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Modeling Emotional Content of Music Using
System Identification

Mark D. Korhonen, David A. Clausi, Senior Member, IEEE, and M. Ed Jernigan, Member, IEEE

Abstract—Research was conducted to develop a methodology
to model the emotional content of music as a function of time
and musical features. Emotion is quantified using the dimen-
sions valence and arousal, and system-identification techniques
are used to create the models. Results demonstrate that system
identification provides a means to generalize the emotional content
for a genre of music. The average R? statistic of a valid linear
model structure is 21.9% for valence and 78.4% for arousal. The
proposed method of constructing models of emotional content
generalizes previous time-series models and removes ambiguity
from classifiers of emotion.

Index Terms—Appraisals, emotion, information retrieval,
model, mood, music, perception, system identification.

I. INTRODUCTION

HERE is a growing interest in analyzing the emotional

content of music in the fields of music information re-
trieval and music psychology. Music information can be stored
and retrieved using emotional content in addition to other
musical characteristics such as artist, title, style, genre, or
similarity [1]. Music psychologists are interested in studying
how music communicates emotion [2]. Both of these fields
require a method to measure and analyze the emotional content
of music. Currently, no standardized methodology exists.

Feng et al. [3], Li and Ogihara [4], and Liu et al. [5]
classify musical selections from various genres into 4, 6, or
13 different emotions. All of these studies rely on measuring
musical features representing musical properties such as tempo,
articulation, intensity, timbre, and rhythm to train a classifier.
A comparison of these studies reveals that treating emotion as
a discrete variable involves ambiguously selecting the number
of emotions. To resolve this ambiguity, Schubert recommends
representing an emotion as a continuous multidimensional
variable [2].

Because music changes with time, the emotion communi-
cated by the music can also change with time [6]. Because
the emotion can vary throughout a musical selection, a time-
varying method of measuring emotion is more appealing than
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describing music with a single emotion. To allow varying
emotional content of a musical selection, Liu et al. [5] analyze
emotion as piecewise constant over musical selections, whereas
Schubert [2] analyzes emotion as a continuous function of time.

For reasons given in the preceding paragraphs, the emo-
tional content of music should be quantified as a time-varying
continuous variable. Schubert has expressed the time-varying
emotional content of particular musical selections as a function
of five time-varying musical features through a time-series
analysis [2]. By generalizing Schubert’s models to many differ-
ent musical selections, it is possible to construct a mathematical
model of the time-varying emotional content of music as a
function of features in the music.

The goal of this paper is to develop a methodology to create
valid models of time-varying continuous emotional content for
a genre of music. The emotional content of various musical
selections will be measured by representing the perceived emo-
tional content of the music made by a population of listeners.

These models can be used to determine the regions of a
musical selection that communicates a particular emotion or
measures how much the emotional content deviates from a
“base” emotion, as a function of time. The models may aid
music information retrieval by enhancing classification and
retrieval algorithms. Also, the models may provide a means
to evaluate how various musical features affect the emotional
content of music.

This paper is organized to present and evaluate a method-
ology to create valid models for emotional content of music.
Section II provides the background necessary to quantify emo-
tion as a multidimensional signal. Section III discusses a gen-
eral methodology that can be used to create a model. Section IV
describes the authors’ implementation of the methodology
and their results. This paper concludes in Section V with a
discussion of the model and possible applications, as well as
directions for future research.

II. BACKGROUND

When presented with emotional stimuli, a person may expe-
rience the autonomic reactions and expressive behaviors associ-
ated with an emotion. In this paper, the term emotional response
is used to indicate the person’s experience of emotion. A person
may also recognize emotion in the stimuli without experiencing
the reactions and behaviors associated with emotion [7]. The
process of recognizing emotions in the stimuli is referred to as
perceiving emotion, and the term emotional appraisal is used to
indicate the emotion recognized in the stimuli.
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If one considers music to be a medium for communicating
emotions, emotional appraisals are more intuitive to investigate
than emotional responses [8]. A person’s emotional appraisal of
music can be interpreted as the emotional content they perceive
in the music.

The measurement of emotional appraisals of stimuli is ac-
complished by having the person report the emotions they
perceive in the stimuli. This can be done in several different
ways such as verbal descriptions, choosing emotional terms
from a list, or rating how well several different emotional terms
describe the appraisal [2], [7].

By rating emotional terms, emotions can be continuous
quantities that are described using a vector. Results from multi-
variate analysis studies have “. .. suggested that many, perhaps
most, emotions recognized in music may be represented in
a two-dimensional (2-D) space with valence (positive versus
negative feelings) and arousal (high—low) as principal axes . ..”
[7, p. 126]. These are the dimensions suggested by Russell to
describe emotion [9]. These dimensions are also similar to those
proposed by Thayer [10] and used by Liu et al. [5].

Fig. 1 is an adaptation of Russell’s figure showing how sev-
eral different emotions can be described using the dimensions
valence and arousal' [9]. Valence refers to the happiness or
sadness of the emotion, and arousal is the activeness or pas-
siveness of the emotion [2]. Each component can be quantified

IThe coordinates and relative positions of the labeled emotions in this space
have been selected for illustrative purposes. The authors make no attempt to
describe the exact coordinates of particular emotions in this space.

Example of emotions plotted in a two-dimensional emotion space (2-DES) [9, p. 86].

by limiting the range of each dimension to [—100%, 100%] and
rating each component on this scale.

A person can describe an emotional appraisal on a computer
by using a mouse (or similar input device) to move a cursor
in the two-dimensional emotion space (2-DES), and the cur-
sor position would correspond to the emotional appraisal. By
recording how the cursor position changes with time, the person
can easily describe how their emotional appraisals change
with time as the stimulus changes. FEELTRACE [11] and
EmotionSpace Lab [12] are examples of software that are
able to collect reliable time-varying emotional appraisals using
a 2-DES to emotionally appraise stimuli (e.g., words, faces,
music, and video).

When people perceive emotion in music, there are some
emotions that are reliably perceived and other emotions that
are confused with different emotions [7]. The emotions that are
reliably perceived, such as happiness and sadness, each appear
to have distinctive arousal and/or valence values. Generally,
the emotions that are confused (e.g., calm versus sorrow, anger
versus fear) appear to have similar arousals and valences. This
may mean that while emotion may consist of components other
than arousal and valence, these two components may be the
ones that are most clearly communicated through music. These
reasons provide additional motivation for using the 2-DES to
emotionally appraise music.

To summarize, the emotional content of music can be quanti-
fied by measuring emotional appraisals of music collected using
a software such as EmotionSpace Lab. For example, many
different people could appraise the same musical selections
using this software, and their appraisals could be combined to
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generate an emotional appraisal representative of the popula-
tion. The representative emotional appraisal of a musical selec-
tion can be interpreted as the emotional content of the music.

III. PROPOSED METHOD

The goal of this project is to develop a methodology to
model the emotional content of music. A model should meet
the following criteria.

1) The measured emotional content (emotional appraisals of
a population of listeners) needs to be time varying.

2) The musical features that are inputs to the model need
to represent many musical properties that communicate
emotion and also need to be time varying.

3) The model needs to be estimated/trained using emotional
appraisals to musical selections representing a genre of
music.

4) The model needs to accurately simulate emotional ap-
praisals to any musical selection from the genre of music.

Initially, only one genre of music should be represented per
model. Although multiple genres of music could be modeled,
Li and Ogihara [4] suggest that limiting a model to one genre
of music can result in improved performance.

Once a model is obtained that meets these four criteria, it
can be used to estimate the emotional content of all musical
selections in the genre. To create a model meeting these criteria,
the system-identification procedure described by Ljung will be
used [13]. Through model construction, the first three criteria
can be met. To evaluate how well a model meets the fourth
criterion, the model can be evaluated to measure how well it
generalizes emotional appraisals.

The system-identification process consists of multiple stages
that can be performed iteratively [13]. These stages form the
basis of the methodology discussed in the following sections.

1) Design the experiment’ to collect input and output
signals.

2) Select the input signals (musical features) to be used in
the study.

3) Perform the study to collect output signals (emotional
appraisals).

4) Select model structures for evaluation.

5) Select the algorithm used to estimate the parameters of
the models.

6) Estimate the parameters of the models using the input and
output signals and evaluate the models to determine their
validity.

A. Experiment Design

To be able to measure emotional appraisals of a population
of listeners and create models from these measured appraisals
meeting the four criteria, several variables need to be selected.
These variables include the genre of music to model, the
number of musical selections to be appraised, the duration of

2The term “experiment design” is used to be consistent with system-
identification literature. The term “study” will be used interchangeably with
“experiment” in the remainder of this paper.

music listened to by the volunteers, the number of volunteers,
and the sampling rate of the cursor in the 2-DES.

After selecting the genre of music, the genre can be rep-
resented using multiple musical selections. To avoid biasing
the model performance to longer songs, it may be desirable
to modify the musical selections to be approximately the same
duration.

To ensure that each listener is able to concentrate throughout
the study, the duration of the session with each listener should
be limited [2]. Thus, it is impractical to have each listener
appraise a large number of pieces. To overcome this limitation,
many listeners could appraise a random subset of the musical
selections, where A is the total number of musical selections.
If not enough listeners are available, another alternative is to
use a limited amount of data (a small value for A) that are as
informative as possible. To be maximally informative, the A
musical selections need to differ and vary considerably. This
can be accomplished by using as many musical selections as
possible in the time period that have possibly been duration
modified.

The sampling rate of the cursor in the 2-DES needs to be
selected. Ideally, the sampling rate should approximately equal
the time constants of the system [13]. Since these are not
exactly known, one can sample as fast as possible, and digitally
prefilter and decimate the signals to obtain a desired sampling
rate [13].

B. Feature Measurement

To satisfy the second model criterion and to use the musical
selections as input signals in the model, the music needs to
be represented by m time-varying musical features. These
m features are measured every second and treated as an
m-dimensional vector u,(t), where ¢ is the time in seconds
when the features are calculated for musical selection a (a =
1,2,...,A).

For the features to represent the emotional content of the
music, the m features should represent musical properties that
communicate emotion. Schubert has performed a comprehen-
sive review of studies that determine which musical properties
cause listeners to perceive an emotion [2]. There are 16 proper-
ties identified by Schubert: dynamics, mean pitch, pitch range,
variation in pitch, melodic contour, register, mode, timbre, har-
mony, texture, tempo, articulation, note onset, vibrato, rhythm,
and meter. Features representing these properties can be mea-
sured using algorithms, such as those found in PsySound [14]
and in Musical Research System for Analysis and Synthesis
(MARSYAS) [15]. Once the features have been measured, it
may be necessary to resample the features in order to have the
same sampling rate as the appraisal measurements or to perform
other preprocessing as discussed by Ljung [13].

C. Appraisal Measurement

By sampling the cursor position of a listener’s emotional
appraisal in a 2-DES, the first model criterion can be met. For
example, Schubert’s EmotionSpace Lab can be used to measure
emotional appraisals [2], [12].
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Fig. 2. Comparison of median and mean to calculate a representative appraisal (for the arousal dimension of a selection from Rodrigo’s Concierto de Aranjuez)

8, p. 110].

To collect emotional appraisal data from a population of
B listeners, each listener must appraise the music. Let b =
1,2,..., B represent each listener, and let A, represent the
number of musical selections heard by listener b. For each
listener, the A, musical selections should be randomly selected
from the A musical selections for evaluation in the session. To
ensure that many people have evaluated each musical selection,
the following expression should be met.

BAy, > A, b=1,2...,B (1)

Once the emotional appraisals of B listeners have been
collected, each of the A musical selections in the database will
have been appraised multiple times. To create a model, it is
advantageous to combine the multiple emotional appraisals for
each musical selection into a single emotional appraisal. The
advantages of creating a representative appraisal include: data
reduction, improvements in signal to noise ratios, and improve-
ments in the conditioning of the model-estimation algorithm
[13]. This single emotional appraisal should be representative
of all of the listeners. Creating a representative emotional
appraisal for each musical selection assumes that emotional
appraisals are consistent across cultures, music training, and
other variables of the sample population. For the discussion that
follows, the following 2-D time-varying vectors are defined:

lab(t) emotional appraisal of person b to musical selection
aattimet,b=1,...,B,a=1,... A;
Y, (t) random vector describing the population’s emotion

appraisal of musical selection a at time ¢;
emotional appraisal representative of the population
for musical selection a at time ¢.

The probability distribution function (pdf) of Y, (¢) is a func-
tion of musical features and emotional appraisals prior to time £.
However, by considering the marginal pdf of the emotional
appraisal as a function of time only, it is possible to calculate
an emotional appraisal representative of the population at a
particular time ¢ by considering only the observed emotional
appraisals at t. This is acceptable because the models that will
be identified determine how the musical features and emotional
appraisals affect Y, (¢).

The vector y . (t) can be interpreted as the bth observation of
Y . (t). Because each person appraises a subset of the A musical
selections, vy _, (t) will not have data for some of the musical
selections.

There are several ways to obtain y_(t) from v ,(¢). Fig. 2
illustrates a comparison of using the sample median and sample
mean to calculate ga(t) for a particular piece (the sample
standard deviation as a function of time is labeled o (¢) in this
figure) [8]. Korhonen notes that the median and mean appraisals
are similar except when the distribution of appraisals appears
to be bimodal or skewed; in these cases, the median is a more
robust measure of centrality [8]. Usage of the sample median
also allows handling missing data and outliers by omitting them
from the calculation of the representative appraisal. For these
reasons, the sample median is a reasonable method to calculate
ga (t)

Once a representative emotional appraisal ga(t) has been
calculated for all A songs in the database, it should be
preprocessed to improve model estimation. Two methods of
preprocessing the data are lowpass filtering to remove high-
frequency noise and highpass filtering to remove drifts and
offsets [13].
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D. Model Structure

Once the musical features and emotional appraisals are col-
lected, the next step is to select the model structures to use.
Each model structure is parameterized using a d-dimensional
vector 6 consisting of all of the parameters needed to describe
the model. Each model can be described using the following
expression:

9,(t0) = f(ug(t),ug(t —1),...,e(t), et —1),...) (2
where

g,(t|0) simulated output for musical selection a;

u,(t)  feature vector for musical selection a;

e(t) 2-D white noise process with zero mean;

10 function representing the model structure;

[ d-dimensional vector containing all of the parame-

ters needed to describe f().

Because f() is not a function of y _(t —1),y (t—2),...,
this model structure is a simulation model (as opposed to a
prediction model) [13]. Although prediction models are used
in many system-identification problems, simulation models are
required to meet the fourth model criterion. Also, f() is the
same for all musical selections to satisfy the third model crite-
rion. To simplify the discussion in the following sections, only
linear models will be considered; the methodology described in
the following two sections can be extended to nonlinear model
structures as well.

After selecting the model structures, the number of parame-
ters needs to be chosen. For example, in an artificial neural
network, the parameters are the weights and biases that depend
on the number of layers and neurons. For another example, in a
state-space model, choosing the order of the model determines
the number of parameters.

E. Model Estimation

To ensure that the third model criterion is met, the parameters
(6) of a model need to be estimated using the musical features
and the representative emotional appraisals. A subset of the
musical selections, referred to as the training set, is used to
estimate the parameters in a model. The remaining set of
musical selections is referred to as the testing set and is used
to validate the model.?

Before estimating the parameters in the linear models, data
fusion needs to be used to combine the input and output data
from all of the musical selections in the training set. The A
musical selections [represented by u,(t),y (t)] are treated as
one continuous musical selection [represented by (), y(t)],
but the initial conditions are reset at the beginning of each
musical selection. Using a similar notation, let §(¢|6) represent
the simulation of y(t). ;

Once the structure of the model is selected, the parameters
of the model can be estimated using various algorithms. For
example, if the model is nonlinear, methods such as a gradient

3To perform a cross validation as described in Section III-F, several different
training sets will be used for a given model architecture. However, the method
of model estimation will remain the same for all training sets.

descent can be used. If the model’s structures are linear, the
prediction error method (PEM) is suggested because it will
generate unbiased estimates of the parameters regardless if the
“true” system can be represented using the model structure [13].
To use PEM, a norm must be selecAted such as the determinant
of the estimated error covariance, A (6). This choice of norm
for PEM is described using the following equations [13]:

0 = argmin Vi (0) 3)
Vi(®) = \KN ©®) )
R N
An () Z (t[0)eT (1]6) 5)
e(tl8) = y(t) — §(tle) ©)
where
Vn(0) loss function;
[ estimate of ;
J(t|@) one-step-ahead prediction for y(¢) for the model

structure;
total number of samples in the training set;
number of parameters in 6.

If the model structure is linear, it is straightforward to relate
the one-step-ahead prediction (§(t|6)) to the simulated output
(4(t|8)) [13]. For nonlinear models, other estimation methods
may be more appropriate.

=2

F. Validation

If a model can accurately simulate emotional appraisals to
any musical selection from the genre of music, the fourth
model criterion will be satisfied. To measure the accuracy of
a model, the bias and variance errors will be estimated. To
verify assumptions made by a given model structure, a residual
analysis will be performed.

Evaluating the bias error of a model can be done using
K-fold cross validation [16]. For each model structure, use
K different training sets and measure the mean-squared error
(mse) for each of the K different testing sets. Because there are
two outputs, the mse should be calculated separately for each
of the outputs. The mse for testing set k is described by the
following equation:

1
ms€ey,w = N Yo w0 (t) = oy, w (ﬂg)‘Z @)
Ok =1
where

w dimensions valence and arousal;

k testing set (k = 1,2,...,K);

ag subset of the A musical selections in testing set

ks
MS€q,, ,w mse for dimension w of testing set k;

total number of samples in testing set k;
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Y (t) representative emotional appraisal of the musi-
cal selections in «y, that have been combined
using data fusion, as discussed in Section III-E;

Yow(t)  wth dimension of yak(t) in testing set k (i.e.,
gak (t) = [yg:k,valence (t)’ yg:k,arousal(t)]T);

Jow(t|@)  wth dimension of the simulated output of test-

ing set k.

By constructing the K testing sets so that the data for each
musical selection are found in exactly one of the K testing
sets, a simulated output exists for all A musical selections. The
resultant mse for output w can then be calculated using the
following weighted average:

K
_ > k1 Namseq, w
mse,, = 7 .
S N
k=1-*"ok

®)

Because the mse is a function of the energy of the signal, it
is desirable to normalize the mse using the squared-multiple-
correlation coefficient (R2). By using the R? measure, it is pos-
sible to compare the bias of models estimated using any dataset.
The R? statistic is sometimes referred to as the “fit” and should
be as close to one as possible.* The mse for output w can be
related to R? for output w using the following expression [13]:

Ry, =1~ A mi\(]%w 2
% Dam1 21 [Yaw ()]

€))

where ., (t) is the wth dimension of y_(?).

To measure the variance error of the model structures, two
techniques will be used. First, the variance of the parameters
can be estimated to calculate 98%-confidence intervals. For a
linear model, this corresponds to £2.33 standard deviations
(o), since the parameters estimated with PEM converge to a
normal distribution as the number of data samples increases
[13]. Parameters that reflect design decisions (such as model
order or time delay) should be statistically significant from zero
to be included in the model. Also, if the confidence intervals
of many parameters are large, then this implies that there are
too many parameters [13]. For linear models, the covariance of
the parameters P,, ¢ can be estimated for each of the K testing
sets using the following equations:

Na, -1
~ 1 : o~ A «
Payo = N Z%k(t,g)AN% (Q)ﬁk(t,g) (10)
k=1
dy,, (t|6)
Vo (b0) == (1)

4If the R? statistic is negative, the energy of the error is greater than the
energy of the true emotional appraisals. This implies that the simulated emo-
tional appraisal is extremely different from the true emotional appraisal. For
reference, a constant simulated output results in the R? statistic equal to zero.

where
gak (t,6) d x 2 matrix representing the gradients (sensi-
tivity) of the simulated output of testing set k

N with respect to each parameter at time ¢;

An,, (0) estimated error covariance for testing set k.

The second measure used to analyze the variance of the
model is the estimated variance of the output signals. Ideally,
the variance of the output signals is small so that the output
is known with some certainty. To analyze the variance of the
output signals, 98% confidence intervals of the simulated output
can be graphically compared to emotional appraisals.

If the model structures are linear, the output is a linear
function of d. This implies that 9y, (t|@) can be expressed as
follows:

9, (t10) = ¢T (£,0)0 + e(1). (12)

Since 4 is approximately normally distributed and e(t) is a
white noise process, (12) illustrates that gak(t@ is approxi-

mately normally distributed as well. The variance of § (t6)
can be calculated on the validation data using the following

equation, since e(t) will be uncorrelated with 6:
Var (g, (1)) = ¥7 (4,0)Pa, 00, (40) + R, (D).
(13)

Assumptions made during the creation of the models need to
be verified using a residual analysis. To verify that the inputs are
independent of the noise process, the cross-correlation function
between each input and the model residuals will be examined
to ensure no negative lags are significantly different than zero.
The autocorrelation function (ACF) of the output residuals will
also be calculated to ensure only the zeroth lag is significantly
different than zero. This test will be done to ensure that the
noise is white.

Once all of the model structures have been evaluated, a re-
sultant model can be created for the best model structures. The
resultant models should be estimated using all of the musical
selections. These models can be compared using Akaike’s final
prediction error (FPE) criterion to assess the tradeoff between
minimizing the mse while minimizing the variance error by
limiting the number of parameters in the model. The expression
to calculate the FPE is given by Ljung [13] as

(N +4d)

N

Vi (0).

IV. IMPLEMENTATION AND RESULTS

The methodology described in Section III was used to
create linear models of emotional appraisals. MATLAB’s
System Identification Toolbox was used. The dataset used to
generate the following models can be found at http://www.
sauna.org/kiulu/emotion.html.
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TABLE 1
MUSICAL SELECTIONS USED IN THIS STUDY
[ Musical Selection | Composer | Times | Duration |
Concierto de Aranjuez Rodrigo 7:05 — 9:45 2:45
(Adagio) & 5s silence
Fanfare for the Com- Copland 0:00 — 2:50 2:50
mon Man
Moonlight Sonata Beethoven | 0:00 — 0:22 2:33
(Adagio Sostenuto) 3:08 - 5:19
Peer Gynt  (Morning) Grieg 0:00 — 2:39 2:44
& Ss silence
Piano Concerto No. 1 Liszt 0:00 — 5:15 5:15
(Allegro Maestoso)
Pizzicato Polka J. Strauss 0:00 — 2:31 2:31

A. Experiment Design

Emotional appraisals for six musical selections were mea-
sured using EmotionSpace Lab to quantify emotions using the
dimensions valence and arousal [2]. Because EmotionSpace
Lab collects emotional appraisal data at 1 Hz, it is assumed that
emotional appraisals contain information only at frequencies
below 0.5 Hz. It would be worthwhile to sample much faster
in future studies and then resample the signal to a desired
frequency to ensure all frequencies of interest are collected.

The genre of music was selected was the Western art musical
style. Table I lists the musical selections from Naxos’ “Discover
the Classics” compact disk [(CD) 8.550035-36] that are used
in this study. Only six musical selections are used to limit the
scope, and the total duration of the songs was limited to 20 min.
To minimize bias towards a particular musical selection, the
musical selections were modified to be approximately of the
same length. Although Liszt’s Piano Concerto is longer than
the other songs, it was not modified for duration because
preliminary testing showed that this song appeared to be more
informative than the other songs.

B. Feature Measurement

To achieve the second model criterion, time-varying musical
features need to be measured from the musical selections. The
features were extracted using PsySound [14] or the fast Fourier
transform (FFT) extractor from MARSYAS [15] (tempo was
extracted manually using the method described in Schubert’s
Ph.D. thesis’ [2]). Features are extracted using established al-
gorithms to minimize the subjectivity in the features. PsySound
is used because it extracts psychoacoustic features that rep-
resent many musical properties that communicate emotion.
MARSYAS is used for feature extraction because it has suc-
cessfully been used in music-information-retrieval applications
(e.g., [17]).

The diffuse field was used for PsySound analysis because
music is the auditory stimulus and the music may be inter-
preted as originating around the listener since they are wearing
headphones [14]. The features extracted by MARSYAS were
resampled from 86 (17/128) to 1 Hz using a polyphase an-
tialiasing filter to eliminate a high-frequency noise [18]. After

SIdeally, a reliable method of extracting a tempo programmatically should
be used. However, to the best of the authors’ knowledge, there is no reliable
algorithm to estimate a tempo.

TABLE 1I
MUSICAL FEATURES USED IN THIS STUDY
No. Musical Musical Feature Extraction
Property Method
1 Dynamics Loudness Level PsySound
2 Short Term Max. Loudness PsySound
3 Mean Pitch | Power Spectrum Centroid PsySound
4 Mean STFT Centroid MARSYAS
5 Pitch Mean STFT Flux MARSYAS
6 Variation Std. Dev. STFT Flux MARSYAS
7 Std. Dev. STFT Centroid MARSYAS
8 Timbral Width PsySound
9 Timbre Mean STFT Rolloff MARSYAS
10 Std. Dev. STFT Rolloff MARSYAS
11 Sharpness (Zwicker and Fastl) PsySound
12 Spectral Dissonance PsySound
(Hutchinson and Knopoff)
13 Spectral Dissonance (Sethares) PsySound
14 Harmony Tonal Dissonance PsySound
(Hutchinson and Knopoff)
15 Tonal Dissonance (Sethares) PsySound
16 Complex Tonalness PsySound
17 Tempo Beats per Minute Schubert’s
method
18 Texture Multiplicity PsySound

the extraction of the musical features, the mean was subtracted
(i.e., dc removal).

Eighteen musical features used in this project are summa-
rized in Table II. These features are selected to represent the
16 musical properties identified by Schubert (see Section I1I-B)
[2]. Seven of these properties are directly represented by fea-
tures and six others may be indirectly represented by the same
features. The remaining three properties are either difficult to
quantify using a continuous variable (rhythm, meter) or difficult
to quantify using a time-varying variable (pitch range). For
a detailed description of how the musical features relate to
musical properties, consult Korhonen [8]. The portion of the
emotional appraisals influenced by omitted musical properties
is assumed to be accounted for by the stochastic component of
the models.

C. Appraisal Measurement

Emotional appraisal data were collected from 35 volun-
teers—21 male (60%) and 14 female (40%). Each volunteer
listened to all six musical selections in a random order. Because
A, =A=6,b=1,...,35, (1) is satisfied since BA, is 35
times greater than AVb.

To calculate an emotional appraisal representative of the
population, the median emotional appraisal was used. After the
representative emotional appraisal for each musical selection
Y, (t) was calculated, the mean was subtracted (i.e., dc removal)
to remove any offsets.

D. Model Structure

For this study, only two linear models are investigated. The
two linear models considered are the autoregression with extra
inputs (ARX) and state-space model structures. From the work
of Tillman and Bigand, it appears that fewer than 6 s of musical
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stimuli is needed to represent emotion so the maximum order
considered will be five [19].

Given m-dimensional input data u(t) and 2-D output data
y(t), the ARX model structure can be described using the
following expression:

y() + A @yt —1) + -+ A, (Q)y(t — 1a)

= Bo(Q)u(t) + - -+ Bp, (Q)u(t — ny) + e(t)

15)

where
Ap(0) 2 x 2 matrix;
Bi(6) 2 x m matrix;
e(t) 2-D white noise process with zero mean;
Ng maximum number of auto-regressive terms in the
model;
np maximum number of lagged inputs in the model;
[ d-dimensional vector containing all of the nonzero

elements of Ay () and By(0).
Given the same input and output data as in the ARX model
structure, the state-space model structure can be described
using the following expressions:

z(t +1) = A(Q)z(t) + B(@)u(t) + K(0)e(t)
y(t) =C(@)z(t) + D(Q)u(t) + e(t)

(16)
A7)

z(t)  n-dimensional state vector;

A(f) n x n matrix representing the dynamics of the state
vector;

B(f) n x m matrix describing how the inputs affect the
state variables;

C(6) 2 x n matrix describing how the state vector affects
the outputs;

D(0) 2 x m matrix describing how the current inputs af-
fect the current outputs;

K(f) n x 2 matrix used to model the noise in the state

vector.
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The initial state z(0) can be set to zero or estimated from
the data by including it in 6. Also, all nonzero elements of the
matrices are represented using 6.

See Ljung [13] for expressions describing the simulation
model 7 (t| 6) and the one-step-ahead prediction model Qp(t| 6)
for these two model structures.

E. Model Estimation

PEM was used to estimate the parameters of the models, and
the determinant of the estimated error covariance was used as
the norm. Because the means of the input and output signals
were removed, the initial value of the emotional appraisal for
each musical selection was estimated for the calculation of mse
and R? measures.

F. Resultant Model

Twelve different state-space models and 45 different ARX
models were estimated and evaluated. For a detailed de-
scription of some of the models used in this study, consult
Korhonen [8] and Korhonen et al. [20]. The best model struc-
ture was an ARX model using 16 of the 18 musical features
and 38 parameters, as shown in (18)—(24) at the bottom of
the page, where

y(t) vector consisting of valence and arousal at time ¢;

u(t) vector consisting of the following features from

Table II measured at time ¢: loudness level (LN),
power spectrum centroid (Centroid), short term max-
imum (Max.) loudness (NMax), sharpness (Zwicker
& Fastl) [S(Z&F)], timbral width (TW), spectral
dissonance (Hutchinson & Knopoff) [SDiss(H&K)],
spectral dissonance (Sethares) [SDiss(S)], tonal disso-
nance (Hutchinson & Knopoff) [TDiss(H&K)], tonal
dissonance (Sethares) [TDiss(S)], complex tonalness
(CTonal), multiplicity (Mult), mean short time Fourier
transform (STFT) centroid (MeanCentroid), mean
STFT rolloff (MeanRolloff), mean STFT flux (Mean-
Flux), standard deviation (Std. Dev.) STFT centroid

y(t) + A1 (O)y(t — 1) + A2(0)y(t —2) = Bo(O)u(t) + Br(Q)u(t — 1) + Ba(0)u(t —2) + e(t) (18)
9(t8) = [T+ A1(®)a ' + A2(8)a ] [Bo(8) + Bi(6)q " + Ba(6)q *] u(t) (19)
A (0) = 901 Zﬂ 20
wo- [ ]
Bo(0) = 8 8 909 9(1)0 9(1)1 8 9(1)2 8 907 9(? 9(1)3 8 8 9(1)4 9(1)5 9(1)6 9(1)7 9(1)8} @
O P e R I P B
B0 = [ 0 s 00 00 a0 0 e 000 00 ol 9
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Fig. 3. Simulation of Pizzicato Polka. (a) Valence and (b) arousal.

(StdCentroid), Std. Dev. STFT rolloff (StdRolloff), This model structure had an R? value of 21.9% for valence, an
Std. Dev. STFT flux (StdFlux), beats per minute R? value of 78.4% for arousal, and an Akaike’s FPE value of

(BPM); 131.5. The estimated variance errors and the residual analysis
q unit-shift operator: ¢ *y(t) = y(t — k); were similar for all of the best models.
[ 38-dimensional vector of all the parameters used to To illustrate a typical simulation from the best model struc-

describe A;(0), A2(0), Bo(8), B1(0), and Bz (9). ture, the simulation for Pizzicato Polka is shown in Fig. 3. For
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the model used to generate this simulation, Pizzicato Polka was
in the testing set and the other five musical selections in Table I
were in the training set.

V. DISCUSSION

By following the proposed methodology, the model structure
described by (18) meets the first three model criteria: the mea-
sured emotional appraisals of the listeners are time varying,
the musical features used in the model are time varying and
represent musical properties that communicate emotion, and the
model is estimated using emotional appraisals to musical selec-
tions representing a genre of music. To satisfy the fourth model
criterion, a model needs to accurately simulate emotional ap-
praisals to any musical selection from the genre of music. Be-
cause the average R? statistic for the best model structure is
78.4% for arousal and 21.9% for valence, this criterion is met
for arousals but not for valences. Because there is potential to
improve the R? statistic for valences by using different model
structures, it appears that using the proposed methodology
allows valid models to be created that satisfy the four model
criteria.

There are several comments to be made about the parameters
in (18)—(24). First, the parameters in matrices By, B1, and B>
correspond to the contribution of each input (the columns) to
each output (the rows). Because the sixth and eighth columns
of these matrices are zero, the features SDiss (H&K) and
TDiss (H&K) are not used in this model. Second, the struc-
ture of A;(f) and A5(f) indicates how previous emotional
appraisals affect the current emotional appraisal. This model
structure implies that a valence may be a function of an
arousal, but an arousal can be calculated independently of a
valence. This finding supports the hierarchical methodology
of Liu et al. [5]. Finally, the number of parameters (38) has
been chosen based on the performance of this model com-
pared to other models with a different number of parameters.
In this study, reducing the number of parameters typically
increased the bias error (reducing the R? statistic), and in-
creasing the number of parameters typically increased the vari-
ance error (increasing the FPE or the size of the confidence
intervals).

A. Comparison With Other Research

It is difficult to quantitatively compare the models of
emotional content in this study with the models created by
Feng et al. [3], Li and Ogihara [4], and Liu ef al. [5] because
emotion is considered to be a discrete variable in these studies
as opposed to a time-varying continuous variable. However, the
model created in this paper can be considered an improvement
over the models by Feng er al. [3] and Li and Ogihara [4]
because there is no longer a need to ambiguously select a
discrete number of emotions and the emotional content can vary
with time. Similarly, this paper can be considered an extension
of the paper by Liu et al. [5] because the four emotions used
in their paper are analogous to the four quadrants of the 2-DES
and thus can be further quantified using a continuous variable.

TABLE III
COMPARISON WITH SCHUBERT’S MODELS [2]

Valence R? (%) Arousal R? (%)
Musical Selection Schubert | Korhonen Schubert | Korhonen
et al. et al.
Pizzicato Polka 38 64 36 70
Peer Gynt 40 26 67 71
(Morning)
Concierto de Aran- 33 -88 57 93
juez (Adagio)

Schubert treats emotion as a time-varying continuous vari-
able [2]. In Schubert’s study, time-series models of emotional
appraisals were created for Pizzicato Polka and longer ver-
sions of Peer Gynt (Morning) and Concierto de Aranjuez
(Adagio). The R? values calculated for the individual musical
selections modeled in both of theses studies are shown in
Table II1.

According to Table III, it appears that the arousal component
of the model for the genre of classical music developed in
Section IV is an improvement over Schubert’s model for each
individual musical selection. However, the valence component
of the model has lower R? values than Schubert’s models for
Peer Gynt (Morning) and Concierto de Aranjuez (Adagio).
There are several possible reasons for these lower values:
shorter versions of these songs are used in this study so the
R? statistic can only be used subjectively, Schubert evaluates
the R? statistic using the training set so larger values are
expected for his models, and the data are filtered differently
in the two studies so different frequencies of the emotional
content are emphasized. For these reasons, definite conclu-
sions about the model “fit” cannot be made by comparing the
R? statistic.

However, despite the differences in the two studies, one can
conclude that principles of system identification afford mathe-
matical models of emotion content of music that generalize to
a genre of music. Valid models can be constructed, by applying
the systematic method used in system identification for de-
signing experiments, selecting model structures, and evaluating
the models.

B. Applications

To apply this research to the field of music information
retrieval, at least two possible approaches can be taken. First,
the resultant model could be used to determine a distance
between the emotion communicated by a musical selection and
a given emotion (point) in the 2-DES. This would allow a
person to search for music by a given emotion and be able to
sort the results by distance. Second, by analyzing the simulated
emotional appraisal of a musical selection, the variation in
emotion can be measured to determine if the music constantly
expresses one emotion or changes to express different emo-
tions. Both methods of analysis would aid storing the emotional
information content of music.

At least three methods exist to apply this research to the
field of music psychology. First, the structure of the models
could be analyzed to determine how particular musical features
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communicate an emotion. Second, the assumption that emo-
tional appraisals are consistent across cultures, music training,
and other variables could be investigated. By applying this
methodology to create models for subsets of the population
(different cultures, musical training, music exposure, etc.), the
differences between the models could be compared to deter-
mine if they are significantly different. Third, determining if an
emotional content varies with a genre can be investigated. This
could be done by comparing the performance of one model
constructed for several genres of music to several different
models that each represent a single genre.

C. Future Work

There are several suggested areas to investigate in future
works. First, because the total duration of the music was limited
to 20 min in this study, it is unlikely that an entire genre of
music was represented. It would be worthwhile to evaluate this
methodology with a larger selection of music and a greater
number of subjects.

Second, modeling music containing lyrics has not been con-
sidered in this study. While measuring the emotional content of
music with lyrics is possible using software such as Emotion-
Space Lab, more features may be needed to create valid models
for this music.

Third, in the models studied in this study, the dc value
of all inputs and outputs was removed. Because there are some
applications that would benefit from including the dc values in
the model, it would be worthwhile to either 1) create a model
without removing the dc values or 2) find a method to estimate
the dc value of the outputs.

Also, the preliminary models could be improved using sev-
eral different techniques. Sampling the emotional appraisals at
a frequency higher than 1 Hz could improve the model per-
formance. Including other features representing other musical
properties, such as articulation, could also be included. Replac-
ing the manually extracted tempo measurements with a reliable
algorithm to measure tempos would make the application of
models an automated process.

Other model structures could be used to get improved results.
For example, this methodology could be applied to nonlinear
models such as an artificial neural network. Alternatively, a
separate model could be created for the arousal and the valence
to allow treating an arousal as an input to a valence. Also, ana-
lyzing the differences between individual emotional appraisals
collected with EmotionSpace Lab could lead to an improved
noise model.
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