundaries, both the
GLCP and GMRF methods can produce correct feature esti-
mates, which leads to an accurate segmentation. For complex
boundaries, both methods may have damaged features estimates
that can erode the quality of the segmentation. To minimize the
effect of multiple texture windows, small windows should be
used. In such cases, the GLCP method should be employed, as
supported by the first two research questions.

D. Image Segmentation Results

In this section, the GLCP and GMRF methods will be ap-
plied to the segmentation of two Brodatz and three SAR sea
ice images. Note that the Brodatz images contain boundaries
that are simple relative to the boundaries found in SAR sea
ice imagery. The first example is a three-class Brodatz image
[Fig. 10(a)]. The true segmentation is illustrated in Fig. 10(b).
Given a window size of , GLCPs [Fig. 10(c)] are better
able to segment the image than GMRFs [Fig. 10(d)]. When
the window size is increased to , GMRFs generate
a marginally better segmentation [Fig. 10(f)] than the GLCPs
[Fig. 10(e)]. Both methods produce improved segmentations
when the window size is increased; however, the relative im-
provement for the GMRF method is significant. The GMRF
method requires a larger spatial extent to estimate the model
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Fig. 15. GMRF segmentation result for a Radarsat image captured over the
Gulf of St. Lawrence (February 19, 1997).

Fig. 16. GLCP segmentation result for a Radarsat image captured over the
Beaufort Sea (October 13, 1997).

parameters and perform an accurate segmentation. Also, for

Fig. 17. GMRF segmentation result for a Radarsat image captured over the
Beaufort Sea (October 13, 1997).

, the GMRF method has a better approximation for the
curved boundary.

The second Brodatz image [Fig. 11(a)] contains four tex-
tures separated by horizontal and vertical sinusoidal boundaries.
Once again, the larger window size ( ) allows the GMRF
method to produce a reasonable image segmentation [Fig. 11(f)]
compared to a window size of [Fig. 11(d)]. The GLCPs
are not able to properly identify the boundary region between
the textures [Fig. 11(c) and (e)]. The GMRF segmentation pro-
cedure produces a superior result for this case. The GMRF seg-
mentation process is advantageous because it uses a label image
model that encourages neighbor pixels to be assigned to the
same class.

From the earlier testing using different window sizes (see
Table II), one can see that both methods prefer a larger window
size to obtain a robust estimation. But, the larger window size
may cause a segmentation problem using the GLCP method in
the boundary area, i.e., the true boundary between textures may
be blurred, and sometimes, the pixels along the boundary areas
could be misclassified as another texture class. To overcome
this boundary problem, the window size should be as small as
possible for the GLCP method. Using the GMRF method, such
a small window size may compromise the quality of the tex-
ture features. As a result, the GMRF window size should be
as large as possible. As discussed previously, given complex
texture boundaries, a large window could also damage the es-
timated parameters.

The last three segmentation results are based on SAR sea
ice images. Because the sea ice texture has a finer appearance
than Brodatz textures, for these images, the window size used
in the GLCP method is 13 13, and the window size used in
the GMRF method is 16 16. The full sea ice image presented
in Figs. 12 and 13 was first published in [31]. The image is
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a STAR-1 X-HH image (6-m resolution). Here, a 336 466
subimage of the full image is used. Two ice types are identified:
first-year ice and multiyear ice. Both methods can distinguish
the two ice types. The boundaries generated from the GMRF
method are more accurate than the GLCP method. Visually ob-
serving the boundary locations in these two figures, one can see
that the edges determined by the GMRF method present more
appropriately the boundaries of different ice types. However, the
GMRF method has problems to properly discriminate the mul-
tiyear ice in the floes close to the bottom of the image.

The second SAR sea ice image is a Radarsat ScanSAR SW1
C-band HH image obtained from CIS. The pixel spacing is
100 m (2 2 block averaged), and the image size is 495 669.
The scene was captured over the Gulf of St. Lawrence on Feb-
ruary 19, 1997, in a descending orbit. The image segmentations
are found in Figs. 14 (GLCP) and 15 (GMRF). Both methods
are readily able to perform the segmentation; however, the
GMRF method has relatively better boundary approximations.
Many of the thin first-year ice regions separating the multiyear
floes are not recognized, due to poor features estimates for
such regions.

The third sea ice image was also obtained from CIS. The
image has the same parameters as the previous SAR image;
however, this image was obtained October 13, 1997, in an as-
cending orbit over the Beaufort Sea and is 486 486. Edge
maps are displayed in Figs. 16 (GLCP) and 17 (GMRF), and
region maps are displayed in Figs. 18 (GLCP) and 19 (GMRF).
Such a SAR image illustrates a more difficult task for an au-
tomated segmentation algorithm for operational ice reconnais-
sance. Multiyear ice, new ice, and gray ice are contained in the
image. The new ice (dark tone) can be found in the middle of
the image. Gray ice is found in the top and bottom regions of the
image. The multiyear ice floes with a brighter tone than gray ice
are mingled with the gray ice and can be found primarily in the
top region.

The GLCP method and GMRF methods generate different
segmentation results, and both methods do not perform as
well as the first two SAR images. Generally speaking, the
GLCP method generates a better segmentation image than
GMRF method. The GMRF method tends to underrepresent
the amount of new ice, confusing it with gray ice. Relatively,
the GLCP segmentation generates a better segmentation of
the new ice region. In distinguishing multiyear ice and gray
ice, the two methods have a different tendency. The GMRF
method is unable to properly capture locally uniform texture
characteristics, and the segmentation result appears more
discontinuous than GLCP method. The GLCP method tends
to confuse the multiyear ice with gray ice on the top region of
the image, delineating the gray ice more than it should. Note
that the human observer would tend to identify the gray ice
in the bottom left as gray ice, due to the nature of the shape
of the leads in that region. Younger ice (such as gray ice)
tends to produce leads with the observed characteristic shapes,
providing an additional basis for manual ice classification.

Comparing the three ice images, one can notice that the pat-
tern of each ice type in the first two SAR images is more ac-
curately defined than the pattern in the third image. Also, the

Fig. 18. GLCP segmentation result with regions identified for a Radarsat
image captured over the Beaufort Sea (October 13, 1997).

Fig. 19. GMRF segmentation result with regions identified for a Radarsat
image captured over the Beaufort Sea (October 13, 1997).

texture patterns of the ice types in the first two images have a
more visually distinct difference than those in the third image.
Finally, the multiyear ice and gray ice in the third SAR image
have considerable mixing, leading to each having smaller local
image extent. All of these could result in a poorer model estima-
tion and make the third image more difficult to segment using
the GMRF method. It is possible that the pixel resolution of the
Radarsat image (100 m) contributes to the poorer segmentation
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result relative to the STAR-1 image (6-m resolution). Opera-
tionally, it is more cost-effective to utilize the Radarsat imagery,
and algorithms should be developed in support of this platform.

V. SUMMARY

There exists a lack of published research comparing unsuper-
vised texture segmentation methods. Gray-level cooccurrence
probabilities and Gaussian Markov random fields are two pop-
ular texture methods. GLCPs are commonly applied to remote
sensing imagery in the research literature, while GMRFs have
not been used extensively for this purpose. The goal of this paper
was to develop a better understanding of the ability of each
method in the unsupervised segmentation of SAR imagery by
considering the role of window size in the segmentation process.

A number of research questions were posed and studied,
producing the following results. GMRFs require increased
window sizes relative to GLCPs to produce stable texture
estimates. GLCPs produce more separable texture features for
smaller windows than the GMRF texture features. Across three
different datasets (synthetic, Brodatz, and SAR), a window
size of 32 was deemed sufficiently large to obtain separable,
consistent texture features. However, such a large window size
can lead to segmentation error due to the higher risk of multiple
classes appearing in the same window. Given a window with
multiple textures, a linear weighting of the ratio of the textures
in the image generates the overall texture feature. Such a
weighting can lead to erroneous boundary delineation and can
even misclassify the boundary itself as an incorrect class. The
segmentation of classes separated by irregular boundaries found
in remote sensing imagery will be affected by this problem. The
texture literature often utilizes convenient texture boundaries,
yet complex boundaries, coupled with varying local class
spatial extents, pose greater challenges to the operational use
of image segmentation algorithms.
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