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Preserving boundaries for image texture segmentation using grey
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Abstract

Texture analysis has been used extensively in the computer-assisted interpretation of digital imagery. A popular texture feature extraction
approach is the grey level co-occurrence probability (GLCP) method. Most investigations consider the use of the GLCP texture features
for classification purposes only, and do not address segmentation performance. Specifically, for segmentation, the pixels in an image
located near texture boundaries have a tendency to be misclassified. Boundary preservation when using the GLCP texture features for
image segmentation is important. An advancement which exploits spatial relationships has been implemented. The generated features
are referred to as weighted GLCP (WGLCP) texture features. In addition, an investigation for selecting suitable GLCP parameters for
improved boundary preservation is presented. From the tests, WGLCP features provide improved boundary preservation and segmentation
accuracy at a computational cost. As well, the GLCP correlation statistical parameter should not be used when segmenting images with
high contrast texture boundaries.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Texture is a significant property in digital imagery. It has
an important role in human visual perception and offers
information for recognition and interpretation. Consequen-
tially, considerable research effort has been focussed on tex-
ture analysis in recent years. In general, unsupervised image
texture segmentation involves (1) extracting each pixel’s tex-
ture features and (2) clustering like pixels based on their fea-
tures. Selecting texture features which are independent and
discriminable will aid in the segmentation process. Tuceryan
and Jain categorize the various texture analysis methods into
four groups: statistical, geometrical, model-based and signal
processing-based [1]. Here, a particular statistical method is
studied for its ability to perform texture image segmentation.
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The grey level co-occurrence probability (GLCP) method
is a second-order statistical texture analysis approach [2].
The GLCPs describe the probability of any grey level occur-
ring spatially relative to any other grey level, within a given
image window. From this distribution, many parameters are
applied to generate features.

Texture analysis studies generally focus on image classi-
fication [3–7], rather than segmentation. Classification stud-
ies are concerned with identifying regions of pure texture
samples within an image, and do not focus on interpreting
the image in its entirety. As a result, classification studies do
not address performance issues that occur in regions with a
mixture of classes. In addition, most applications of com-
puter vision are concerned with identifying an entire scene;
hence, classification studies are not truly indicative of real-
world problems.

Texture features tend to misclassify and erode texture
boundaries during segmentation [8]. “When the input im-
age contains a large number of textures, the boundary
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regions between textures are more likely to form new classes
during the clustering procedure. Furthermore, many texture
categories together with the boundary classes may overlap
in the feature space [9, p. 179]”. Boundary misclassification
becomes especially problematic when using larger window
sizes and for images with irregularly shaped texture bound-
aries [10]. However, when using the GLCP method, large
window sizes are necessary to gather sufficient data to char-
acterize local texture regions; small window sizes will result
in poorly sampled co-occurring probabilities and will pro-
duce incoherent features. This paper will present an innova-
tion to the GLCP technique which will improve boundary
accuracy for image segmentation applications. This method
is referred to as the weighted GLCP (WGLCP) method.

Research involving the selection of proper parameters for
the co-occurrence method when applied to image segmenta-
tion is unknown. Many studies consider parameter selection
based on classification of pure samples [3–7], but recommen-
dations from these papers may not be suitable for the seg-
mentation case. In order to properly use the co-occurrence
method for image segmentation, care must be made in terms
of proper parameter selection. Results from the classifica-
tion studies can be used as a starting point for such an in-
vestigation.

This paper is arranged in the following manner. Section
2 gives an overview on how to generate the GLCP and
WGLCP texture features. Section 3 investigates the individ-
ual texture statistics’ suitability for boundary response per-
formance. Section 4 is a comparative segmentation study
and conclusions are presented in Section 5.

2. Texture feature generation

2.1. Grey level co-occurrence texture features

The co-occurrence method provides a second-order ap-
proach for generating texture features [2]. Given a spatial
window within the image, the co-occurrence method finds
the conditional joint probabilities, Cij , of all pairwise com-
binations of grey levels given the inter-pixel displacement
vector (�x, �y), which represents the separation of the pixel
pairs in the x- and y-directions respectively. The set of grey
level co-occurring probabilities (GLCP) can be defined as:

Cij = Pij∑G−1
i,j=0 Pij

, (1)

where Pij represents the frequency of occurrence between
two grey levels, i and j, for a given displacement vector
(�x, �y), for the specified window size. G is the number
of quantized grey levels. Traditionally, the probabilities are
stored in a grey level co-occurrence matrix (GLCM), where
index (i, j) in the matrix represents the probability Cij .
Statistics are applied to the GLCM to generate texture fea-
tures which are assigned to the center pixel of the image

window. Three commonly used grey level shift invariant
statistics are:

Entropy(ENT) −
G−1∑
i,j=0

Cij log Cij , (2)

Contrast(CON)

G−1∑
i,j=0

Cij (i − j)2, (3)

Correlation(COR)

G−1∑
i,j=0

(i − �x)(j − �y)Cij

�x�y

. (4)

Extraction of GLCP texture features from an image requires
expert knowledge of the parameters involved. The param-
eters used by the GLCP method are: (1) image quantiza-
tion (G), (2) displacement vector (�x, �y), (3) window size
(nx, ny) and (4) statistic selection. For G, Soh and Tsatsoulis
[7] indicate that setting G to 64 is sufficient. Clausi [5] rec-
ommends setting G to 24, however, larger values of G (> 64)

are deemed excessive. Selection of interpixel displacement
vector (�x, �y) is dependent on the nature of the textures to
be segmented [11]. The displacement vector can be repre-
sented by polar co-ordinates: displacement (�) and orienta-
tion (�). Typically, four common orientations (0◦, 45◦, 90◦
and 135◦) are used as they are easy to calculate. Small win-
dow sizes will cause poorly sampled co-occurring probabil-
ities in the region of interest. This leads to an inconsistent
estimate of the individual texture features, thus poorer seg-
mentation [12]. However, if the window size is too large, it
is more likely to overlap multiple classes in the image, thus
eroding class boundaries.

Many of the statistics suggested by Haralick [2] produce
highly correlated texture features [13,3,6] which is not de-
sirable [14]. Baraldi and Parmiggiani [13] recommend that
energy (or entropy) and contrast are the most significant
texture statistics. Barber and LeDrew [3] indicate the best
texture discrimination is achieved for a set of three texture
statistics considered simultaneously. Clausi [5] studied the
relationship of the statistical parameters and concludes that
entropy, contrast and correlation compose a preferred set of
statistical parameters.

2.2. Weighted grey level co-occurrence probability
(WGLCP) texture features

2.2.1. Motivation
Large windows used for feature extraction are problem-

atic for images with irregularly shaped texture boundaries
and in regions of high boundary density. Boundary den-
sity is defined as the percentage of boundaries found in a
given image window. A boundary differs from an edge in
that it defines the border between two classes in an image;
whereas an edge is any high contrast delineated region in
an image. Mathematically, the boundary density for a given
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rij = (rx, ry)

A'

A

Fig. 1. Measuring the pixel pair distance to the center of the image
window.

rectangular window (W) in an image is defined as∑
∀x,y B(x, y)

nxny

, (5)

where nx , ny are the number of columns and rows in W
respectively, and x, y are the co-ordinates of W. B(x, y) = 1
if the pixel is a boundary and 0 otherwise.

Although features generated from the GLCM are assigned
to the center pixel of the image window, all pixel pairs in
the window are given a uniform probability weighting. This
implies that pixel pairs far from the center of the image win-
dow will have the same impact to the feature measurement
as those close to the center. A Gaussian weighting scheme
is proposed which will be based on the pixel pair’s distance
from the center of the window. This technique will be re-
ferred to as the weighted GLCP (WGLCP) method. As illus-
trated in Fig. 1, the location of the pixel pair to the center of
the image window determines the relative probability of co-
occurrence for the weighted GLCM. The greater the length
of A-A′ in the figure, the lower the probability of occur-
rence. By employing this weighting scheme, larger window
sizes are permitted which is expected to lower the variability
of the texture features. As well, the weighting scheme will
provide better neighborhood approximations of the feature
values, thus preserving the texture boundaries.

2.2.2. Generation of weighted co-occurrence texture
features

Assume for the image window, W, that nx and ny are odd
numbers. Then the image window can be indexed as follows:
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(6)

where Wx × Wy is the set of pixels in the image window
indexed by their x–y (i.e. column–row) designations. This
indexing scheme is selected so that the origin (0,0) of the
image window will reside at the center pixel location, which
is convenient for calculating the WGLCPs. The grey levels
in the image window can be represented as a function of the
index as follows:

W(x, y) = k where k ∈ {0, 1, . . . , G − 1}. (7)

Given two pixels in the image window that are separated by
(�x, �y), one with grey level i, the other with grey level j, the
pixel pair location is simply the mean location of W(x1, y1)

and W(x2, y2), and is defined as follows:

rxy|ij =
(

x1 + x2

2
,
y1 + y2

2

)
= (rx, ry)|W(x1, y1) = i, W(x2, y2) = j ,

(�x, �y) = (x1 − x2, y1 − y2). (8)

In Section 2.1, Pij is defined as the co-occurring frequency
between two grey levels. However, in the weighted for-
mulation, Pij is the non-normalized weighted co-occurring
probability and is a Gaussian function of rxy|ij . Formally,
for a fixed interpixel displacement vector (�x, �y), the non-
normalized weighted co-occurring probability is

Pij

(
rxy|ij

) =
∑

∀rxy|ij

1

2��x�y

× exp

{
−1

2

[(
rx

�x

)2

+
(

ry

�y

)2
]}

, (9)

where �x and �y represent the standard deviation of the two-
dimensional Gaussian probability density function (pdf).
The GLCM data structure is used to store these weighted
probabilities, hence, Eq. (1) can be used to normalize Pij

to generate Cij . As before, the statistics entropy, contrast,
and correlation are applied to generate texture features.

2.2.3. Selecting standard deviation
The WGLCP requires determination of �x and �y . Since

square image windows are used, � = �x = �y . Smaller stan-
dard deviations (�) indicate that pixel pairs further away
from the center of the image window should be given less
significance, whereas larger values for standard deviation
provide a more uniform weighting scheme. Since the size of
the image window determines the maximum Euclidean dis-
tance that a pixel pair will be from the center, the standard
deviation should be selected accordingly.

Choice of an appropriate window size is influenced by the
boundary density of an image. For circumstances with high
boundary density, a smaller window size is recommended
so that there is less texture boundary overlap. Once an ade-
quate window size is selected for a given image, the standard
deviation can be selected. To maximize the energy of the
Gaussian pdf within the effective image window, the stan-
dard deviations are estimated to be 1

4 of the window size.
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This captures approximately 95 percent of the pdf’s energy
(area) in the effective window. Formally, the standard de-
viation can be written as a function of the window size as
follows:

�x = nx

4
, �y = ny

4
. (10)

3. Boundary response performance

A boundary transect is a profile view of a texture feature
as the image window moves across a texture boundary. This
section uses boundary transects to compare different fea-
tures. The first test will compare the relative performance
of the GLCP and WGLCP features, whereas the second test
will investigate the suitability of the texture statistics.

3.1. Explanation

Fig. 2 illustrates a bi-partite image with a vertical bound-
ary. The left side of the image is texture “A” and the right
side is texture “B”. Using the parameter set outlined in
Table 1 with a window size of 19 × 19, the boundary tran-
sects are calculated as follows:

(1) Randomly select a row in the image.
(2) For each column in the given row, calculate the relevant

GLCP and WGLCP statistics for the different displace-
ment vectors.

Fig. 2. Visual interpretation of edge transects. Illustrated are ideal
(step-like), over- and under-damped texture boundary transitions for the
edge transects. Each type of response will have impact on the feature
space separability.

Table 1
GLCP and WGLCP parameters used in feature extraction

(W)GLCP parameters Values

Displacement vector (1, 0), (1, 1), (0, 1), (−1, 1)

Quantization 32 levels
Statistics entropy, contrast, correlation
Standard deviation n/4 = 4.75 (for WGLCP only)

(3) As the selected textures are isotropic in nature, average
each statistic over the four displacement vectors used.

(4) To increase the signal-to-noise ratio, repeat steps 1 to 3
twenty times and average over the twenty samples.

(5) Normalize each feature dimension to the range [0, 1] to
resolve the scales between the different features.

(6) For each feature, plot the feature value versus image
column position.

Ideally, the value of a feature will have a step-like tran-
sition as it crosses the texture boundary, which results
in well-defined separable classes in the feature space. In
theory, the transition can also be over- or under-damped
[15]. Clausi and Yue [10] indicate the boundary response is
expected to be over-damped for most scenarios. The under-
damped scenario is unanticipated as they expect there to be
a relatively linear weighting between the texture features
across the boundary. These three scenarios are outlined in
Fig. 2. An over-damped response causes a higher within-
class variance and lower between-class separability, re-
sulting in poorer cluster discrimination relative to the step
response. When the response is severely under-damped
(impulse-like), the boundary response will have significant
overshoot as it crosses the texture boundary and cause a
confounding feature space. Essentially, features which are
close to the boundary can form a distinct and separable
third class (Fig. 2) when there is high boundary density.
This will cause clustering algorithms to separate boundary
versus non-boundary pixels rather than different textures.

3.2. Comparing GLCP and WGLCP features

3.2.1. Test data
The first test image (Fig. 3a) consists of synthetic aperture

radar (SAR) ice (left-side) and water (right-side) textures.
These textures are from the Beaufort Sea (June 1998) ac-
quired from the Radarsat-1 platform, ScanSAR wide beam
mode. This mode operates in C-band frequency, HH polar-
ization, and is 50 × 50 m resolution that is 2 × 2 block aver-
aged. The second test image (Fig. 4a) is comprised of cork
(left-side) and wool (right-side) textures from the Brodatz
photo album [16]. The textures for this image are adjusted
to have the same mean grey level (DC shift with no infor-
mation loss).

3.2.2. Methods of analysis
To determine which feature set provides better boundary

preservation, a comparison of the gradient for each feature
as it crosses the texture boundary is computed. For a window
size of 19 × 19, approximately 10 samples of the gradient
are taken across the boundary and averaged; this is defined
as the average gradient for the texture boundary. This num-
ber of samples is deemed to be sufficient to represent the
slope of the boundary transition based on the effective win-
dow size. By taking the WGLCP:GLCP ratio of the average
gradient for each feature, the methods can be compared. If
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Fig. 3. Edge transects for SAR ice-water bi-partite image for selected feature statistics. Original test image included. (a) SAR ice-water image, (b) GLCP:
entropy results, (c) WGLCP: entropy results, (d) GLCP: contrast results, (e) WGLCP: contrast results, (f) GLCP: correlation results and (g) WGLCP:
correlation results.

this number is greater than 1, it indicates that the WGLCP
feature has a steeper texture boundary response and is more
desirable.

3.2.3. Results
Figs. 3 and 4 show the edge transect plots for the SAR and

Brodatz bi-partite images, respectively. For these figures, the
statistical features used are entropy, contrast and correlation
as recommended in [5]. The dashed vertical line in these
figures represents the true texture boundary. For both im-
ages, it is visually apparent that the WGLCP features have
a sharper transect response as they cross the texture bound-
ary, indicating better boundary preservation. For both test
images, the WGLCP:GLCP average gradient ratio is greater
than 1 (Table 2) for the statistics (excluding correlation),

verifying that the WGLCP features provide better boundary
preservation during segmentation compared to the GLCP
features.

Observing the correlation plot for the SAR image
(Fig. 3), the transect is under-damped, and causes one to
question the true suitability of using the correlation statistic
for these high contrast textures. Section 3.3 will investi-
gate the GLCP correlation statistic further to provide an
explanation for this phenomenon.

3.3. Investigating statistical parameters

3.3.1. Test data
The test data consists of two synthetic bi-partite tex-

tured images as shown in Fig. 5a and b. The textures were
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Fig. 4. Edge transects for Brodatz cork-wool bi-partite image for selected feature statistics. Original test image included. (a) Brodatz cork-wool image,
(b) GLCP: entropy results, (c) WGLCP: entropy results, (d) GLCP: contrast results, (e) WGLCP: contrast results, (f) GLCP: correlation results and (g)
WGLCP: correlation results.

Table 2
WGLCP:GLCP average gradient ratio for selected statistical features

SAR image Brodatz image

Entropy 1.30 1.22
Contrast 2.12 1.48
Correlation N/A N/A

synthetically created from sinusoidal functions with a spec-
ified frequency, amplitude and DC gain. By varying these
three parameters, different textural effects can be synthe-
sized. As well, white Gaussian noise (�= 1.5) was added to
each image in the test set to make the results more realistic.

Each test image contains different texture pairs as follows:

(1) High contrast boundary: The first texture is dark (i.e.
low DC gain), has low variance (i.e. amplitude) and is
of low frequency. The second texture is brighter, has
higher variance and higher frequency.

(2) Low contrast boundary: Both textures in this image have
the same mean grey level. The first texture has a low
variance and frequency. The second texture has a high
variance and frequency.

3.3.2. Results
Fig. 5 contains the boundary transect results for the high

and low contrast images. The true texture boundary is indi-
cated by the dashed vertical line. The plots on the left-hand
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Fig. 5. Edge transects for synthetic bi-partite imagery. The images on the left are the feature transects for high contrast image. The images on the right are
the feature transects for low contrast image. The true texture boundary is indicated by the dashed black line. Original test images included. (a) Textures
with different DC gain, different amplitude and different frequency. (b) Textures with the same DC gain, different amplitude and different frequency. (c)
High contrast image: entropy results. (d) Low contrast image: entropy results. (e) High contrast image: contrast results. (f) Low contrast image: contrast
results. (g) High contrast image: correlation results. (h) Low contrast image: correlation results.

side are transects for the high contrast texture boundary,
whereas the right-hand side contains transects of the low
contrast texture boundary. The entropy and contrast statisti-
cal features provide a step-like response across the texture
boundary for both images.

The GLCP correlation feature across only the high con-
trast boundary shows an under-damped response. This can
be explained through analyzing the probability distributions
within the GLCM (Fig. 6). During feature extraction, the
distribution of non-zero elements in the GLCM was moni-
tored within and across the texture boundary. For the dark
texture, there is a high distribution of non-zero elements con-
centrated in the upper-left quadrant of the GLCM. For the

higher frequency bright texture, the bottom-right quadrant
of the GLCM is more highly populated. During the transi-
tion from dark-to-light textures, the probability distribution
is distributed across the top-left quadrant to the bottom-right
quadrant; hence, the co-occurrence probability distribution
becomes observably more correlated.

For the image where both textures have the same mean
grey level, the correlation parameter produces the expected
over-damped response. This indicates that it will make an ap-
propriate feature for segmentation under such circumstances.
However, if there are high contrast differences at the bound-
ary between the two textures, the undesirable under-damped
response results.
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Fig. 6. Visualization of how the probability distribution in the GLCM
changes across high contrast texture boundaries. Texture “A” is has a
low mean grey level and texture “B” has a high mean grey level. The
probability distribution in the GLCM becomes more correlated as it
crosses the texture boundary.

4. Segmentation performance

This section focuses on investigating the segmentation
performance of the texture features. The first test will mea-
sure the cluster separability of the GLCP features. The in-
tention is to verify that the correlation parameter produces
poor texture features for high contrast imagery. The second
test will compare various feature sets in terms of segmenta-
tion performance. The final test will provide a computational
comparison for both methods in terms of image segmenta-
tion time.

4.1. Cluster separability analysis

4.1.1. Explanation
Studies suggest that pixels near boundary regions have a

tendency to form their own clusters in the feature space [9].
Using a labelled feature space, one can perform Fisher anal-
ysis [17] to determine if these boundary pixels are forming
separate clusters in the feature space. This test intends on
extracting labelled GLCP texture features from a SAR sea
ice image according to the parameters defined in Table 1
with a window size of 15 × 15. One of three labels will be
assigned to each feature: ice, water or boundary. The inter-
class separability is evaluated by the Fisher criterion for all
pairs of classes (i.e. ‘ice versus water’, ‘ice versus bound-
ary’, and ‘water versus boundary’).

Fig. 7. RADARSAT SAR sea ice image of the Beaufort Sea. Courtesy
of Canadian Space Agency�. Included are the segmentation composites
for tests in Section 4.2. Grey lines represent true boundaries as obtained
from the ground truth image. (a) Original, (b) Manual segmentation, (c)
GLCP using entropy, contrast, correlation, (d) GLCP using entropy and
contrast, (e) WGLCP using entropy, contrast, correlation and (f) WGLCP
using entropy and contrast.

Using the ground truth segmentation, class labels are
assigned. However, due to the smearing effects of large win-
dow sizes required by the GLCP features, a methodology for
labelling ‘boundary’ pixels is determined. A pixel is labelled
boundary if its distance is at least �n/4� pixels from a true
boundary; where n is the size of the image window, and the
true boundary is determined from the ground truth image.

4.1.2. Test data
Fig. 7a is a SAR sea ice image of Beaufort Sea ac-

quired from the RADARSAT-1 platform. The radar plat-
form parameters are identical to the parameters for Fig. 3a
(Section 3.2). This image is selected for testing as it has
many high-contrast, irregularly shaped texture boundaries.
Included is a manual segmentation of the image which is
used as ground truth (Fig. 7b).
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4.1.3. Methods of analysis
The distance between two clusters is a common measure-

ment in determining cluster separability. Using the Fisher
criterion, a weighted distance between the projected clus-
ters is measured [14]. Essentially, to determine the Fisher
criterion for two labelled classes (C1 and C2) in the fea-
ture space, the ratio of the between-class scatter matrix
(SB ) and within-class scatter matrix (SW ) is used as follows
[17, p. 448]:

J = tr
(
S−1

W SB

)
, (11)

where tr denotes trace. Larger values of J indicate greater
cluster separability.

4.1.4. Results
Table 3 summarizes the results of Fisher analysis on

different feature spaces. According to the Fisher criterion,
when the feature space comprises only the entropy statistic,
the ice-water separability is substantially higher (4.21) than
the other pairs (0.08 for ice-boundary and 2.57 for water-
boundary), indicating that the ice and water pixels are more
distinct in the feature space. In this case, there is a stronger
tendency to segment into the two desired classes of ice and
water. The ice-boundary separability is low (0.08) relative
to the water-boundary separability (2.57), indicating that
there is a bias which will tend to group ice and boundary
pixels together, even in situations where the boundary pixel
should be classified as water. Table 3 also shows that con-
trast features alone will produce similar results as entropy
features in terms of inter-class separability. Using entropy,
the separability of ice and water is 2.74 while the separa-
bility of ice and boundary (0.39) and water and boundary
(1.00) are substantially lower. Thus, in the cases of using
entropy or contrast features alone, proper segmentation is
expected to be performed.

On the other hand, the Fisher results (Table 3 verify that
the correlation statistic is not suitable for segmentation. Us-
ing correlation, both ice versus boundary (1.82) and ice ver-
sus water (0.71) have higher separability than ice versus wa-
ter (0.50), indicating the boundary is easily identified as a
separate class. Given the high contrast nature of the ice and
water boundary, this result parallels the result obtained in
Section 3.3.

When all three statistics (entropy, contrast, correlation)
are combined, the Fisher criterion shows the best separabil-
ity is between ice and water classes (12.55). Also, for this
scenario, the numbers show that there is still a slight bias
to over-classify boundary pixels as ice (1.83 versus 2.87).
Finally, when the correlation statistical feature is removed
from the feature space (leaving only contrast and entropy
features), ice-water separability is increased (15.01 versus
12.55) and the boundary biases are reduced (1.83 down
to 0.45 and 2.87 down to 2.72). Under this testing, con-
trast and entropy represent the preferred statistics for image

segmentation when high contrast boundaries could be
present in the image.

4.2. Determining a preferred feature set

4.2.1. Explanation
WGLCP texture features have been introduced and are

demonstrated to provide better texture boundary preserva-
tion compared to the GLCP features. Also, the correlation
parameter does not make a suitable feature when segment-
ing images with high contrast boundaries. Combining these
ideas, four feature spaces for segmenting a variety of im-
agery are compared:

(1) GLCP texture feature extraction using entropy, contrast
and correlation statistics;

(2) GLCP texture feature extraction using entropy and con-
trast (no correlation) statistics;

(3) WGLCP texture feature extraction using entropy, con-
trast and correlation statistics; and

(4) WGLCP texture feature extraction using entropy and
contrast (no correlation) statistics.

Aside from the statistics, the remaining (W)GLCP user-
defined variables are listed in Table 1. After feature extrac-
tion, the feature space is normalized and k-means clustering
is applied [14]. Based on the experiments conducted in the
previous sections, the hypothesis is that feature set (4) (i.e.
WGLCP using entropy and contrast statistics) should pro-
vide the preferred segmentation results for the high contrast
images used in this section. Note that adding the grey tone
to the feature space for high contrast images would improve
segmentation; however, these tests focus on comparing only
the texture feature sets.

4.2.2. Test data
This test data consists of two test images. The first im-

age is the SAR sea ice image (Fig. 7a) used in Section 4.1.
This image was selected as it represents natural imagery.
A window size of 15 × 15 was used for feature extraction.
The second image (Fig. 8a) is a Brodatz mosaic image and
its corresponding ground truth image (Fig. 8b). This im-
age is adapted from [18] and contains four distinct (and la-
belled) textured regions from the Brodatz photo album [16].
The textures used in the image are cork (D4), cotton canvas
(D77), wool (D92) and straw matting (D55). This image has
many irregularly-shaped texture boundaries, which makes
segmentation more difficult. As well, Brodatz textures are
extensively used in the research literature. A window size of
19 × 19 is used for feature extraction.

4.2.3. Methods of analysis
Using the ground truth image, the cumulative correct

and incorrect classifications for each test set are deter-
mined and stored in a confusion matrix. The kappa statistic
(�̂) and confidence interval (�̂) are commonly used to
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Table 3
Fisher measures for various feature spaces of the Beaufort image

Statistics used in feature space

Entropy Contrast Correlation Entropy, contrast, Entropy, contrast
correlation

Ice vs. water 4.21 2.74 0.50 12.55 15.01
Ice vs. boundary 0.08 0.39 1.82 1.83 0.45
Water vs. boundary 2.57 1.00 0.71 2.87 2.72

Fig. 8. Brodatz mosaic “star” image. Contains four different textures:
cork (D4), cotton canvas (D77), wool (D92) and straw matting (D55).
Segmentation results included. (a) Original, (b) Manual segmentation, (c)
GLCP using entropy, contrast, correlation, (d) GLCP using entropy and
contrast, (e) WGLCP using entropy, contrast, correlation and (f) WGLCP
using entropy and contrast.

evaluate the confusion matrix [19]. When two error matri-
ces are compared, the following test statistic can be used
to determine a significance value (using a significance
level of 5%) [19]:

Z ∼ �̂1 − �̂2

�̂1 − �̂2
. (12)

Table 4
Comparing segmentation performance of different feature sets

Beaufort image Brodatz “Star” image

Overall Kappa Overall Kappa
accuracy (%) statistic accuracy (%) statistic

Feature set 1 72.9 0.39 70.9 0.59
Feature set 2 77.0 0.49 85.2 0.77
Feature set 3 79.1 0.54 74.2 0.63
Feature set 4 79.3 0.54 86.3 0.78

4.2.4. Results
Fig. 7 shows the segmentation results using the four fea-

ture sets for the Beaufort image. The grey lines overlayed in
the image represent the true boundaries. Percentage accura-
cies and kappa coefficients are presented in Table 4. With
respect to the GLCP results, the segmentation accuracy in-
creases from 72.9% (using contrast, entropy and correla-
tion statistics) to 77.0% (when the correlation statistic is re-
moved). Performing pairwise statistical significance testing
on all six possible feature set pairs, all pairs produce signif-
icantly different results except for the WGLCP (with cor-
relation) and WGLCP (without correlation) pair. Note that
there is a percentage increase when removing the correla-
tion statistic in the WGLCP case: the segmentation accuracy
increases from 79.1% to 79.3%.

Fig. 8 shows the segmentation results using the four fea-
ture sets applied to the Brodatz “star” image. For both GLCP
and WGLCP methods, it is very apparent that including cor-
relation feature leads to poorer segmentation. The texture
boundaries between the four objects and the background
form a separate class, which causes the cork and wool tex-
tures to be clustered together. Once the correlation feature
is removed from the feature space (Fig. 8(c) vs. (d) and
Fig. 8(e) vs. (f)), the boundary errors are mostly resolved.
However, there is some boundary misclassification around
the wool texture (lower-right). The boundary transition from
wool to straw matting mimics the cork texture features,
resulting in boundary misclassification. As indicated in
Table 4, the results omitting correlation for the GLCP and
WGLCP methods lead to improvements of 85.2% from
70.9% (for GLCP) and 86.3% from 74.2% (for WGLCP).
Table 4 also indicates that the WGLCP method is more ac-
curate than the GLCP method, given the same feature set.
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All pairwise comparisons generate statistically significant
differences except for the pair for GLCP (all statistics)
versus WGLCP (all statistics). In this case, the correlation
statistic leads to poor boundary approximation in each case
leading to results that are not significantly different. Note
that there is a percentage increase from 70.9% to 74.2% in
this case.

Given these results for the two images, it is demonstrated
that the WGLCP is an improvement over the GLCP and that
removing the correlation statistic improves the segmentation.

4.3. Computation time

For this research, the experiments are performed on a Pen-
tium IV, 1.6 GHz computer running Windows 2000� and
running Matlab version 6.1� Release 12.1 with 512 Mb
RAM. The results indicate the WGLCP method is an order of
magnitude slower than the GLCP method, where the GLCP
features are calculated using a modification of the GLCHS
[20] method, which is found in the PCI GeomaticaTM soft-
ware. For a 256 × 256 image, the WGLCP method takes
approximately 9.5 hours to calculate the texture features ac-
cording to the parameter set outlined in Table 1 with a win-
dow size of 19 × 19. Nevertheless, with the advancements
of computer hardware architecture, this computational bur-
den will continue to be reduced. As well, this time can be
reduced significantly by implementing the algorithm in C
code (versus Matlab�), as C code is far more efficient at
performing iterations. By using a coarser quantization level,
the computational time can be further reduced.

5. Conclusions

The goal of this paper is to improve image texture seg-
mentation with focus on the preservation of texture bound-
aries. From these tests, several conclusions are reached:

• The WGLCP is a novel technique that generates texture
features that are better able to identify class boundaries
than the standard GLCP approach. By weighting pixel
pairs in the center of the window higher than pixel pairs at
the window boundary, improved features are generated.

• In images where there is high contrast difference across
class boundaries, the correlation statistic is not suitable
for segmentation. In such cases, the correlation statistic
should be avoided. An explanation for this phenomenon
has been provided. Since natural texture images often
have high contrast boundaries, avoiding the correlation
statistic for segmentation problems is strongly advocated.

• For general image segmentation, this paper advocates an-
alyzing edge transects across class boundaries prior to
performing segmentation. By analyzing the profile of a
single feature measurement across a class boundary, the
feature suitability is determined. If the feature shows an
impulse-like (or under-damped) response across the class

boundary, this indicates it will perform poorly at separat-
ing classes in the image. For optimal feature separability,
a step-like response is desired across the class bound-
ary. In essence, the extra initial time required to analyze
edge transects will provide a more intelligent method in
feature selection and will save time an aid in the overall
segmentation process.
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